Java™ Application Framework
Reference Guide

Version 2.4.2

* Fermi National Accelerator Laboratory
* Beam Division

Accelerator Controls Department

P.0.Box 500,
Batavia, IL 60510-0500

April 29, 2003

Andrey Petrov
apetrov@fnal.gov

Copyright © 2001-2003 URA/Fermi National Accelerator Laboratory.

Fermi National Accelerator Laboratory (Fermilab) is operated by Universities
Research Association, Inc. for the U.S. Department of Energy under contract
DE-AC02-76CH03000. As such the following rules apply:

DISCLAIMER OF LIABILITY: This document was prepared as an account
of work sponsored by an agency of the U.S. Government. Neither the U.S.
Government nor any agency thereof, nor Universities Research Association,
Inc., nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned
rights.

DISCLAIMER OF ENDORSEMENT : Reference to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the U.S. Government or any agency thereof.
The views and opinions of document authors do not necessarily state or
reflect those of the U.S. Government or any agency thereof, Fermilab, or
Universities Research Association, Inc.

COPYRIGHT STATUS: Documents authored by Fermilab employees are
the result of work under U.S. Government contract DE-AC02-76CH03000
and are therefore subject to the following license: The Government is granted
for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable
worldwide license in these documents to reproduce, prepare derivative works,
and perform publicly and display publicly by or on behalf of the Government.

The full copyright notice and disclaimer may be found at
http://www.fnal.gov/pub/disclaim.html.

Table Of Contents

Table Of CONTENTS......ccco i i
ADSTFACT.......ooiiii e \Y

T O =T oV T PR 1
1.1 Application Framework FUNCHIONScccoeririeienenese e 1

1.2 Requirements & Configurationcccccveieeiiiecieecee e 2

00 R 5 SR 2

1.2.2 Classpati ... s 2

1.2.3 Application INAeX ... s 3

1.3 Writing An Application: BasiC STEPS......c.cccervrvrrerenene e 3

2. GENEKIC FraMe.... ..ot 7
2.1 Interface DEeSCrIPLOrS.......ccooviiieiiese e 7

2.2 Frame INitialization ... s 8

2.3 Default ViSiDIITYccccoveiieese e 9

2.4 Default Close Operation.........ccceiiiiieiieeiee e sre e see e 9

2.5 EIEMENT ACCESS ..cciiieiietieieeie st ee sttt ee e ste e sreesseeeesneennens 10

2.6 Event HaNdliNg......ccoooiiiicece et 11

2.7 Persistent Frame Properties ... 13

2.8 APPCATANCE......oi ittt s nree e 13

2.8 1 MENU BAN ... 14

P S A 1o To] = - 1 16

2.8.3 STAtUS BAr ..o 16

2.9 SIMPHfied GUI ..o 16

2.10 GENEriC DIalogs ..cveceeeieeiecie et ee sttt e et ae e neennens 17

2.11 Extended MeSSage BOX......cccoviiiiiiiiiieiiie et 19

3. Interface Descriptor Format.........cccccccccoviiiiiiiee e 21
3.1 Document Type DefinitioN......ccccviieiiiii i 21

3.2 DeSCriptor STIUCTUNEooee ettt ne s 21

3.3 Descriptor INNeritancCe........cccv e 23

34 ROOLEIEMENT ... 24

3.5 LISt Of EIBMENTS ..c.ooiviiiieiiieeee e 24

4. Managing Properties........ccooiiiiiiiiieieee e 27
41 Getling Properties ...ttt 27

4.2 STOrING ProPerties......cccooiiiiiiiiieiesie sttt 27

4.3 PrOPEITY SEIVEL ...ttt nnneas 28

v

APPLICATION FRAMEWORK REFERENCE GUIDE

4.4 LISt Of USed Properties.......ccccciieiieiiie et eses st sies e s 28
45 Setting Properties For Applicationccoceveeeenennnnceeneece e 30
DAE CONNECTIONouiiiiiiiiiiiiiiiee ettt ee e 31
5.1 General DeSCripliONcccceiieiieiesiese ettt 31
52 System ReqUITEMENTSccoeiiiiieie et st 31
5.3 DAE-Related APL....... e 32
54 Configuration.........occooiieii et 33
55 SettingS COoNtrol ... 34
5.6 SECUNILY ISSUEBS ...ceiieeeiieiece sttt sttt ne s 34
5.7 GUI CONTIOIS...iiiiiiiiieeeee et 35
Image ANd TeXt Capture ... 37
6.1 ServiCe DEeSCIIPTIONcciiiiiieeieeee e 37
6.2 SeleCting DaAtaccccveiueeiesieie e 38
6.3 TEXE CONVEISION ..ottt sttt 39
0T [1 1 T TR PSUURRRPPRR 41
7.1 Service DEeSCIIPTION ..o 41
7.2 Logging Configuration.........cccceeceveeieeieeseese e 41
7.3 HOW TO USE LOGGING eeiiiiiiiieieeie ettt s 43
7.4 Heartheat SErVICE ... 45
Operation LOCKS ... 47
8.1 Service DEeSCIIPTIONccciiiierieiere st 47
8.2 Operation LOCKS AP ... 47
Reference Implementation............cccccoviiiiiiieii e 49
Appendix . Release HIStOry ... 51

Abstract

A framework is a reusable, semi-complete application
that can be specialized to produce custom application.

Ralph E. Johnson, Brian Foote.
Journal of Object-Oriented Programming, 1998

This document describes Java™ Application Framework—a library of
reusable components, meant to support the development of user applications
in Accelerator Controls Department.

The main purpose of Application Framework is providing classes, that
incapsulate several frequently used, complex, and critical routines, such as
creation of generic graphical user interface (GUI), printing, sending email,
user authorization, access to controls data and global application properties,
logging, debugging aids, etc. The second purpose is the development of a
corporate application environment, that allows easily to write, debug, deploy
and launch Java applications. In this connection, each user application has to
implement several functions to be integrated in such an environment.

Manpower of the Controls Department is limited. In some time a significant
amount of people may be involved in development of Java applications, and
there is a need to relieve them from rewriting of tons of code. We do not have
an intend to limit programmers in their work by the Framework, and this
project is not comprehensive and free of bugs. Application Framework is just
an attempt to begin the development of a corporate environment for Java
applications. Our final target is providing the library of reusable classes,
which generalize the experience of many people; support these classes and
develop required documentation.

1

Overview

1.1 Application Framework Functions

Current version of Java Application Framework provides the following:

1. JFrame extension with generic graphical user interface:

a.
b.

e.

dynamic GUI generation based on heritable XML descriptors;

fast setting of several Jrrame attributes from XML descriptors
(title, icon, startup modes etc.);

convenient configuration for Java Help;

saving and restoring frame properties (size, location, etc.)
between sessions;

predefined action listeners for some operations.

Application-wide Message Viewer.

Library of additional visual components (status bar, tool bar buttons,

etc.).

4. Splash screen.

Universal image and data capture:

® 2 0o T p

standard dialog to choose areas on the frame;
export to file;

printing;

sending by e-mail;

copying to the system clipboard

6. Extended application properties:

a.
b.

C.

access to the server-side property database;
local configuration files to define default property values;

saving properties, changed by the user, on the server.

APPLICATION FRAMEWORK REFERENCE GUIDE

7. Connection to the Data Acquisition Engine (DAE):
a. GUI for DAE connection and settings control;
b. status bar icon that shows connection status;
C. configuration of DAE connection through application properties.
8. Extended logging:
a. GUI for logging control;
b. logging configuration through application properties;
C. additional logging handlers:
AppixHandler to send messages to the server-side database;
MessageViewerHandler to send messages to the Message Viewer.

9. A procedure for the application self-determination (according to the
data from the database).

10. An implementation of Application Locks, in order to avoid concurrent
execution of critical routines.

1.2 Requirements & Configuration

1.2.1 JDK

Java Runtime Environment 1.4.1 is required. The latest version of JRE can
be found at http://java.sun.com/j2se/downloads.html.

1.2.2 Classpath

The Application Framework root package is gov.fnal.controls.framework. All
native framework classes and images are packed in framework.jar. If you
have an access to the original gov-tree, you may use it in your classpath.
Note, however, that in case of jar-files you can not substitute framework.jar
with gov. jar, because the last one does not contain images.

In a minimal configuration, Application Framework requires four additional
jar files: jhall.jar, mail_jar, activation.jar and jlfgr-1_0_jar. If the
application needs DAE connection, jconn2.jar must be included in classpath,
as well as the classes from the gov-tree, that implement DAE connection.

Thus, there are 5 possible classpath configurations for the Application
Framework:

Table 1. Application Framework Classpath

jhall_jar

activation.jar
mail.jar

jifgr-1_0._jar

| jconn2._jar
framework. jar

framework. jar Original gov-tree

gov.jar | govcore.jar

For convenience, an archive af-bunch_jar contains all data from the original
archives jhall_jar, activation.jar, mail.jar, and jlfgr-1_0.jar. af-
bunch. jar can be found at //daesrv/java/Zjars/multi.

1.2.3 Application Index

Application Framework must be able to establish http connection with
Application Index (APPiX) server, http://www-bd-fnal.gov/appix. This
server is available for both on-site and off-site applications.

It is recommended to register the application in APPiX database, otherwise
some services (central logging, heartbeat, operation locks, and self-
determination) will be unavailable.

1.3 Writing An Application: Basic Steps

This is a brief list of steps, that must be followed. For the example, see §9.

The main goal of the Application Framework is to simplify the development
of console Java applications. Framework provides a set of classes that
implement some frequently used, complex, and critical routines. At least, two
principal classes can be used directly in the application: ApplicationManager
and JControlsFrame.

ApplicationManager supports interactions between the user application as a
single whole and the system environment: it implements access to the
application properties, access to APPiX database, DAE connection, page
setup for printing, and determination of the main application class. Only one
instance of ApplicationManager may exist on a single VJM. This class does
not have public constructors. A static init method must be called at the
program startup, from the application’s main method.

JControlsFrame extends javax.swing.JFrame (through AbstractControlsFrame).
It is assigned to play a role of the main application frame. JControlsFrame
already has the generic graphical user interface (menu-, tool- and status

3

APPLICATION FRAMEWORK REFERENCE GUIDE

bars) on the content pane and provides, through this GUI, access to the most
of internal routines (printing, DAE connection, logging configuration, etc.).
This frame also supports the retention of some properties (such as frame size
and location) between sessions. User applications may have any number of
JControlsFrame instances.

Graphical user interfaces are defined by so-called frame descriptors. The
frame descriptor is an XML (plain text) file created at the developer’s
discretion. Every extension of JControlsFrame may have one corresponding
descriptor or does not have any. Descriptors are heritable, as well as Java
classes linked with them. It is supposed, that JcontrolsFrame should be
extended in the user applications in order to define a custom content on the
content pane (the content pane in our case is an area between tool- and
status bars). If the custom XML descriptor is not created, JControlsFrame’s
generic GUI is used, otherwise this custom descriptor extends the generic
one.

To use Application Framework:

1. Call ApplicationManager.init in the beginning of the application’s
main method and pass application parameters as an argument.

2. Make your frame the extension of JControlsFrame, rather than JFrame:

a. describe the frame explicitly either as a public class, or as a
subclass; avoid creation of anonymous classes;

b. do not create menu-, tool- and status bars manually; use XML
descriptors to define them;

C. use XML descriptor to set the frame title, icon and other simple
properties;

d. for every frame, put all initialization code in jbinit method,;

e. do not call jbinit in the application; this method is called by the

superclass constructor before the initialization of instance
variables (82.2);

f. if your frame is resizable, do not set its size—the size will be set
automatically by the Framework; do not set frame location on
the screen;

g. In most cases, do not set the default close operation.

3. Create the property file for you application:

a. set application._help.topic and application.help.url properties
in order to enable the application help;

b. specify application.title, application.version, and
application.author in order to have them on the splash screen
and About dialog.

4.

If you need DAE connection:

a. do not create DagUser manually, use
ApplicationManager.getDaqUser method instead;

b. set default values for dae.name.fixed, dae.enabled, dae.connect,
and dae.unlock.time properties in the application property file.

2

Generic Frame

All applications designed for public usage must provide a standard and
intuitive graphical user interface.

The class gov.fnal .controls.framework.JControlsFrame, an indirect successor
of javax.swing.JFrame, implements so-called generic graphical user interface.
Generic GUI has many of customary graphical widgets predefined, as well as
action listeners for them. Developers can extend JControlsFrame in order to
create the custom GUI, inheriting generic frame appearance and behavior.
Both generic and custom GUIs are defined in text files, called interface
descriptors.

The components, not defined in the interface descriptor (e.g., elements on the
content pane), must be initialized and arranged in jbinit method. This
method is called automatically by JControlsFrame during its creation.

2.1 Interface Descriptors

All generic graphical components on JControlsFrame are created dynamically
at the runtime using reflection. The definition of these components is stored
in text files (interface descriptors). Each JControlsFrame successor may have
only one interface descriptor, or does not have it at all. The descriptor must
be placed in the same directory as the corresponding class, and have the
same file name with .xml extension. Frame descriptors for anonymous classes
are not supported. If the frame is described as a named subclass, the
descriptor’s file name should be:

<class>$<subclass>.xml

for example, MyClass$MyFrame.xml.
Interface descriptor format is discussed in §1.

Interface descriptors are heritable, like Java classes. For example, if
MyFrame.class extends JControlsFrame.class, MyFrame.xml will extend
JControlsFrame.xml. Although XML standard does not support inheritance
itself, a special method for descriptors has been developed. Interface

APPLICATION FRAMEWORK REFERENCE GUIDE

descriptor inheritance gives an opportunity to generalize GUI development.
In a simplest case, the programmer may use the generic interface without
any changes—only an extension of JControlsFrame.class is required. Then, it
IS possible to create an extension of JControlsFrame.xml in order to describe
required changes in GUI (e.g., removing unnecessary elements, adding new
ones, changing frame title, etc.). Next figure illustrates these two threads of
inheritance:

Javax.swing

.
gov.fnal.controls.framework

Bbs'rr'acTCon'rr'olsFr'ame.clasE_]

[TControlsFrame.class] - _[J-con+r.°|s|:,.me_xm[|

User's package

¥ ¥
[<User' 's Framz>.c|ass] --------------------------- [(User's Fr'ame>.xm[|

On this diagram, an abstract AbstractControlsFrame.class implements all
functions of the generic frame, but does not have the descriptor.
JControlsFrame.class extends AbstractControlsFrame.class, it does not
implement any new functions, but has the corresponding descriptor,
JControlsFrame.xml. If the user extends JControlsFrame.class, the new class
inherits both functions and the GUI. Of course, it is possible to extend
AbstractControlsFrame.class to inherit all functions, but create a new frame
descriptor from the beginning.

Since extension of JControlsFrame is a preferred way, only this class is used
below in this guide.

2.2 Frame Initialization

During the initialization, JControlsFrame reads interface descriptors and sets
frame attributes and IDs of menu-, tool- and status bars. Later these values
may be altered in jbinit. The following diagram illustrates frame
initialization sequence:

JControlsFrame L) User's Frame

Constructor
Constructor - Q. Calls constructor
1. Reading interface of superclass
descriptors
I*2. Sets frame attributes

1. Custom initialization

'y

*3. Calls jbInit JjbInit
4. Creates elements on 1. Creates a custom GUI
the frame
[#5. Restores

size & location

Application Framework shows a splash screen during initialization of the
first JControlsFrame on current VJM.

There are several important points, related to the initialization procedure:

1. jbinit is called automatically by the superclass constructor; you
should not call it by yourself.

2. jbinit is called before the initializers of instance variables are
evaluated. That means that if you use a global instance variable in
jbinit, it must be initialized there, rather than by an initializer
placed at the variable definition or in the constructor. Those two
initializers will be called after jbinit finishes.

3. By the moment when JControlsFrame calls jbinit, it has the interface
descriptors already loaded, but all the widgets are not instantiated
yet. So, you can change menuBarlID, toolBarlD and statusBarlID, but
getWidget method always returns null. If you want to access
particular widgets, you should do this in the constructor.

2.3 Default Visibility

The way to call setvisible from jblnit to make the frame visible is
inappropriate, because there are several hidden routines being performed
after that. JControlsFrame has an attribute visibleOnStartup that defines
whether the frame must become visible immediately after the initialization is
completed. Use the frame descriptor in order to set this attribute, or call
setVisibleOnStartup from jblnit.

2.4 Default Close Operation

Unlike in javax.swing.JFrame, the defaultCloseOperation attribute iIn
JControlsFrame IS set automatically during the initialization. For the first
JControlsFrame instance on current VJM the value of defaultCloseOperation

APPLICATION FRAMEWORK REFERENCE GUIDE

IS EXIT_ON_CLOSE, otherwise—DISPOSE_ON_CLOSE. You may change the default
value at any time from the program.

2.5 Element Access

Graphical widgets, dynamically created on the frame, have no direct
references in JControlsFrame. In other words, there are no variables that can
be used to get those components. Instead of direct access, access by ID is
used.

Each element has an ID (text string). In the interface descriptor each ID is
unique. On the frame this is not necessarily true: in general, more than one
instance of each element may be created. E.g., it may be several buttons
“Print”. The elements with one ID may have different entities, such as
buttons and menu items. In spite of this, all of them have the same behavior
and similar appearance: one icon (if icon is possible), text, visibility, enable
and select statuses.

To access an element, getwWidget method should be used:
public ControlsWidget getWidget(String widgetlID)
This method returns a ControlsWidget object. It allows to handle the set of

elements as a single whole. The following methods are defined for
ControlsWidget instance:

void setText(String) String getText()
void setEnabled(boolean) boolean iskEnabled()
void setVisible(boolean) boolean isVisible()
void setSelected(boolean) boolean isSelected()

Object[] getComponents()

Menu-, tool- and status bars have IDs, as well. JControlsFrame supports the
following methods:
void setMenuBarlID(String) String getMenuBariID(Q)

void setToolBarID(String) String getToolBarlID()
void setStatusBarlID(String) String getStatusBariID(Q)

JControlsFrame constructor calls set... methods with parameters coming
from the interface descriptor. Since jbinit method is called after that, these
IDs may be altered in jbinit. Use null value to hide a specific bar.

The content pane does not have an ID. To access it, use getContentPane
method, as usually.

Note: getwWidget method does not work for menu-, tool-, status bars and the
content pane.

10

2.6 Event Handling

Events from the dynamically created elements are handled through
Javax.swing.ActionMap. By default, JControlsFrame has a map, that may be
get and altered using getActionMap and setActionMap methods.

ActionMap keeps the correspondence between event handlers and their keys.
In our case, the event key is a value of the component’s actionCommand
attribute. These attributes are defined in the interface descriptor. If
actionCommand is not set, element ID is used instead.

Following example shows how to write action listeners. This particular code
replaces a default event handler for the “Exit” menu item.

protected void jblnit() throws Exception {

AbstractAction newExitAction = new AbstractAction() {
public void actionPerformed(ActionEvent e) {
System.out.printin("Exit pressed”);
}
}:

getActionMap() -put("ExitAction”, newExitAction);
}

Some elements of the generic GUI have predefined action listeners. Setting
new ActionMap does not remove them. The only way to replace or remove
predefined action listeners is to use put, clear or remove Mmethods of
Javax.swing.ActionMap.

11

APPLICATION FRAMEWORK REFERENCE GUIDE

Table 2. Elements with predefined listeners

Menu Bar Tool | Status Action
Bar |Bar
Export To IiFi Opens capture dialog and saves selection to
File afile
Send Mail @ Open_s capture dialog and sends selection by
e-mail
Print % Opens capture dialog and prints selection
Page Setup Opens the standard Page Setup dialog
Cut %‘ Cuts selection to the system clipboard
Copy |E| Copies selection to the system clipboard
Copy % Opens capture dialog and copies selection to
Special... the system clipboard
Paste ﬂ Pastes data from the system clipboard
Select All Selects all data on the currently focused
component
DAE ﬁ Opens DAE Connection dialog; disabled if
Connection = DAE routines are unavailable
Message 0 Opens Message Viewer; status bar button is
Viewer hidden if there are no new messages.
Application Shows application properties loaded from
Properties the database
Logging Opens logging configuration dialog
_ Opens application help; enabled only if
Help Topics application.help.topic and
application.help.url properties are set
About Shows information window
Exit Calls default close operation for the current

frame; see 82.4

In the generic GUI, all items without predefined action listeners are hidden.

12

2.7 Persistent Frame Properties

Frame size, location and tool bar position are persistent by default. That
means that Applications Framework keeps these values for every
JControlsFrame instance between sessions and tries to restore them at the
startup. JControlsFrame supports the following methods:

void setRestoreSize(boolean) boolean isRestoreSize()
void setRestorelLocation(boolean) boolean isRestorelLocation()

Frame properties are stored in a file
$USER_HOMES$/ControlsFrames.properties. To use a different file, put the
full file name in frame.property.file system property. For example:

-Dframe.property.file=/usr/home/jdoe/ .ControlsFrames

2.8 Appearance

JControlsFrame looks as follow:

% lethpphcabion ——— HRE[ED
File Edil Tasks Tools Help Menu Bar
H2E KDE0 @@ B || Tl
Araa for all Content
user's elements Pane
Program Status “&#-0| ' Status Bar
A

There are four areas on the frame: menu bar, tool bar, content pane and
status bar. Menu-, tool- and status bars are created by
Application Framework. Content pane is a Jranel for all user components,
such as labels, buttons, trees etc.

13

2.8.1 Menu Bar

Element ID = MenuBar.

APPLICATION FRAMEWORK REFERENCE GUIDE

e Elit Tasks Tonks Help
Hiw wr | cut - Run o DAE Comnection Help Topics |-
Open Canpint - Stop Messans Viewer : Ahaidl Prisgrarm
Chise CapySpecial.. cnant | Reiad © pooication Properties
Save .| Paste S Lol
e
Export ToFie ©0 =
Sand Mail
Prin
Page Sedup...

Table 3. Generic menu bar items

Name Element ID ActionCommand | Function

File File

New New NewAction *

Open Open OpenAction *

Close Close CloseAction *

Save Save SaveAction *

Save As... SaveAs SaveAsAction *

Export To Opens capture dialog

. Export ExportAction to save image or text

File .
to afile
Opens capture dialog

Send Mail | Send SendAction to send image or text
by e-mail

Print Print PrintAction Oper!s cgpture dialog
to print image

Page PageSetup PageSetupAction Opens S_tandard Page

Setup... Setup dialog
Calls default close

Exit Exit ExitAction operation for the
current frame

Edit Edit

cut cut CutAction Cuts sele_ctlon to the
system clipboard

Copy Copy CopyAction Copies selectl_on to
the system clipboard

14

Generic menu bar (continued).

Name Element ID ActionCommand Function
Opens capture dialog
COpy_ CopySpecial CopySpecialAction to copy image or text
Special... to the system
clipboard
Paste Paste PasteAction Pastes da_ta from the
system clipboard
Selects all data on
Select All... |SelectAll SelectAllAction the currently focused
component
Tasks Tasks
Run Run RunAction
Stop Stop StopAction
Reload Reload ReloadAction
Tools Tools
DAE] DaeConnection DaeConnectionAction Opens D_AE]
Connection Connection dialog
Message MessageViewer MessageViewerAction O_pens appllcatl_on-
Viewer wide message viewer
L how: lication
Application . . . Shows app catio
) AppProperties AppPropertiesAction |properties loaded
Properties
from the database
Logging Logging LoggingAction Oper]s GUI 1_‘0!’]
logging configuration
Debug Debug DebugAction *k
Help Help
Help Topics |HelpTopics HelpTopicsAction Calls application
Java Help
About... About AboutAction O_pens information
dialog

* To be defined by the developers.
** Will be implemented later.

15

2.8.2 Tool Bar

Element ID = ToolBar.

AOD HhikE P@D [HE

Table 4. Generic toolbar items

APPLICATION FRAMEWORK REFERENCE GUIDE

Icon Element ID Icon Element ID
@ Export @ Paste

g Send ’ Run

l% Print O Stop

% Cut @ Reload

|E Copy HelpTopics
% CopySpecial

2.8.3 Status Bar

Element ID = StatusBar.

Pr A Stanis

=iE=-

Table 5. Generic status bar items

|Element ID Icon [Class Function
0 |status gov.fnal.controls.framework .+ Status
swing.JControlsStatusltem message
gov.fnal.controls.framework.< Progress
1 |Progress swing.JControlsProgressBar bar
2 | DaeStatusButton ﬁ gov.fnal .controls.framework.< DAE
E swing.JDaeStatusButton Connection
3 |MAButton gov.fnal .controls. framework.+ Message
swing.JMessageAlarmButton Viewer

2.9 Simplified GUI

The simplified graphical user interface is intended for secondary windows. It
Is implemented in gov.fnal .controls. framework.JSimpleControlsFrame.

16

This GUI has only controls, related to the image and text capture and
clipboard operations. Simplified GUI does not have tool- and status bars.
Menu bar includes two items: “File” and “Edit”:

File Edit

JsimpleControlsFrame can be customized using an XML descriptor.

2.10 Generic Dialogs

Application Framework has three classes that implement generic dialogs:
gov.fnal .controls.framework.JControlsDialogO, ..1, and ..2. These classes are
successors of AbstractControlsDialog, and they differ only in the set of
control buttons. The generic dialogs are similar to the generic frame. Instead
of menu-, tool- and status bars they have a button bar, defined in the
interface descriptor. Content pane is the same. By default, the generic dialogs
are modal (i.e., other windows may not be used while the dialog is open).

k|
JControlsDialogO
|EII!H
k|
JControlsDialogl
Ok Cancs|
k|
JControlsDialog?2
|£Ic|l:mnal|ﬂmt|.r

Events from the control buttons are handled through the Actionmap, as
described in 8§2.6. “Ok”, “Cancel”’, and “Apply” buttons have OkAction,
CancelAction, and ApplyAction action commands assigned, correspondingly.
Button events are handled internally and generate two second-level actions,
CommitAction and Rol IbackAction:

17

APPLICATION FRAMEWORK REFERENCE GUIDE

Table 6. Generic dialog actions

Button Initial Action | Generated Actions

Ok OkAction CommitAction > dialog closes
Cancel |[CancelAction |RollbackAction - dialog closes
Apply ApplyAction CommitAction

By default, the second-level keys are not linked with handlers in ActionMap.
User can either write second-level action handler(s), or redefine original first-
level handler(s). The first way is preferable:

protected void jblnit() throws Exception {

AbstractAction commitAction = new AbstractAction() {
public void actionPerformed(ActionEvent e) {
// a code to save data

}
}:
AbstractAction rollbackAction = new AbstractAction() {
public void actionPerformed(ActionEvent e) {
// a code to restore data, rollback changes, etc.

}
3

getActionMap() .put("CommitAction', commitAction);
getActionMap() -put("RollbackAction', rollbackAction);

}

In order to prevent the dialog from closing, commit and rollback handlers
may generate an
gov.fnal .controls.framework.helpers.OperationCancelledException.

18

Generic dialogs have three attributes, that define default actions. These
attributes can be assigned through the interface descriptors or in jbinit:

Table 7. Default actions in generic dialogs

Default Values*
.0 21 .2

Attribute Function

defaultAction | When Enter is pressed on the dialog

When the dialog is closed through the

C

cancelAction | When Esc is pressed on the dialog C
. . C

window control icon

O 00
O 00

windowAction

* Default values for JcontrolsDialogo0, ..1, and ...2, correspondingly
(C) = cancelAction, (O) = OkAction.

2.11 Extended Message Box

The class gov.fnal.controls.framework.JControlsMessageBox implements a
modal message box with “Details” button:

x|

~. RermoleEsception orcurred in serer thread, nested
aEnapdian IS
iava mi RemotaExceplion: 2.5armer
Sietting §s locked! Tou must unlock it befre sefling.

llava.rml SemerExaption: RemoteExeephon noourrsd in senerth) =
| |awa.rmi.RemoieEmephon: 2 Servar Betling is ngE8
al curtmicerer UnicasiBeneRel dispatehLUn
at zunmlArans por TranspaE ndT ranspor: |
al jsrm sacunty focassCormller doPrivilegedy
at curtmiranspod Transpor sesdeaCallTran
at zunamiliransporicp. TCPTransgar.nandlam
at sunamidranspord op TGP Transpod§Connacli| .

e ¥

In order to activate JControlsMessageBox, use the following static methods:

public int showError(String message, String details)
public int showError(Throwable error)

public int showlnformation(String message, String details)
public int showWarning(String message, String details)

All these methods return a button code: OK _RESULT, CANCEL_RESULT,
YES_RESULT, Or NO_RESULT. In case of showError(Throwable error), the
exception’s stack trace is used as message details.

19

3

Interface Descriptor Format

3.1 Document Type Definition

Document Type Definition (DTD) for the interface descriptor can be found at
http://www-bd.fnal.gov/appix/gui.dtd. This DTD has no public ID. The
valid document type declaration must be included in every interface
descriptor file:

<IDOCTYPE frame SYSTEM "http://www-bd.fnal.gov/appix/gui.dtd'>

The XML parser used by Application Framework must have online access to
this DTD in order to validate document structure and to read default
attributes.

3.2 Descriptor Structure

Each interface descriptor element is linked to one or several Java classes.
Element attributes correspond to the class instance fields. They are passed
through appropriate set... methods. For example, if an XML element has
attribute named visible, the value of this attribute will be passed to the
class instance by calling setvisible. There are two exceptions of this rule:

Attribute id is the element’s primary key; it is never passed to the
object;.

Attribute class specifies the list of class names. It is used to create the
object. In most cases, the value of this attribute is taken from DTD
and does not have to be defined in XML file.

All elements, except of frame, must have unique ID.

21

APPLICATION FRAMEWORK REFERENCE GUIDE

When Application Framework sets fields, the appropriate set... method
must have only one parameter of one of the following types:

boolean Or java.lang.Boolean
char or java.lang.Char

int Or java. lang. Integer
Javax.swing.lcon

Javax.swing.KeyStroke

To set an icon, JControlsFrame’s getlmagelcon method is used.

Each element may have zero, one, or several subelements. In most cases,
subelements are added to the parent element with add method of the parent.
Exceptions are the frame element and separators.

Subelements may be defined explicitly:

<menu i1d=""mainMenu''>
<item id="'saveltem'/>
</menu>

or by reference:

<menu id="'mainMenu"'>
saveltem

</menu>

<item id="saveltem"/>

In the last case, the parent element has a list of children IDs (separated by
spaces and/or line feeds). Subelements may be defined anywhere in the
current document or its predecessor. It is possible to mix explicit declarations
and declarations by reference in one element.

Several references to one elements may exist.

Special identifier !separator defines menu and toolbar separators.
addSeparator method is used to place it on parent element.

Some elements are polymorphous: their classes depend on parent classes. For
example, class attribute for the item element is defined in DTD as:

class %ClassMap; '‘gov.fnal.controls.framework.JControlsButton;+
Javax.swing.JMenu=javax.swing.JMenultem"

This expression says, that the default class for the element is
JControlsButton, but if its parent is an instance of Jvenu, element’s class will
be Jvenultem.

22

3.3

Descriptor Inheritance

The previous chapter gives the diagram of descriptor inheritance (see 82.1).

Below is a detailed explanation of this procedure.

Element IDs are unique across dl sequence of interface descriptors. If an
element with the same ID is defined in the child document, this declaration
overrides the parent declaration. It does not matter, whether this element is
on the top level or it is a subelement. If overriding takes place:

Attributes, defined in the child document, replace attributes from the

parent document.

Attributes, defined in the parent document and not redefined in the
child one, remain without changes.

Subelements, declared in the child document, replace subelements,
declared in the parent document. To place subelement list from the
parent document, a special identifier 'default can be used in the child

document.
Example:

Parent document

Child document

Result

<item id="iteml"
visible=""true"
enabled="false"
iteml 1
iteml_2
</item>

<item id="iteml"
enabled=""true"
text=""a_text">
item2_1
Idefault
item2_2
</item>

<item id="iteml"”
visible=""true"
enabled="true"
text=""a_text">
item2_1
iteml 1
iteml_2
item2_2
</item>

23

APPLICATION FRAMEWORK REFERENCE GUIDE

3.4 Root Element

Root element of the interface descriptor is frame. It defines JControlsFrame
attributes, such as menu-, tool- and status bar IDs, but does not have ID

itself:

<frame menuBarlD=""MenuBar' toolBarlD="ToolBar"
statusBarID=""StatusBar''>

When Application Framework creates a JControlsFrame instance, it reads
menuBarlD, toolBarID and statusBarlD properties, creates instances of these
bars and puts them on the frame.

frame element conforms to the rules of inheritance, described above.

3.5 List Of Elements
Table 8. GUI Elements
Element N . . Sub-
Description | Corresponding class(es) Attributes?
name elements
frame Root gov.fnal._controls.framework.+ [menuBarlD menu_bar
. JControlsFrame toolBarlD tool_bar
element; statusBarlD status_bar
describes restoreSize menu
. restorelLocation | item
rnajn) visibleOnStartup | radio
application title check
frame icon status
progress
widget
menu_bar Menu bar |Javax.swing.JMenuBar id2 menu
widget
class3
tool_bar | Tqgol bar gov.fnal .controls.framework.~ | id item
JControlsToolBar class radio
check
§ widget
status_bar | Statys bar | gov.fnal.controls.framework.«< | id status
JControlsToolBar class progress
widget
menu Menu Jjavax.swing.JMenu id item
class radio
text check
} mnemonic widget
item Menu- or gov.fnal .controls. framework.< l?
JControlsButton class
tool bar text
item r mnemonic
0 actionCommand
- - accelerator
Jjavax.swing.JMenultem icon
enabled

24

GUI Elements (continued)

Element
name

Description

Corresponding class(es)

Attributes 1

Sub-
elements

radio

Menu- or
tool bar
radio item

gov.fnal .controls.framework.+
JControlsRadioButton

or

Javax.swing.+
JRadioButtonMenultem

id

class

text

mnemonic
actionCommand
accelerator
icon

enabled
selected

check

Menu- or
tool bar
check item

gov.fnal .controls.framework.+
JControlsCheckButton

or

Javax.swing .+
JCheckBoxMenultem

id

class

text

mnemonic
actionCommand
accelerator
icon

enabled
selected

status

Status bar
item

gov.fnal .controls.framework.<
JControlsStatusltem

id

class
text
enabled
alignment
resizable
width

progress

Status bar
progress
gauge

gov.fnal .controls. framework.<
JControlsProgressBar

id

class
text
enabled
resizable
width

widget

Arbitrary
component

To be defined in class attribute

id
class

1 Only principal attributes are shown here; in fact, any instance fields, that
meet the requirements in §3.2, may be set.

2 id attribute is required.

3 class attribute is required, but for all elements except of widget it is defined

in DTD.

25

A

Managing Properties

Application Framework provides a unified system of property distribution. It
may be useful to store application properties and to control behavior of the
application from one point: e.g., in order to change the default DAE name for
all instances of the application.

4.1 Getting Properties

To access the set of properties from the application,
ApplicationManager.getProperties static method should be wused. This
method returns java.util.Properties object. The application can not only
read values, but modify and add new ones, as well. Note, that setProperties
method is not supported by ApplicationManager, so all changes must be made
in the existing object.

In general, the property name may be random. However, to avoid a conflict
between different applications, it is recommended to use package name in the
beginning of the property name. For example:
gov.fnal.controls.applications.monitor.DeviceTable.SortOrder.

4.2 Storing Properties

There are three locations, where the properties are stored and can be initially
defined: global property file, application property file and the property server.

Global property file is the file
/gov/ftnal/controls/framework/ApplicationFramework.properties. It
defines values, that are common for the whole Application
Framework. Users may not change this file.

Every application can have its own property file. Name of this file
must correspond to the name of application’s main class (class, that
contains main static method), and have .properties extension.
Application property file is optional.

Property server is a set of servlets connected to the database.

27

APPLICATION FRAMEWORK REFERENCE GUIDE

Application Framework never modifies global and application property files.
All changes, made at the runtime inside the application, are saved on the
server.

Properties are retrieved in a strict order:

| (1) global property file > (2) application property file > (3) property server |

On every step, new values overwrite old ones. Thus, data from the property
server always have the highest priority.

4.3 Property Server

Property server (Property Repository) is a set of servlets. Properties
themselves are stored in the database. The web interface to manage the
repository is available at http://www-bd.fnal.gov/appix/select/props.

Every record, that describe property in the database, has two additional
attributes: application and user. So, properties may be application-specific
and/or user-specific. Property name is not a primary key. That means, for
example, that two records with the same name may exists, if one of them is
application-specific, and another one—is not.

When the servlet retrieves a set of properties by the Framework’s request,
application-specific and user-specific properties have higher priority, than
others. All properties changed by user applications at the runtime are stored
as user-specific, but not application-specific.

4.4 List Of Used Properties

Following properties are used by the current version of Application
Framework (properties of logging handlers are not shown):

Table 9. Application Framework properties
Defined

Name i Function

-Tevel G Global logging level
appix_server G APPiX server URL
application.author A Application author(s)
application.help.topic A Help topic ID

28

Application Framework properties (continued)

Name :Z:]e-flned Function
application.help.url A URL of application help file
application.title A Application name
application.version A Application version
dae . connect G 1, if DAE must be connected at the
application startup
dae.enabled G 1,if DAE connection is enabled for this
application
dae.name S Default DAE name
Default settings unlock time in
dae.unlock.time G minutes; zero value locks settings,
negative values unlock settings forever
framework.heartbeat G 1 to allow Heartbeat Service
framework.version G Curr_ent Application Framework
version
g°¥}£32\’vél‘fﬁr_‘}£35"—' G Application Framework logging level
handlers G List of available logging handlers
1 if Message Viewer must be
message . autoopen G automatically opened when new
message comes up.
srotected. logging. List of logging handlers, _that may not
handlers G be changed through logging
configuration GUI
user.email .address Email address of the current user
user.email _.addressee Last used email addressee
user.export.delimiter._+ Last used text delimiter for the export
index utility
user.export.file Last export file
user.export.qualifier._< Last user text qualifier for the export
index utility
user.print.center 1 if image must be centered while
printing
user.print.fit 1 ifimage must fit the page while
printing

29

APPLICATION FRAMEWORK REFERENCE GUIDE

Application Framework properties (continued)

Defined .
Name in- Function
user.print.transparent 1 to remove background while printing
user.smtp_server S SMTP server name

(G) = global property file

(A) = application property file

(S) = property server.

4.5 Setting Properties For Application

1. Create text file with the same name as your main class and
.properties extension. Place this file in the same directory, as your

main class.

2. Every property definition must occupy on line and have the following

format:

<name>=<value>

Set application.title, application.version and application.author.

Set dae.enabled and dae.connect properties, if needed.

30

5

DAE Connection

5.1 General Description

Application Framework provides an advanced procedure for the Data
Acquisition Engine (DAE) connection.

To create the DAE connection, in general, the application must obtain an
instance of gov.fnal.controls.daq.acquire.DaqUser. Each instance of this
object corresponds to an opened connection. baqUser describes the DAE client:
a combination of user, node, and service. In our case, the service is an
application, and Application Framework provides full information about it,
including privileges. The information is being taken from APPiX database
through servlets.

Application Framework provides two ways to manage the DAE connection: a
programmatic way, and through the generic user interface.

The programmatic way allows to:
set the default DAE name (for debugging);
connect to DAE every time at the startup;

have a listener to handle DAE-related events (connect, disconnect,
etc.).

The generic GUI allows to:
connect and disconnect the DAE at the user discretion;
change the DAE name (this value is persistent for every user);

lock and unlock settings.

5.2 System Requirements
In order to work with DAE, the application must have two items included in

the classpath: govcore.jar and jconn2.jar. As far as govcore.jar is a subset
of gov-tree, it may be substituted by either gov.jar, or by the original gov-tree

31

APPLICATION FRAMEWORK REFERENCE GUIDE

(see 81.2.2). If these libraries are not included, DAE connection is unavailable
and all related controls are hidden.

The client machine must have access to the DAE; in most cases this is
unavailable off site.

The application may connect only to the DAE, that is assigned to serve
specific application types. The default system-wide DAE name is Ok in most
cases. At present time, the following servers are working with general
purpose console user programs:

dse08.fnal.gov (default)
dse09.fnal.gov

dsel0.fnal.gov
You can use the local DAE, as well.

5.3 DAE-Related API

DAQ user should not be created explicitly in the application. A shared
DagUser instance is provided by the following static methods:

ApplicationManager.getDaqUser()
ApplicationManager.getDagUser(boolean forceConnection)

Both of these methods return an object, that is actually baquser instance, or
null. The first method is equal to getbagUser(false). The Boolean argument
switches two modes:

forceConnection==false:

if the connection has already been opened, the method returns
DagUser instance immediately;

if the connection is in progress, the method waits until a thread
finishes and returns either valid instance, or null;

otherwise, null is returned immediately.
forceConnection==true.

iIf the connection has already been opened, the method returns
DagUser instance immediately;

If the connection is in progress, the waits until a thread finishes
and returns either valid instance, or nulI;

if the connection is enabled but closed, the method initiate the
connection, waits until the thread finishes and returns either
valid instance, or null;

otherwise, null is returned immediately.

32

As long as the user can disconnect from DAE using GUI controls, it is
impossible to guarantee, that Daquser instance will be valid all the time. To
avoid this problem, a DaeConnectionListener should be used to inform the
application when the DAE connection is changed:

ApplicationManager .getDaeSupport() .addDaeConnectionListener(..);

5.4 Configuration

By default, the application is disconnected from DAE, but the connection can
be established using DAE Configuration dialog.

The are several application properties (see 81), that may be used:

Table 10. DAE-related properties

Value Default

Function
format | value

Property Name

Sets whether DAE connection
dae.connect 0/1 0 should be opened at the
startup

Sets whether DAE connection
(and related GUI controls)

dae.enabled 1 .
ae-enable on should be available for the
application
dae.namel URL dse08.fnal.gov | DAE name
dae . name . Fixed URL none Fixed QAE name for
debugging

Settings control:
>0: settings are enabled for
the specific time (in
minutes);
=0: settings are disabled;
dae.unlock.time | integer | O - <0: settings are enabled for
unlimited time.
Settings unlock time is
counted from the moment
when DAE connection is
established.

1 1If DAE name is changed through GUI, the new value is stored on the server
as a user-specific property.

Properties dae.enabled, dae.connect, dae.unlock.time, and dae.name.fixed
can be assigned in the application property file. Meanwhile, the default value

33

APPLICATION FRAMEWORK REFERENCE GUIDE

for dae.name is stored on the property server, and it can not be re-defined
through the application property file.

Two values for DAE name are provided in order to make the management
more flexible. Application Framework tries to use dae.name.fixed first. If this
property exists, its value is used in DAE connection, and the user is not
allowed to change it; in other words, the user may connect only to the
specified server in this case. Otherwise, Application Framework uses
dae.name, and allows the user to change it through GUI. The default value for
dae.name always exists on the property server. If the user enters new DAE
name, it will be stored on the server and will be used later in all framework-
based applications without dae.name.fixed, started by this user, as the
default DAE name.

5.5 Settings Control

Application Framework provides a support for disallowing settings, similar to
VMS. By default, settings are locked (disabled). Settings may be unlocked
(enabled) for a certain period of time, or forever, using GUIl. The maximum
allowed unlock time is subject of account’'s and node’s privileges. GUI shows
only allowed values. Unlock forever is available only for very limited number
of people. For those who have permissions to unlock settings forever, settings
are always unlocked at the application startup.

For debugging, developers may unlock settings by default. To do this,
application property dae.unlock.time should be specified in the property file.
Positive values of this property are considered to be unlock duration in
minutes. A negative value means “unlock forever”. Zero value locks (disables)
settings. If settings are unlocked before the connection, the unlock time
“count down” begins only after the connection is opened.

Settings may be locked/unlocked from the Java code using:
ApplicationManager.getDaeSupport().lock()

ApplicationManager.getDaeSupport() .unlock(int duration)

Do not change the default settings status in production versions!

The users must have settings locked and unlock them manually, in order to
avoid mistakes. MCR is the only exception, so far.

5.6 Security Issues
In order to define whether the program can do settings, three types of

permissions are checked: account’s, node’s and service’s. The set of service’s
permissions is defined in Application Index for every program (see APPiX

34

Guide, 86.3). Please note, that the DAE uses only actual access classes (MCR,
Development, ...), but not pseudo-classes (PUBLIC and INSIDER).

Applications not registered in Application Index use a default service
permissions, ox7fFFFFFf. This value allows the application to do everything,
so the actual type of access in this case is defined using node’s and account’s
privileges. Developers are required to use this default service privileges only
during debugging and for applications, that can not be registered in
Application Framework (e.g., servlets).

5.7 GUI Controls

The generic GUI has an icon on the status bar, that shows current status of
DAE connection:

=@#= DAE disconnected.
=@8= DAE connected; settings disabled.
=@~ DAE connected; settings enabled.

To open DAE Connection dialog, click this icon, or use
“Tools/DAE Connection...” menu.

DAE Connection i 5!

rConnection -

{®) Now: CONNECTED TO DSE10.FNAL.GOV

() Disconnect

-dse1 D.fhal.gov

Settings

{®) Now: DISABLED

(! Disahle

{_} Enable for 5 min.

{_} Enable for 15 min.

! Enable for 1 h.

(! Enable for 8 h.

| Ok || Cancel || Apphy |

The top part of the dialog is designed to switch the connection on and off, and
choose DAE name. The bottom part is used to control settings.

35

6

Image And Text Capture

6.1 Service Description

The capture utility allows to get current data from the selected area on the
frame as an image, or convert it to a text. This utility can work with any
extension of AbstractControlsFrame: it does not need to know a priori what is
placed on the content pane in the specific implementation, and every time
analyzes this content “on the fly”.

Captured data may be saved in a file, sent by e-mail, printed, or copied to the
system clipboard. Capture mode (image or text) is selected by the user, except
of printing—the printing utility always handles images.

In the image mode, any area on the frame may be chosen for the processing.
In the text mode—only components, that support text conversion. Fields
delimiter and qualifier can be specified by the user.

37

APPLICATION FRAMEWORK REFERENCE GUIDE

6.2 Selecting Data

The Capture Dialog provides a graphical interface to select areas on the
frame. Only one area my be selected at one time. For example, this is the
screen shot of the Capture Dialog for e-mail:

& Send Mail - 5DA Viewer Frame _

Send Ais: |

Select The Area:

Frame Structure Preview (40.7 3%) ‘

Send To: |apetr0v@fna|.g0v

Subject: |

Comments:

| Send || Cancel |

Left panel shows the current frame layout. The selected area is highlighted in
yellow. Right panel shows a preview of the selected area.

Every frame has a number of elements placed on it in hierarchical order. If
you select the element that is parent for other elements, all children will be
selected, too.

If you have JscrollPane on you frame, and it renders only a part of the object
(tree, table, list), you can select an internal component of this scroll pane (this
component is JViewport) and get the whole object:

[Frame Strisciure

JscrollPane iIs selected. Only visible part is captured.

38

Frame Structire : Predev (2.73%)

Jviewport is selected. Whole table is captured.

Image selection may not exceed 1000x1000 pixels. Otherwise it will be
truncated. Truncated borders are marked with a broken red line.

6.3 Text Conversion

Content of several object can be converted to a text. These objects are:
Javax.swing. text._JTextComponent
Javax.swing.JTable

Javax.swing.JTree

When text mode is selected, all areas on the frame, that do not contain listed
components, are disabled (gray). If you get data from either JTree or JTable,
field delimiter and field qualifier can be specified. Field delimiter separates
data of different cells. Field qualifier—surrounds data from the cell. Text
conversion has no limitation on data size.

Export options

& Send Mail - 5DA Viewer Frame
L .y Field delimiter:

Send As: |Text '| | Options | |; v|

Select The Area: Field qualifier:
p [mong <]

Cancel

Frame Structure

Send To: |apetrw@fnal.g0v | | ir‘_"

39

v

Logging

7.1 Service Description

Application Framework supports JDK 1.4 logging API:
http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/index.html.
Generic framework classes themselves use logging API to create a log of the
initialization process and watch for some important internal events and
exceptions. The generic framework logger IS named
gov.fnal .controls.framework. Developers should use their own loggers in
applications.

Application Frameworks provides a way for logging API configuration, that
replaces the native Java logging configuration through the configuration files.
Logging configuration is stored as properties (81). From the application, those
properties may be changed in Logging Configuration Dialog.

Application Framework provides two additional logger handlers:

gov.fnal.controls.framework.logging.AppixHandler sends logging
messages to the APPiX database; these messages may be viewed at
http://www-bd.fnal.gov/appix/select/props;

gov.fnal.controls.framework. logging.MessageViewerHandler sends
logging messages to a Message Viewer window.

Logging services are provided only for those applications, that are registered
in APPiX database.

7.2 Logging Configuration

Initial logging configuration is defined in the Global Property File (see the
table on the next page).

41

Table 11. Logging properties
Property Name

Default Value

APPLICATION FRAMEWORK REFERENCE GUIDE

Function

handlersl

® .ConsoleHandler,

@ .AppixHandler,

@ .MessageViewerHandler

List of available handlers

protected.logging.handlers

® .FileHandler

List of logging handlers, that may not be altered
through GUI

.level INFO Global default severity level for all
gov.fnal _controls.framework.level | CONFIG Severity level for Framework loggers
®.FileHandler.level OFF FileHandler configuration

@ .FileHandler.pattern

%h/java%u. log

®.FileHandler.limit

50000

@ .FileHandler.count 1

O _FileHandler.formatter ® . XMLFormatter

®.ConsoleHandler.level INFO ConsoleHandler configuration
® .ConsoleHandler.formatter ® . XMLFormatter

@ .AppixHandler.level WARNING AppixHandler configuration?
@ .MessageViewerHandler.level OFF ConsoleHandler configuration

@ .MessageViewerHandler.formatter

®.SimpleFormatter

® = java.util.logging

@ = gov.fnal .controls.framework.logging

1 FileHandler is now excluded from the default list of handlers, though its properties still exist.
It has been found, that unconditional usage of FileHandler may cause hanging on several systems, where user’'s home
directory is located on a separated file system— even if the severity level for this handler is OFF.

2 AppixHandler always uses XMLFormatter as a formatter.

42

To alter these default values, the application property file should be used. At
the runtime, configuration of the particular logger handler may be changed in

Logging Configuration Dialog. Use “Tools/Logging” menu item to open it.

Handlers:

(@) ConsoleHandler
i) FileHandler
i) AppizxHandler

' MessapeViewerHandler

Froperty Name [value I
java.utillogging. ConsoleHandlerf.. |java.utillogging. SimpleF armatter

Jjava.util.logging.ConsoleHandler). [INFO

Severity Levels:

Froperty Mame | Walue
level IMFO

gov.fhal.contrals framewark. level COMFIG

| Ok || Cancel |

The top panel shows the logging handler configuration; the values may be
changed through the GUI (except of those for protected logging handlers). The
bottom panel shows severity levels.

7.3

1.

How To Use Logging

Create an instance of your logger. Choose an appropriate name for

the logger. It is recommended to use the package name.

Set severity level for your logger using application property file. For
example, if logger name is gov.fnal.controls.applications.monitor

add the following line in <application_name>.properties file:

gov.fnal.controls.applications.monitor.level = ALL

Every time, when you need to place a log message from your
application, use some function of the logger (log, severe, warning,

info,config,fine,finer,Orfinest)

You can change severity level by editing the application property file,

or assigning new value through the logging configuration dialog.

43

APPLICATION FRAMEWORK REFERENCE GUIDE

Example:

44

package gov.fnal.controls.applications.monitor;

import java.util.logging.Logger;
import java.util.logging.Level;

private Logger logger = Logger.getLogger(
""gov.fnal .controls.applications.monitor"

);
public class Test {

public Test() {
logger.log(Level.INFO, "Class is created");

}

public void testLogger(String message) {
logger.severe(message);
logger._.warning(message);
logger.info(message);
logger.config(message);
logger.fine(message);
logger.finer(message);
logger.finest(message);

7.4 Heartbeat Service

Application Framework provides Heartbeat Service, that notifies the server
every time when the application is started or terminated, and every 6
minutes during the execution. By default, this service is enabled. To switch it
off, the property framework.heartbeat must be set to 0. Heartbeat service is
provided only for applications, registered in APPiX database.

Application usage log IS available at:
http://www-bd.fnal.gov/appix/select/heartbeat. List of live applications:
http://www-bd.fnal.gov/appix/select/live?select=1.

Every application can have one of three statuses:
Working — if start notification is received,
Terminated — if end notification is received, or

Died — if no notifications were received last 15 minutes.

45

8

Operation Locks

8.1 Service Description

Application lock service is designed to prevent concurrent execution on
critical routines. Applications registered in Application Index are able to set a
special system-wide named flag on the server. Before setting this flag, a
server utility check whether it is already set by another program, and reject
the current request, if so. All existing flags are linked to running program
instances. Operation locks can be released explicitly, by request, or they are
removed automatically upon the normal program termination or death.

8.2 Operation Locks API

In order to request an operation lock, the program should use
setOperationLock abstract method of Application Manager. The argument of
this method is a lock name, which is an arbitrary string. The method is either
sets the requested lock on the server and finishes quietly, or it returns an
exception. The cause of the failure can be:

operation lock with the same name is already set by another program
(multiple requests from one programs are Ok);

the application is not registered in Application Index;
lack of connection to the server.

Since the first situation is quite possible, the exception should be always
handled in the program. Use the exception’s message to find a plain-text
explanation of reason.

To unlock an operation, use releaseOperationLock static method. It finishes
successfully, even if the lock has not been set.

47

APPLICATION FRAMEWORK REFERENCE GUIDE

Example:

public void lockMyOperation() {
try{
ApplicationManager.setOperationLock("foo");
} catch (Exception ex) {
JControlsMessageBox.showError(ex);
}
}

public void unlockMyOperation() {

try{
ApplicationManager.releaseOperationLock("foo");

} catch (Exception ex) {}
}

48

9

Reference Implementation

The class gov.fnal.controls.examples.FrameworkExample implements most of
the Application Framework functions:

Dynamically generated GUI,

DAE Connection (with DaeConnectionListener);
Operation locks;

Application properties;

Logging;

Loading resources.

To start the example, use the references in Z directory of Application Index.
The program may be launched as either STDALONE or JWS-AUTO type.

For the manual start, the program classpath must include gov.jar,
framework.jar, af-bunch.jar, and jconn2_jar. On Windows console, type
something like:

%JAVA_HOME%\bin\java -classpath p:/jars/gov.jar ;<
p:/jars/split/framework. jar;+
p:/jars/multi/af-bunch.jar;p:/jars/jconn2.jar<
gov.fnal .controls.examples.FrameworkExample

Here, p: drive is mapped to \\daesrv\java directory.

49

APPLICATION FRAMEWORK REFERENCE GUIDE

The user interface of this program looks as follow:

& Application Framewor ple. I] 3
File Edit Tasks Tools Custom Help
208 Xh=0 POD
i Data Acquisition 1 Operation Locks — i
WARNING! This program makes actual settings. Lock Name: |testlock
Device: [Z:CACHE |

| | Set lock || Release lock
Reading: 4556.0 L

Setting: | |

Set!

This is an example application, that implements most functions of the Application Framework,
To change the device, type the name of this device, and press ENTER. Job will he automatically restarted.

To do a setting, type the value inthe Setting filed, and press ENTER, or click Set! button.
Take care: this program makes actual settings! Before doing settings, you must enable them through
DAE configuration dialog ({Tools|DAE connection menu),

To lock an operation, type the lock name, and press Set Lock button. After that,
all atternpts to lock the same operation from different applications will fail.
To unlock, click Release Lock hutton.

-

Readiﬁg jab s.‘;ta.rted.

At the startup, the application starts the DAQ job and shows current reading
values for the specified device (Z:CACHE on the snapshot). If the device name
Is changed, the job is automatically restarted. In order to do the setting, a
float value should be typed in “Setting” field. In case of Z:CACHE device, the
setting value is immediately translated to the reading value, so it will appear
in the “Reading” field. For all users, except of MCR, settings must be
unlocked manually through DAE Connection dialog (“Tools | DAE Connection”

menu).

The “Operation Locks” panel allows to test the operation lock service.

50

Appendix I. Release History

Release 2.3.36, 04/02/2003 - LAST VERSION
Operation Lock service is implemented
Release 2.3.11, 10/29/2002

Manual definition of wuser's home directory (for
GUIPersistencyManager) added.

FileHandler excluded from the default handler list.

Self-determination procudure for “JWS-AUTO” applications is
implemented.

Release 2.3.9, 10/21/2002
Heartbeat service added.
Release 2.3.7, 10/15/2002
JTabbedPane set enabled for capture utility.
JSimpleControlsFrame introduced.
Release 2.3.6, 10/10/2002
Changes in system environment:
xerxes.jar removed from classpath
jIfgr-1_0.jar added to classpath
Menu bar changed

Status bar changed: connection and message viewer buttons
added

Message Viewer created
DAE connection routine completely updated
Self-determination procedure updated, APPiX connection added

Two new logging handlers: AppixHandler and
MessageViewerHandler

Capture utility update:
Last file name is stored between sessions

Printing options are stored between sessions

51

52

APPLICATION FRAMEWORK REFERENCE GUIDE

Print To Fit mode for big images

Release 2.2.3, 05/03/2002
First productional version

