Tevatron BPM Software Specifications, Version 6.1, 01/21/04

[image: image1.wmf]

Fermilab/BD/TEV

Beams-doc-860-v0

February 5, 2004
Version 6.2
Tevatron Beam Position Monitor Upgrade
Software Specifications for

Data Acquisition
DRAFT DRAFT DRAFT

Margaret Votava, Luciano Piccoli, Dehong Zhang

Fermilab, Computing Division, CEPA

Brian Hendricks

Fermilab, Beams Division, Accelerator Controls Department

Abstract

This document contains the specification for the BPM/BLM upgrade data acquisition software. Expected operating modes and interactions to the BPM/BLM hardware is described. Data structures for communication with the online software via ACNET are defined. Calibration and diagnostics procedures are also specified in this document.

Overview
3

Requirements
4

Goals
4

Data Acquisition
5

BPM Data Acquisition Modes
6

BLM Data Acquisition Modes
7

State Diagram
7

Configuration Parameters
9

Interface to Online Software
9

ACNET Device Mapping
10

Data Structures (Output Data)
11

Generic Headers
11

BPM Non Turn By Turn
12

BPM Turn By Turn
12

BLM Data Structures
13

Interface to BPM/BLM Hardware
13

Calibration
14

Diagnostics, test suite, and simulation
14

Diagnostics
14

Self-Testing Procedures
14

Monitoring
15

Appendix
15

Current BPM data structures
15

BPM Single Turn (Flash)
15

BPM Closed Orbit
15

BPM Data Structure
16

Overview

This note documents accumulated knowledge about the software and data formats needed for the data acquisition part of the Tevatron BPM upgrade project. The data acquisition software will run on the VME front-end computers. Figure 1 shows the software structure and the different elements involved with the BPM upgrade project.

(this diagram should show multiplicity – ie, n crates, n daq engines, 1 vax)

Figure 1 - Overall software architecture

This document describes the portion of code that resides on the front-end microprocessors also referred to as the Data Acquisition (DA) software. Online software resides on the VAX and DAQ engines, and forms the primary (but not exclusive) bridge between user code and BPM data.

Each front-end depicted in Figure 1 is a VME crate holding a series of BPM VME digitizing boards and BLM digitizing hardware. One crate can also be referred as a house, however a house may have two crates in some cases. There are 24 houses around the Tevatron ring, and each house has up to 6 BPM digitizing boards and 8 BLM digitizing boards. Figure 2 illustrates the organization of the cards in the VME crate (see document #XXX for hardware specifications).
The BPM digitizing boards are Echotek module xyz, and each module digitizes data from 8 channels. A given BPM sensor generates data on 4 channels – the A and B plates for the proton position and the A and B plates for the antiproton position. The digitized output that results from each channel may be either a calculated position or the raw data itself. This has not yet been determined. If it is the raw data, each channel is actually represented by two components: a real (Q) and imaginary (I) part. The BLM digitizers are custom PMC boards described in document blah.

Figure 2 - Elements within a crate
Timing is misspelled in the diagram and BLMs attach to the IP module. The crate controller board is responsible for establishing the communication link between user applications and the Echotek modules. All control and data transferred to/from the modules pass through the crate controller.

Requirements

Because of the code base of existing applications, the BPM replacement system must continue to support the existing architecture. This implies:

· From the online application perspective, all communication with the front ends is via ACNET devices. This includes data readout as well as setting readout parameters. Internal diagnostics, however, do not have this constraint.

· Data collection happens asynchronously from data readout, ie, the BPMs can be configured to take data continuously on certain triggers, but the data is not read out until later. Not all data that is collected is read out. This implies that the DA must manage readout requests from the online software.

· “Event assembly” is done by the online software, not the DA, therefore a given BPM house does not need to have any knowledge about any other BPM house(s).

· Embedded boards will run VxWorks

· There is one VME processor in each crate running the front-end DA, which will be responsible for handling multiple BPM and BLM cards. One house may have one or two crates.
Goals

· The front-ends should detect state changes via the state devices (in the old system, the sequencer would notify the BPMs of changes). This will help to reduce the complexity of the sequencer, allow for faster builds and testing of BPM changes, and push the knowledge of BPM behavior to the BPMs themselves.
· The front ends software will use the Recycler BPM software and echotek drivers as a starting point for the software design.
Data Acquisition
The front-end data acquisition system is located between the user applications and the BPM/BLM digitizing hardware (Figure 3). Any access to information and controls on the BPM/BLM boards will pass through the front-end processor. The information includes beam positioning data, loss information, calibration data and diagnostics data among other configuration paramenters.

Figure 3 - Data acquisition scheme

Put in echotek boards here. Front end card should be called crate controller or cpu. The communication between the user applications and the front-end card is ACNET/Mooc based. The SSDN data structures are defined in the following sections (Brian will provide the ACNET mapping?) and contain data defined by the Tevatron BPM Upgrade Requirements document (#554).

The communication between the front-end and the Echotek (right side on Figure 3) modules happens through the VME backplane. For the BLMs, data is exchanged through a digital I/O module on an I/O board.

Data coming from the BPM and BLM digitizers are stored into a set of buffers in the crate controller. The depth and number of logical buffers that reside on the crate controller is defined in document #903. At least some of the buffers, most notable the turn by turn data, is first stored in memory on the Echotek boards and then transferred to the crate controller on demand, as the processor/backplane does not have the bandwidth to acquire it in real time. The actual physical implementation of the crate controller buffers will be described in the front-end software design document.
As described in document 903,
I think doc #903 should describe this? New data is stored in the crate controller’s internal buffers when there is a trigger, which are defined as following:
· TCLK trigger

· TCLK + programmable delay

· TCLK + repeatable programmable delay

· BSYNCH trigger

· BSYNCH + programmable delay

· BSYNCH + repeatable programmable delay

· State device transition

· User request trigger – isn’t this the same of tclk + delay?
Clock Signals

There are two TCLK decoders in a given house – one PCMUCD and one XXX. The ACNET/MOOC software infrastructure and applications are triggered by TCLK signals that are decoded by the PMUCD card. The other card will be discussed in subsequent sections. The crate controller can be programmed to read out BPM/BLM values based on a specific TCLK signal (e.g. TCLK $75). The crate controller does not receive BSYNCH events.

State device transition events are generated when a registered device changes its status, and a central service broadcasts the transition to predefined listeners. As an example of state device transition, the front-end can be waiting on the device V:CLDRST to switch to the “squeeze” state.
The preparation for read out is signaled by an arm event. An arm event may be originated by events generated by the above triggers. For example, a turn by turn measurement could be armed by TCLK.

BPM Data Acquisition Modes

There are different modes of BPM data acquisition. These modes are mutually exclusive due to the necessity to configure the filters and timing in the Echotek modules for a specific mode. The modes are:

· Normal operation.
· Injection

· Turn by Turn
· Diagnostic

· Calibration

The modes are described in more detail in the following sections.
Normal operation

This is the default mode of the data acquisition system, and controls the filling of several different data buffers. These are:

· Fast abort buffer - The crate controller takes measurement data from all channels on all Echotek modules every 2 milliseconds, and puts them into the fast abort buffer. One element in the fast abort buffer is a frame and the contents are described in the section on data structures. The fast abort buffer is a circular buffer with a depth of 1024 frames. Data from this fast abort buffer is then propogated to the other buffer types in normal operation mode.

· Slow abort buffer – data is copied the newest frame in the fast abort buffer every n readings where n is configurable. This is also a circular buffer that has a depth of 1024 frames.

· Profile frame buffer – data is copied from the latest frame in the fast abort buffer every time a TCLK $75 (shot data event) is received. The profile frame buffer is a FIFO buffer with a depth of 128 frames. If the profile frame buffer overflows, new values will be discarded and an alarm condition will be flagged. Only one alarm will be sent per crate.
· Display frame buffer – data is copied from the latest frame in the fast abort buffer every time a TCLK $XX (display event) is received. This buffer is not an array, but is just a single frame.

· Fast time plot buffer(s) – data is copied from the latest from in the fast abort buffer every 2 milliseconds. There is no depth to this buffer, but since fast time devices plot only single values, it will be a series of devices to plot:

· A particular BPMs proton position

· A particular BPMs antiproton position

· A particular BPMs proton intensity

· A particular BPMs antiproton intensity

· A particular channel’s I value

· A particular channel’s Q value
Requests for snapshot data return the most recent frame in the fast abort buffer.

In the event that a TCLK $47 (abort) is received, the normal operation mode will freeze data in the fast and slow abort buffers, the profile frame buffer, and the display buffer, Abort will also fill the ftp buffers with a status indicating no beam. All modes are disabled?
Upon receipt of a TCLK $71 (prepare for beam), any acquistion mode is halted. At this time, the fast and slow abort buffers are cleared, the profile frame buffer is reset to zero, injection mode is enabled, and normal operation mode (re)started.
Injection
Injection mode is a specialized mode which needs to take turn by turn data followed quickly by a closed orbit measurement. It happens automatically on receipt of a TCLK $4D (). Injection mode has the highest priority of all data acquisition modes and will supercede any other acquisition mode in progress. When the TCLK is received, all other modes will halt and the Echotek modules will arm themselves waiting for the corresponding trigger, $5C (main injector/tev beam synch). Once a turn by turn measurement of 8K turns has been completed, the crate controller will then calculate a closed orbit measurement using the data from the turn by turn buffer. Once the calculation is complete, the mode automatically returns to normal operation.
What about timeouts? How do we know when readout is complete?
Turn by turn

Flash?
· This mode happens only on user demand. This fills a buffer of 128 point.
Calibration Mode – we don’t know what this means yet

Diagnostic Mode – we don’t know what this means yet
BPM Measurement types

In addition to the modes, there are two different types of measurements that can be made from the BPM data. The data types are:
· Closed Orbit Measurements (aka Frame data). Frame data is an average of n measurements. The average is usually based on 8, 16, 32 or 64 single turn measurements, and is configurable. Frame data is the only data measurement made in normal operation mode. Note: the number used in the averages for normal operation mode is not necessarily the same number as in injection mode.
· Turn Data is the instantaneous single value (ie, not averaged over n readings) of the sensors once the trigger is received.
·
·
It is important to note that for turn measurements, all BPMs are triggered off the same bunch. However, for closed orbit measurements, the specific bunches used in the averaging can be different across BPMs.
The data acquisition system must support buffers of N events for both of these data types. For turn buffers, the arrays are of N consecutive measurements (ie, Turn by Turn). On the other hand, closed orbit buffers are built by a N triggers of a specific type.
The measurement types require different setups in the Echotek modules, and, therefore have a time penalty associated with them. In general, one needs to switch data acqusition modes, to acquire a different type of measurement.

·
·
·
·
BLM Data Acquisition Modes
The BLMs on the other hand are much simpler. BLM values are read out periodically on triggers of the type described above. There is no need for mode switching for BLMs, and there are no turn by turn requirements.
There should be a data buffer for BLM data capable of storing a given time frame worth of data. These data can be read in full in the event of a TeV abort.

State Diagram

The front-ends will respond to transition events from the Tevatron states device (please refer to the URL: http://www-bdnew.fnal.gov/tevatron/adcon/tev_states.html for a detailed description of the tevatron state diagram). In the current system the sequencer is responsible for informing the BPM system about a TeV state change. The new system should be able to detect such changes independently, freeing the sequencer from the task of informing the BPMs about TeV state changes.

The state device containing the current Tevatron state is V:CLDRST. The BPM system is interested in some of the possible states assumed by this device. The following is a list of states for V:CLDRST:

1 - Proton injection porch

2 - Proton injection tune up

3 - Reverse injection

4 - Inject protons

5 - Pbar injection porch

6 - Inject pbars

7 - Cogging

8 - Before ramp

9 - Acceleration

10 - Flattop

11 - Squeeze

12 - Remove halo

14 - HEP

15 - Pause HEP

16 - Proton removal

17 - Unsqueeze

18 - Flattop2

19 - Deceleration

20 - Extraction porch

21 - Extract pbars

22 - Reset

23 - Recovery

24 - Ramping

The following states will require functionality from the BPMs:

Proton Injection Porch (1)
From the time the tevatron is in recovery until it reaches either the proton injection porch (event $43), the BPMs are not required to be doing anything. The system can do an inventory of the current BPMs, checking whether they working or not. Problems detected must be reported to operators and data taken has to be tagged with the BPM status for later analysis.
Proton Injection Tuneup (2)

Only proton data is needed in this state. Take both single turn, in particular, first turn, as well as triggered (either on a TCLK event or a TCLK event + delay) closed orbit data in this state. No pbar data available.

Reverse Injection (3)

Currently only uses Main Injector BPM data taking closed orbit data triggered on a TCLK.

Inject Protons (4)

Switch now to coalesced beam depending on the operational mode (the device V:COALP should be checked). SDA is collecting closed orbit data on demand.
Pbar Injection Porch (5)

SDA collecting proton closed orbit data on demand.

Inject Pbar (6)

Both proton and pbar data are needed here. Collecting closed orbit data on TCLK events as well as on demand. There may be unique cogging values for each BPM.
Acceleration (9)

Profiling data taken. Profiling is a closed orbit measurement taken at n points during the acceleration process at 100GeV, 200GeV,... , 980GeV. Right now p only – pbar would be nice. Currently generated by a TCLK event that is coming from the CAMAC timing modules.

Besides the device V:CLDRST, other state devices that should be checked by the BPM system are:

V:TEVMOD – Tevatron high-level mode

1 - colliding beams: take closed orbit data

2 - proton only: take proton closed orbit data

3 - dry squeeze: take closed orbit data

4 – ramping: take closed orbit data

5 - recovery/turn on: run diagnostics

6 - off: run diagnostics when machine is off

V:COALP – Proton coalescing state

1 - coalescing off

2 - coalescing on

V:COALA – Pbar coalescing state

1 - coalescing off

2 - coalescing on

V:TVBEAM – Particles present in the Tevatron

1 - no beam: run diagnostics while no beam in machine

2 - protons: take proton closed orbit data

3 - pbars: take pbar closed orbit data

4 - protons and pbars: take proton and pbar closed orbit data
V:HELIX – Helix state

V:PBKTC – Number of Proton Bunches
V:ABKTC – Number of Pbar Bunches
Configuration Parameters

These are a some configuration parameters identified that should be used for setting up the BPM software DAQ.
	Name
	Description
	When can Change
	Range

	Sample Size
	Number of samples used in closed orbit averaging
	Proton Injection Tuneup
	N - M

	Operational Mode
	Define the current mode of operation of the BPMs
	On TCLK events and on manual request
	Closed Orbit, Turn by Turn, First Turn, Diagnostics or Calibration

	Arm delay
	Delay for arming after specific TCLK or BSYNCH
	On state device changes and on manual request
	Value in mseconds

	Trigger delay
	Delay for arming after specific TCLK or BSYNCH
	On state device changes and on manual request
	Value in mseconds

	Buffer lock
	Lock current contents of data buffer
	On manual request
	On/Of

	Data buffer depth
	Number of entries on data buffer
	On startup and manual request
	128 to 8192

	Data buffer entry type
	Type of entry for the buffer
	On startup and manual request
	Turn by turn, closed orbit, calibration, BLM

	Buffer trigger type
	Defines the type of trigger injecting data into the buffer
	On startup and manual request
	TCLK, BSYNCH or State Change

	Buffer data source
	Defines what is the source for the buffer incoming data
	On startup and manual request
	BPM single turn, BPM closed orbit or BLM

Configuration paramenters for buffers refer to all existing data buffers in the front-end card.
Interface to Online Software

This section defines how data and commands are exchanged between the front-end DAQ software and the online software. ACNET will be the means of transportation of data and commands between peers.
The online software can make these types of request:
· Arm turn by turn – prepare BPMs for turn by turn data taking
· Arm single turn – prepare BPMs for single turn measurement
· Enable closed orbit mode – put BPMs in the default closed orbit mode
· Enable diagnostics mode – put front-end in diagnostic mode
· Disable diagnostics mode – stop diagnostic mode
· Get turn by turn data – return turn by turn data from single BPM
· Get single turn data – return single turn data from BPMs
· Get closed orbit data – return closed orbit data from BPMs
· Get loss data – return loss monitor data from BLMs
· Get status – return overall front-end, BPM and BLM status
Requests may be made in parallel by disjoint applications, and some mechanism for avoiding conflicts must be designed and implemented.
BPM and BLM data read by the online software will be organized according to the data structures defined in the following section. Current online applications do not need to be rewritten in order to comply with the structures. The necessary changes will be made at the BPMUTI library level.
The supported ACNET protocols will be SETDAT, RETDAT and Fast Time Plot (FTP). The front-end must be able to generate FTP data at a rate up to 500Hz.

ACNET Device Mapping

The following suggested ACNET devices will be used for reading BPM and BLM data from the front-end DAQ:
	Device
	Description

	Z:BP[01-24]TP
	Proton turn by turn data

(the same device is used for single turn data)

	Z:BP[01-24]CP
	Proton closed orbit data

	Z:BL[01-24]P
	Proton loss intensities

	Z:BP[01-24]TB
	Pbar turn by turn data

(the same device is used for single turn data)

	Z:BP[01-24]CB
	Pbar closed orbit data

	Z:BL[01-24]PB
	Pbar loss intensities

The following suggested ACNET devices will be used for commanding the front-end DAQ software:
	Device
	Description

	Z:BPM[01-24]CP
	Commands for proton measurements

	Z:BPM[01-24]CB
	Commands for pbar measurements

	Z:BPM[01-24]D
	Diagnostic commands

Supported ACNET Protocols include:
· RETDAT/SETDAT

· FTP (fast time plot)
The snapshot protocol (Not to be confused with a BPM snapshot) will not be supported by the front-end DAQ.
Data Structures (Output Data)

The data sent from the front-end DAQ to the BPM library and/or applications is based in the following C data structures. For compatibility, the BPM libraries on the online side will be responsible for extracting subsets from these data, which are required by existing application programs.

Generic Headers

typedef struct BPM_TIME {

 ulong timestamp;

/* timestamp in seconds (GMT) */

 ulong nanoseconds;

/* nanoseconds */

}

typedef struct TRIGGER_INFO {
 to be defined;

}

typedef struct TEVATRON_BPM_HEADER {

 long endian_type;

/* 0 -> little endian,

 else -> big endian */

 long version;

/* data structure version */

 long status;

/* overall status: zero = OK */

 BPM_TIME time;

/* time stamp */

 ulong turn_number;

/* starting turn number */

 ulong num_turns;

/* number of turns in data */

 double time_in_cycle;
/* starting time in cycle */

 long data_type;

/* flash/snapshot/profile/TBT/etc */

 TRIGGER_INFO trigger_info;/* trigger information */

 long data_source;

/* 0 -> beam,

 1 -> calibration system,

 2 -> software diag,

 3 -> hardware diag */

 long particle_type;

/* 0 -> proton, 1 -> pbar */

 long bunch_type;

/* 0 -> uncoalesced, 1 -> coalesced */

 long scaled_data;

/* 0 -> raw data, n -> scaling version */

 long machine_state;

/* value of V:CLDRST */

 long helix_state;

/* value of V:HELIX */

 long num_proton_bunches;
/* value of V:PBKTC */

 long num_pbar_bunches;
/* value of V:ABKTC */

}

BPM Non Turn By Turn

typedef struct TEVATRON_BPM_FRAME_DATA {

 long frame_number;

/* ordinal number in front end */

 BPM_TIME time;

/* time stamp */

 ulong turn_number;

/* starting turn number */

 double time_in_cycle;
/* starting time in cycle */

 long num_detectors;

/* number of detectors present */

 float positions[12];
/* position values in mm */

 float intensities[12];
/* intensity values */

 long status[12];
/* status values */

}

Proposed status values:

OK = 0

invalid reading = 1 (too little beam intensity?)

alarm level = 3 (if we want alarm limits)

saturated = 5

error = -1 (error reading value (hardware error?))

unequipped = -2 (channel is not in use)

This would be the final structure of the ACNET device for display, snapshot, profile, and flash frames.

typedef struct TEVATRON_BPM_ORBIT_DATA {

 TEVATRON_BPM_HEADER
header;

 long num_frames;
/* number of frames returned */

 TEVATRON_BPM_FRAME_DATA frame_data[];

}

BPM Time Slice Data
typedef struct TEVATRON_BPM_TIME_SLICE_VALUE {

 short status;

/* detector status */
 unsigned long milliseconds;
/* milliseconds since first frame */
 float position;

/* position in mm */

 float intensity;

/* beam intensity */

}

typedef struct TEVATRON_BPM_TIME_SLICE_DATA {

 TEVATRON_BPM_HEADER header;

 Long num_frames;

/* number of frames returned */

 TEVATRON_BPM_SLICE_VALUE frame_data[];

}

BPM Turn By Turn

typedef struct TEVATRON_BPM_TBT_TURN {

 unsigned long
turn_number;/* turn number */

 float position;

/* position in mm */

 float intensity;

/* beam intensity */

}

This would be the final structure of the ACNET device for turn by turn data.

typedef struct TEVATRON_BPM_TBT_DATA {

 TEVATRON_BPM_HEADER
header;

 long status;

/* detector status */

 long num_turns;
/* number of turns returned */

 TEVATRON_BPM_TBT_TURN turn_data[];

}

BLM Data Structures

typedef struct TEVATRON_BLM_FRAME_DATA {

 long frame_number;

/* ordinal number in front end */

 BPM_TIME time;

/* time stamp */

 ulong turn_number;

/* starting turn number */

 double time_in_cycle;
/* starting time in cycle */

 long num_detectors;

/* number of detectors present */

 float losses[24];

/* loss values in rads/sec */

 long status[24];

/* status values */

}

Proposed status values:

OK = 0

alarm level = 3 (if we want alarm limits)

saturated = 5

error = -1 (error reading value (hardware error?))

unequipped = -2 (channel is not in use)

This would be the final structure of the ACNET device for display, snapshot, profile, and flash frames.

typedef struct TEVATRON_BLM_DATA {

 TEVATRON_BPM_HEADER
header;

 long num_frames;
/* number of frames returned */

 TEVATRON_BLM_FRAME_DATA frame_data[];

}

BLM Time Slice Data

typedef struct TEVATRON_BLM_TIME_SLICE_VALUE {

 short status;

/* detector status */

 unsigned long milliseconds;
/* milliseconds since first frame */

 float loss;

/* loss value in rads/sec */

 }

typedef struct TEVATRON_BLM_TIME_SLICE_DATA {

 TEVATRON_BPM_HEADER header;

 long num_frames;

/* number of frames returned */

 TEVATRON_BLM_SLICE_VALUE frame_data[];

 }

Interface to BPM/BLM Hardware

The front-end software will access data from the BPM hardware through VME memory mapped buffers. Information about protons and pbars will be available in different addresses, and each type of particle will have at least two streams of information. One containing the latest position information (for Turn By Turn measurements) while the other has average position information (Closed Orbit measurements).
Additionally, there will be other memory mapped regions used to pass configuration and diagnostics data from the front-end to the hardware and vice-versa. A complete specification of the communication channels will require interaction and agreement between the BPM FPGA code and the front-end software. During the software development, data from the echotek board may be simulated using the agreed interface.
Access to BLM data and commands will happen through a PMC-DIO64 card that connects the crate controller to the BLM hardware. Commands sent and data read from the BLM hardware are defined in the documents #764.
 BLM buffers contain single values and are buffered on the front-end board.
Calibration

The BPM front-end system must be able to perform and handle calibration operations. Each BPM card will have its own set of constants, which can be, for instance, mechanical offsets.

Diagnostics, test suite, and simulation

Diagnostics

The DAQ software will provide diagnostics data via ACNET devices. It will provide means for operators or programs to detect a bad or misbehaving BPM.

Some diagnostics operations follow:

· Generate close orbit: return known closed orbit values.

· Generate turn by turn: return known values for a turn by turn measurement.

· Generate single turn: return known values for a single turn measurement.

· Check BPM hardware: run test procedures in the BPM hardware (one or all the BPM boards) – if supported by the hardware.
· Check BLM hardware: run test procedures in the BLM hardware (one or all the BLM boards) – if supported by the hardware.
· Get buffers: return current contents of all (or selected) data buffers.

·
Self-Testing Procedures

The front-end DAQ should be able to perform tests on itself and on the associated BPM hardware. Results from self-tests should be available to user applications.

Hardware tests will be performed if supported, i.e., the hardware should have the capability of receiving triggers from the front-end and generate data for self-tests.

Software self-testing will be used for validating the data path from the time data is read out from the BPM until it is ready to be read via ACNET devices.
Monitoring

The front-end DAQ should periodically send status and statistics messages to a monitor, via ACNET devices. There should be a central monitoring application which receives data from all BPM front-ends and points out BPMs that have problems.

Data from the front-end include:

· Buffer usage

· Up time

· Available memory

· Status of processes

· Number of requests

· Tevatron status

Appendix

Current BPM data structures

BPM Single Turn (Flash)

#define HOUSE_CHANNELS 12

typedef struct BPM_FLASH_DATA {

 char positions[HOUSE_CHANNELS];/* raw position data (ADC counts) */

 uchar intensities[HOUSE_CHANNELS]; /* raw intensity data */

 ushort valid; /* valid data bits */

 char timestamp[3]; /* base timestamp in inverted byte order */

 uchar timeoff; /* BCD encoded timestamp offset */

} BPM_FLASH_DATA;

BPM Closed Orbit

typedef struct BPM_ORBIT_DATA {

 char positions[HOUSE_CHANNELS]; /* raw position data(ADC counts) */

 ushort valid; /* valid data bits (bit #7 indicates alarm */

 /* limits used - 0-low, 1-high) */

 uchar abort; /* abort status bits */

 uchar alarm_abort; /* alarm status in low nibble and */

 /* abort status in high nibble */

 uchar alarm; /* alarm status bits */

 char timestamp[3]; /* timestamp in inverted byte order * 1000.0 */

} BPM_ORBIT_DATA;

BPM Data Structure

typedef struct BLM_DATA {

 uchar raw_losses[HOUSE_CHANNELS]; /* raw loss data */

 uchar status; /* BLM status */

 char timestamp[3]; /* timestamp in inverted byte order * 1000.0 */

} BLM_DATA;

� EMBED Paintbrush Picture ���

Front-end

card

User

Application

BPM/BLM

cards

- Data request

- Command

- Data request

- Command

- Position data

- Loss data

- Position data

- Loss data

ACNET

BPM

UTI

Sequencer

T pages

CLIB

VAX (1)

ACNET

MOOC

DAQ Front-end Applications

Front-End (n)

Sun (DAQ engines) (n)

DAQ Jobs

Windows/Linux (n)

Java Application

Ethernet/RMI

ACNET java

BPM UTI

 java

Ethernet

Front-end crate

FE Board

or

Crate Controller

Timming Module

BPM Cards

BLM Hardware (non VME)

1
2/5/04

_1220927168

