X-Y Coupling of Betatron Motion from MI Dipole Bus Current

James A. MacLachlan

25 October 1994

Introduction

The coils of the MI dipoles have been designed to eliminate an external return bus between
magnets. One half turn of a coil is replaced by a straight through bus in each magnet. In
type A and C magnets, this is the left side of the lower coil, and for type B and D magnets
it is the left side of the upper coil, where “left” is in each case as viewed from the feed end.
Each pair of magnets is then bussed together by a short pair of conductors that pass from the
bottom of A and C magnets to the top of B and D magnets. These connections are shown
in the figure. One also sees from the figure that the lower coil of A and C magnets and the
top coil of B and D magnets have only three turns on the end where they are joined. The
net effect of the unmatched fourth turn ends and the bottom-to-top connection from type A
to type B is a single-turn rectangular loop approximately 20 in x 7.5 in. This loop carries
the full dipole current and will produce a longitudinal magnetic field on the central axis.
The longitudinal field will couple the nominally independent modes of betatron oscillation.
The strength of this coupling has been evaluated by introducing solenoid elements into the
lattice between adjacent dipoles. The off-axis field generated by the bus is not, of course,
purely longitudinal, so some focusing effect is also to be expected. The solenoid insertions
approximately model the detuning also.

The feed end of the dipoles also exhibit some azimuthal current paths which may be
expected to produce longitudinal field. The details of the flow are a little complicated, but
qualitatively there is local cancelation and the effect should be smaller than that from the
opposite end. Even if the feed-end fields were independently comparable, their combined
effect must nearly vanish because they occur in pairs of opposite sense with only about five
degrees of betatron phase separating them. Therefore, the feed ends have been ignored in
this calculation which has as its principal object determining whether the order of magnitude
of the coupling is large enough to warrant concern or a more detailed calculation.

The x-y coupling has also been examined by R. Baiod.lll His report is not yet available,
but his conclusion agrees qualitatively at least with what is reported here, viz., that the
coupling is entirely negligible as a practical matter.
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Strength of the Perturbation

The source of the error field is a rectangular loop of approximately 51 x 19 €m? centered

on the beam orbit. Regardless of the shape of a loop, its central field is proportional to
R~! where R is the radius for an equivalent circular loop. Therefore, the rectangular loop is
treated as circular loop of the same dipole moment; the equivalent radius is R = 17.55 cm.
The axial field of a one-turn loop is

pol R?
2 (z2+R2)3/2 ’

Boxial =

where z = 0 is the center of the loop. The distance between adjacent dipoles, 0.3339 m,
is about one foot, just about the diameter of the equivalent circular loop. Just to make
the formula for the [ B, dz a little tidier the diameter of the loop is set to precisely the
inter-dipole space so 2R = L. The integrated effect is

2 Jp 2+ (L2 FRY T 2

L/2 2
/B dz = pol (L/2) d ol
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This is the same field integral that would result from a solenoid of length L and strength

ol
B, = .
V2L

For beam optics one uses the momentum normalized strength

Using the numbers for the MI at 120 GeV/c,

_ 4r-107T X 7.1-10°

B, = = 0.0189 [T
V2 x .3339 S
_ 10p [GeV/c] _

and
K,=4721-10"% [m™Y] .

The Effect of the Perturbation

The transfer matrix for a solenoid is

c? SC/k  SC Sk
—kSC c? -kS*  SC A B
—-5C -S'k  C* SCJk )

kS? —SC —kSC  ©?

where
k= Lk,
2
S = sinkl
C = coskL .

The thin lens version of this matrix is

1 0 kL o
—k*L 1 0 kL
—kL 0 1 0
0 —kL —K'L 1

which partitions in an obvious way into focusing diagonal blocks and coordinate rotating off-
diagonal blocks. This version is more than sufficient for the needs of this calculation, but,
because a matrix code (MAD) is used, the full matrix is employed anyway. Note, however,
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the focusing is second order in k; it can hardly be significant. The coupling terms are first
order, and in the crudest estimate look almost significant.

The crudest approximation is to represent the coupling of all 172 dipole pairs by a single
thin solenoid. Then, the angle of rotation of the axes is

p=Nan

This is already apparently negligible, but it will be interesting to find the coupling resulting
from the distribution of solenoids because this result should agree more closely with that of
Baiod who, as I understand it, treated the coupling as resulting from a continuous solenoid
around the entire ring.

X kL =172 x 2.36 - 10™° x 0.3339 = 1.36 - 10~3

Matrix Formalism for X-Y Coupling

To evaluate the global coupling one wants to calculate the off-diagonal blocks of the
one-turn transfer matrix. I follow here the technique described by R. Talman.2! Denote the
transfer matrix by M and denote by M its so-called symplectic conjugate

= _oyTe_ | A C
= ””S‘(B.D :

where S is the symplectic matrix

0 -1 0 0
1 00 0
=10 00 -1
0 01 0

and

A:(a b):( d _b>=A_1det|A] .
c d —c a

Because det| M| = 1, M = M~. The matrix that is convenient for the normal mode analysis
is actually

M+M=(
The desired off-diagonal block is

A+A B+C\ _ [ttA E
C+B D+D ) \E D

= €11+ b2z c12 —bi2
E=C+B=
t < Ca1—ba1 caa+bpy )

The global coupling coeficient is usually measured as the width of the difference resonance,
i.e., the minimum attainable separation of the normal mode tunes. The number to be

calculated from M is
vdetE
m(sin g, + sin py)
where the z and y subscripts actually refer to the normal mode tunes.

[Vy - V-'n|min =



Numerical Results

The matrix code MAD has been used with the MI-17 lattice file to generate the one-turn
transfer matrix M. The space between all dipoles, L = .3339 m, is replaced with a solenoid
of that length with the strength K, = 4.721-107° m™! calculated above. The result is

—0.905591  4.389695 0.000009  0.000168

M= —0.045903 —0.881747 0.000000 —0.000167
0.000167 —0.000337 —0.882762 31.532495

0.000001 —0.000010 —0.008125 —0.842567

The tunes v, = 26.425939 and v, = 25.415603 are identical to the unperturbed tunes;
therefore the focusing effect of the solenoids is truly negligible, as expected. A maximum
vertical dispersion of 8.6 - 10~® m indicates a principal axis rotation of order 4 - 10~5 radian
since this must be a projection of the 2 m maximum horizontal dispersion of the unperturbed
lattice. This can be compared to the extreme over-estimate quoted for a lumped solenoid,
viz., about one milliradian.

The sub-matrix E is

E— 0.0 —0.000338
~\ 0.000001 0.000010

with determinant det|E| = 3.38 - 10~1°. Since the perturbation is so small, one can clearly
use the x and y tunes for the eigen-tunes. Therefore, the coupling constant can be written

ydetl | =6.13-107°

K., = vy — vy =
ev = [V ~ Volmin w(sin pi, + sin gy )

This is three orders of magnitude below practical significance.
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Addendum

The assertion that a coupling constant of 10~° is neglible seems rather uncontroversial,
but it is more concrete to put this result into the immediate context. So, what coupling is
expected from the skew quad field of the dipoles? The Technical Design Manual indicates
that this is considered rather small and easily corrected. Therefore, the same procedure has
been followed to find the coupling from the skew quad error of the dipoles for comparison.
In the same spirit of approximation used in the foregoing, the skew component measured
at (approximately) 120 GeV/c excitation for IDA-10 is taken as a systematic error and
represented as a skew quad between each A-B and C-D pair. This should represent an upper
limit for the effect.

The normalized skew quad coefficient for IDA-10 is —7 - 107°. The skew gradient is

B, — GJZBO ,

skew d

where d is the reference radius of one inch, and B, is the bend field, 1.37 T. Therefore, By,
is -0.004 T/m and the focusing strength is

!

Fgkew = —2%¥ — _0,004/400.26 = —10"° m~2 |
Bp

This strength is to be associated with a skew quad filling the space between each pair of
dipoles, so it must be multiplied by the ratio of twice the average dipole length of 5.34 m
divided by the dipole spacing of 0.339 m. Thus, the K1 parameter for the skew quad in the

MAD calculation is —3.2 - 10~*
The one turn transfer matrix obtained is

—0.908348  4.336841 0.000452  0.253469
M= —0.045277 —0.884785 0.000205  0.003221
B 0.002243  0.250591 —0.879560 31.890338
0.000209  0.000879 —0.008223 —0.838856

The sub-matrix E is
B ( 0.005464 —0.002878 )

0.000004 0.001331

with determinant det|E| = 1.78 - 10~%. Because the denominator in the coupling coefficient
expression is the same for both calculations, the ratio the coupling constants is just the
square root of the ratio of the determinants. Thus, one finds the coupling resulting from the
dipole bus current loop is one percent of the effect expected from a systematic skew quad
component of the bending magnet field.



