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Abstract

A statement in the requirements for the new BPM electronics is that the differential
resolution not exceed 7 microns (one o). This note discusses how such a measurement
can be done, and how accurately o might be measured, given the availability of only
one prototype of the new BPM design. The result is that o can be measured to 15%
accuracy using a sequence of 35 3-bump measurements, or if 30% accuracy is adequate,
a sequence of 14 3-bump measurements.
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1 Overview

A statement in the requirements for the new BPM electronics is that the differential reso-
lution not exceed 7 microns (one o). Before proceeding with production of the new BPMs,
it is prudent to assess whether the proposed design will meet this requirement. This note
discusses how such a measurement can be done, and how accurately o might be measured,
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given the availability of only one prototype of the new BPM design. It also discusses the
extent to which a second prototype might (or might not) improve such measurements.

(There is some debate about whether the physics of beam tuning is such that this
requirement is overly stringent, and thus could be relaxed. This note does not address
that issue; at any rate, if one knows a meaningful requirement for resolution, one still faces
the question of how to verify that this requirement will be met, using only the prototype
electronics.)

“The differential resolution must not exceed 7 microns (one ¢).” This can be a confusing
statement: Let me clarify what I will consider it to mean (this definition is subject to dispute
by the experts if it is inappropriate):

Any given change in circumstances (a stray field, shift is some position, or what have
you) will result in an acutal shift in beam position at location P, of # microns. Consider an
experiment of measuring the position at P, using a BPM located at P, twice—once before
and once after after the change in position. This experiment will likely indicated some
change in position, even if the actual change is quite small (since the precision of the new
BPM devices is at the level of about 2 microns). However, for sufficiently small change z, it
is not certain that the direction of the measured change will correctly match the direction of
the actual change. There is some probability F'(x) that the change will be resolved, that is,
that a change will be observed and that it will have the correct sign. For x — 0, F(z) — .5.
Assuming that the BPM is not worthless, for large z, F(z) — 1.

Assuming that the sum of various uncertainties in the BPM measurement takes the shape
of a Gaussian, F'(z) will have the form of an error fucntion. More precisely, the Gaussian
assumption implies that

Fz) = % {1 + erf(é)] (1)

. And o is the standard deviation of the Gaussian and the resolution of the device.

Given this definition, the question is how best to measure o (or to verify that o does
not exceed 7 microns), given just one prototype of the new BPM electronics at one fixed
location. There are four challenges in determining o:

1. How to set up x for a given trial.
2. How to determine an approximation to F'(x).

3. How to estimate o, either from that approximation to F'(x) or from other considera-
tions involving measurements.

4. How to optimize the process, in the sense that we want to answer the question of
whether o exceeds 7 microns without planning more measurements than necessary.

In answering the above challenges, we can assume the following resources:

1. Beam time for some small number of trials of setting DFG values and taking measure-
ments.

2. Availability of a reasonably centered beam for a starting point.

3. We assume that the g-functions at BPM points are known to some relative accuacy e.
Hopefully, as long as € is small, our conclusions will not depend strongly on its exact
value.



4. The DFG currents can be set with a precision and accuracy which is adequate to
reproducibly induce small changes (small compared to the 7 micron goal) in beam
position. And we can assume these currents do not drift significantly in the time
spans during which we will do our measurements to determine o.

5. We are not assuming perfect knowledge of the relationship between DFG current and
position movement in response, but we do assume linearity in the region near our
central measurement point.

6. In addition to the measurements taken at both the new BPM, we have at our disposable
the measurements taken at the existing BPM’s. These have associated disretization
errors on the scale of 150 microns, and other uncertainties which have not been mea-
sured but appear (from looking at fluctuations) to also be on the order of 100 microns.
(The procedure recommended will not use these other BPM measurements, unless they
are needed to pre-calibrate the scale of displacement versus DFG currents.)

It will be sufficient to measure the resolution at the single available BPM at point P,
and when the beam is nearly centered on its ideal orbit. It is acceptable that the error on
the estimate of resolution be as large as 15%, since if we could say that the resolution were
going to be 6-8 microns, that would satisfy the requirement for all practical purposes. And,
in designing our measurement, if we have a scheme which would have greater errors if the
resolution is far from 7 microns, that is fine-the answers 14-28 microns or 1-4 microns both
answer our question as to whether the specified requirement of 7 is met.

However, there is a soft but important cost constraint: Each experiment of setting
DFG currents and measuring positions takes some time, and beam study time is a very
precious commodity. The total number of measurements must be minimized, and in fact if
we were to find that you can’t answer the 7 micron question using a reasonable number of
measurements, we would have to re-assess whether this requirement is worth verifying at
all.

2 Measurements Using a Single New BPM

The idea, of course, will be to set up a series of 3-bump trials, noting the displacement
measured at P, and to deduce from that data the value of . We take aedvantage of the
fact that by doing N displacement measurements, we effectively can extract N(N — 1)
2-measurement comparisons.

The measurement program logically consists of three steps:

1. Calibrate the beam movement per unit DFG current by doing a series of 3-bumps
with displacements up to several times the current BPM precision, and fitting to find
the slope.

2. By making small adjustments in the DFG currents, take a series of measurements in
the new BPM which can be plotted against the “known” displacements.

3. Analyze the data from that series of measurements to evaluate the best estimate of o.
The statistics of this step are greatly simplified if current adjustments in the previous
step were taken to have equal step sizes.
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A series of calcualtions and perhaps simulations should allow us to evaluate in advance
the step sizes and ranges to use in (1) and (2) to minimize the number of trials, while
determining o to decent accuracy.

In fact, step (1), the calibration of beam movement per unit DFG current, is probably
not necessary, because this is already known to better than the 15% accuracy needed to
address the issue of whether o is smaller than 7 microns.

2.1 Determination of ¢

The idea behind determining ¢ for the measurement given by the new BPM at P is to do
a sequence of trial measurements, and use these to form an ensemble of two-measurement
trials. In each two-measurement trial, we ask the question “Did the BPM measure a change
in the correct direction?” Since the separation between the two known displacements is
about z, where = varies depending on which two measurements form the trial, this allows
us to form a estimate of F'(z), and from that, we can derive o.

In detail, one workable scheme is:

e Choose a number of trials N;. For example, one could decide to do 21 trials.

e Choose a step size p (in displacement, whch via our calibration becomes a step size
in current) between each trial. p must be small enough that we would not worry that
a displacement of Nip/2 would put us in a nonlinear region. But more crucially, p
must be small compared to the 7 micron scale we wish to investigate, and N¢p must
be large compared to that scale. For example, with N; = 21, one might choose p = 1
and thus go out to separations of up to 21 microns.

e Starting at a current expected to produce a displacement of —p(N; — 1)/2, create a
sequence of 3-bumps using DFG’s near P. For each 3-bump, increase the current to
move the expect displacement by the step size p. Note the measurements on the new
BPM. This gives a sequence of N; measurements y;. (Use the type of measurement
for which you are intersted in determining . For example, do not average multiple
readings if you would not be doing so in actual BPM usage.)

e Form an ensemble of N¢(NNV; — 1)/2 pair-trials by pairing each of the N; measurements
with another one. Each pair-trial represents measuring two points, separate by dis-
tance x which some multiple of p. The ensemble will contain Ny — j pairs where the
distance is jp.

e For each value of j from 1 to Ny — 1, gather together the N; — j pairs of measurements,
and count how many C; have the correct relation among the y values (that is, for how
many pairs do the y values differ in the correct direction). Let the fraction C;/(Ny —j)
be called f;. For example, f; will assumedly be near to 1/2 (because at a separation
of one step the resolution is worthless) while fx,_1 will be near to 1 because at that
distance the resolution is very good.

e Assign to each f; an error according to the binomial distribution, of \/(N; — 4) f; (1 — f;)-

e Fit the function F(j) = 2f; — 1 versus j, with the given errors in f;, to the form
F(j) = erf(j/p).
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e The best estimate for o is then pu/v/2.

The only thing to decide becomes the optimal choices of step-size 4, and number of trials
N;. These are dictated by the need for accuracy in o which, remember, is about 15% when
o comes out to 7 microns.

2.1.1 Modification of Current Steps

A small refinement in the selection of the sequence of currents may be advantageous. If one
chooses a uniform step size p and a number of steps N which is will give an accurate value
of o when the actual ¢ is around 7 microns, then it may have no accuracy at all in the case
that the BPM resolution is not as good as we thought, with an actual o that is much higher.
For example, if we were to choose N = 21 and p = 1, then if the true resolution were to be
25, the measurements would only tell us that the true resolution is somewhat more than or
around 20.

To improve the situation, one might wish to use a slowly increasing step size. However, if
we wish to retain the idea of grouping several fits all separated by the same distance z, then
we cannot arbitrarily select step sizes, since then few pairs will share the same separations.

The suggested refinement is to choose, out of the N measurements, some B-th measure-
ment. Until that B-th measurement, the current increatse by p each time; after B, the
current increases by some small integer multiple of p (sy 3p). This will extend the range of
meaningful answers, while not significantly affecting the accuracy when the true ¢ is small.

2.1.2 Alternative Modification of Current Steps

Naively, one might wish to use a slowly increasing step size, with each step greater than the
previous one by some factor which is slightly larger than 1. Unfortunately, that complicates
the analysis of results, since you no longer have a set of reasonably precise fractions to wich
to fit the erf curve.

The analysis can still be done. Instead of a least-squares fit to find the best erf curve,
u is found by maximizing the likelihood function for the points of data, against p in the
probability function erf(z/u). For each pair for which the correct sign of difference is
obtained, the likelihood function gets a factor of .5(1 + erf(z/u)), while for each pair for
which the correct sign of difference is obtained, the likelihood function gets a factor of
1—.5(1+erf(z/pn)) = .5(1 — erf(x/p)).

2.2 Estimating 0 — How Accurate Will the Estimate Be?

This estimate of o will be off for three reasons:

e The statistical error in determination of o from the finite number of independent
pair-measurements at varying values of x.

e A systematic inaccuracy induced by the fact that the pair-measurements are them-
selves derived from the original sequence, and thus are not truly independant.

e Inaccuracy that stems from inaccuracy in the calibration of current to displacement.
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The calibration inaccuracy is unimportant, assuming only that we know the relation
between current and displacement to 15%, which is quite a conservative assumption.

The statistical error and the systematic inaccuracy induced by the fact that the pair-
measurements re not truly independant can be studied together, using a series of simulations.
In each simulation, we make an assumption about the actual value of o, and for some given
N and p generate a series of simulated measurements and do the analysis to find a sample
value for oagtimated- We repeat this a large number of times L, and from this we can
determine both the systematic bias (which will manifest itself as an incorrect mean value
for the estimate of o) and the accuracy in 0. There are some notorious statistical subtleties
involved in estimating the variance of a sample, but here were are not doing that: We will
have L independant measurements of a quantity, and it will be valid to discuss the mean
and variance of that collection in the usual way.

In the course of doing the simulation, there is choice of how to generate each data point:
e We can simply generate a value for jp based on the assumed o.

e We can generate that value and then round to the nearest multiple of A = 150/64 =
2.34 microns. This would reflect the discretization in the new BPM’s, which have an
additional six bits of accuracy as compared to the old 150 micron step size.

The latter method is more honest in assessing the resolution power, in that it rolls in the
effect of lucky/unlucky discretization and of “ties” counting as non-resolved displacements.
Thus it will result in the simulation yielding a o estimate which is just a bit higher than
the former. However, there is no doubt that using the discretization in our simulation is
the right thing to do, becuase the question we are answering is “how should we measure the
displacement resolution of the actual system.”

That is, when the actual measurements are done to estimate o, the result will be a
combination of the true gaussian noise fluctations and the discretization error. For discrete

2 .
noise

using the BPM data to smooth the beam, it is appropriate that this o (rather than just
Onoise) Pe used in the simulation as well.

bin size A\, we will find 0 = , /o + A2/12. Since this is the relevant error quantity when

Once we note that what is being approximated is the true o (and not o})i50), We now
can know the bias inherent in the sequence measurement technique, by noting the mean
difference between the estimated ¢ and the actual value.

2.3 Results of the Simulation: Bias and Accuracy of o

The rules for the simulation become simple: For each value of N and p we wish to investigate,
perform L trials of the following form: Each trial consists of generating IV gaussian random
numbers with means ranging from 0 to (N — 1)p.

The deviations of these random numbers should not be the assumed net o, because the
o appearing in the definition of resolution is greater than the noise in these random numbers
for two reasons:

1. The actual o is 0 = /02 .+ A2/12.
noise

2. The actual o appearing in the definition of the resolution is the difference in the
deviations of the two numbers in the pair. That is, ignoring the A effect, if we chose
the noise deviation to be h micron, then ¢ would be v/2h.
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Tassumed ~
Generate N numbers with means ranging from 0 to (N — 1)p and with this oy i5e, round

the N numbers to the nearest A\, and then feed them into the analysis engine.
(The actual study will likely go from —(N —1)p/2 to +(N —1)p/2 but that is equivalent
for the purposes of studying resolution to starting from 0.)

Thus the correct value to use for the deviation of the random numbers is o}, jig0 = \/ (o2 A%)/2.

The analysis engine will form the ensemble of N (N —1)/2 pairs, and evaluate the results
to form the correct resolution fractions F'(z), and assign weights based on the binomial
distribution to those function values. (In cases where the resolution is perfect, or always
wrong, assign a weight based on a hypothetical finding of 1/2 a trial with the other result,
rather than the infinite weight the binomial distribution would tell you to assign.) It will
then fit to 2f; — 1 to the form erf(j/u), which gives a best-fit value for p. The measured
value of o for this trial is then o = pu/v/2.

The set of simulations to try to find the optimal beam study for assessing ¢ has four
dimensions:

1. The value of N. We want to keep N as small as possible without too badly affecting
our estimate of o, since IV represents how many measurements we will really be taking.

2. The value of p. The test will be sensitive in a range of a few times p up to about
pN/3. If p is too large or too small we will have no chance of accurately estimating o
when o is near 7 microns.

3. The value of B, such that the step size past the B-th step becomes 3p.

4. The assumed value of o. Of course we want to know how accurately we will measure
o if it is around 7 microns. But we also want to know how accurate the proposed test
will be if o is somewhat off from that.

The suite of assumed o values I use in the set of simulations is 4y, 7u, 10, 154, 20u.

The results are a tad disconcerting, at least if one insists on an estimate which is trust-
worthy to 15% accuracy:

In order to expect to estimate o with a probable error of one micron if the actual value
of ¢ is 7 microns, one would have to do about 35 measurements. The optimum strategy
seems to be to do 35 measurements, separated by 2.2 microns each (that is, to do 35 steps
ranging from -37.4p to +37.4u in predicted displacement. This procedure will estimate o to
about 15% accuracy whether o is 4, 7, 10, 15, or 20 microns. Due to imperfect independance
of the pairs of data, the procedure will deliver a slightly biased estimate, however, the bias
is a small fraction of a micron and can thus be corrected for or ignored.

N = 35, rho = 2.2

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.07826 0.564083 0.0782645
7 4.665 7.16711 0.986588 0.167109  #kxxx
10 6.87475 10.1571 1.47837 0.157105
15 10.4767 14.8629 2.33477 -0.137089
20 14.045 19.5328 3.31009 -0.467224

What if one is willing to settle for 30Then one can make estimate o measurement using
only 14 measurements, with a spacing of 2.7u. And by increasing the spacing to 8.1y for
the last four points, one can even get reasonable accuracy if o is out to 15 or 20 microns.
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N =14, B = 10, rho = 2.7
Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.12501 1.04791 0.125005
7 4.665 7.14363 1.90382 0.143629 ***k%
10 6.87475 10.0565 3.10319 0.0565442
15 10.4767 15.0069 5.18455 0.00692129
20 14.045 19.9268 10.6554 -0.0731733
2.3.1 Simulation Output

Each simulation used 1000 trials, which seems to give reproducibility of the RMS error result
at the scale of the second decimal place. The key number is the RMS error for an actual o
of 7 microns.

Lambda = 2.34

N =20, B =20, rho = 2.3

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.12072 0.756898 0.120716
7 4.665 7.25442 1.43506 0.254416
10 6.87475 10.0632 2.22865 0.0632282
15 10.4767 15.2822 4.3081 0.282193
20 14.045 20.5305 7.53201 0.53047

L

N =20, B =20, rho = 2.0

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.13176 0.775578 0.131756
7 4.665 7.2064 1.43785 0.206398  *kkkkkkkk
10 6.87475 10.0883 2.31203 0.088268
15 10.4767 15.1837 5.01361 0.183737
20 14.045 20.7415 9.14923 0.741475

N =20, B =20, rho = 1.6

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.03845 0.74782 0.0384473
7 4.665 7.28921 1.6335 0.289209
10 6.87475 10.049 2.61978 0.0489792
15 10.4767 15.6747 6.68759 0.6747
20 14.045 24.1372 28.1995 4.1372

N =20, B =20, rho = 1.3

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.11997 0.748427 0.119971
7 4.665 7.3398 1.82566 0.339801
10 6.87475 10.4123 3.32788 0.412257
15 10.4767 17.696 20.1824 2.69596
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N =20, B=20, rho =1

Sigma Sigma(Noise)
4 2.29395
7 4.665
10 6.87475
15 10.4767
20 14.045

N =20, B=10, rho =1

Sigma Sigma(Noise)
4 2.29395
7 4.665
10 6.87475
15 10.4767
20 14.045

N =25, B=25, rho =1

Sigma Sigma(Noise)
4 2.29395
7 4.665
10 6.87475
15 10.4767
20 14.045

N =30, B =30, rho = 2.2

Sigma Sigma(Noise)
4 2.29395
7 4.665
10 6.87475
15 10.4767
20 14.045

N = 30, B =30, rho = 2.0

Sigma Sigma(Noise)
4 2.29395
7 4.665
10 6.87475
15 10.4767
20 14.045

N =30, B =30, rho = 1.8

Sigma Sigma(Noise)
4 2.29395
7 4.665

Estimate

4.12879
7.57343
11.4029
20.5499
30.7018

Estimate

4.11584
7.09822
9.70755
14.3715
19.6283

Estimate

4.12863
7.25178
10.4734
16.9075
23.6257

Estimate

4.06153

7.148
10.1477
14.7701
19.4981

Estimate

4.08322
7.15113
10.0463
14.7025
19.5242

Estimate

4.07108
7.16681

RMS Error
0.782815

2.2545
6.56861
26.6345
50.3048

RMS Error

0.898101

1.82658
2.6509

5.10924
10.941

RMS Error
0.662772
1.51272
2.88141
12.5682
18.8668

RMS Error
0.567861
1.11106
1.6548
2.61622
4.01707

RMS Error
0.604192
1.08552
1.63488
2.84273
4.22875

RMS Error
0.576913
1.12141

Bias
0.128791
0.573431

1.40294

5.54991

10.7018

Bias
0.11584
0.0982154
-0.292455
-0.628488
-0.371723

Bias
0.128631
0.251777
0.473425

1.90752

3.62572

Bias
0.0615253
0.147999
0.147665
-0.229919
-0.501872

Bias
0.0832204
0.151128
0.0463032
-0.297457
-0.475807

Bias
0.0710804
0.166814

%k %k % %
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10
15
20

N = 30, B = 15, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 30, B = 30, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 35, B = 35, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 35, B = 35, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 35, B = 35, rho
Sigma(Noise)

Sigma
4
7
10
15
20

6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2 MEASUREMENTS USING A SINGLE NEW BPM

10.0651
14.8756
19.6829

Estimate
4.08468
7.13025
9.77334
14.0454
18.5547

Estimate
4.17619
7.71693
12.4525
21.4614
28.1866

Estimate
4.04106
7.14681
10.0374
14.8679
19.6721

Estimate
4.07826
7.16711
10.1571
14.8629
19.5328

Estimate
4.,08379
7.22475
10.1281
14.8804
19.5986

1.67522
2.88059
4.49619

RMS Error

0.698616
1.31467
2.00232
3.10638
4.54355

RMS Error

0.718023
2.52677
14.2588
25.2098

37.333

RMS Error

0.547013
1.02354
1.4789
2.40904
3.40111

RMS Error

0.564083
0.986588
1.47837
2.33477
3.31009

RMS Error

0.54589
0.98814
1.47298
2.37916
3.28884

0.0650821
-0.124387
-0.317066

Bias
0.0846843
0.130253
-0.226659
-0.954601
-1.44531

Bias
0.176191
0.716929

2.45254

6.46139

8.18657

Bias
0.041056

0.14681
0.0374429
-0.132082
-0.327948

Bias
0.0782645
0.167109
0.157105
-0.137089
-0.467224

Bias
0.0837896

0.22475
0.128147
-0.119581
-0.401422

%k %k %k % %
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N = 35,
Sigma
4
7
10
15
20

N = 40,
Sigma

10
15
20

N = 40,
Sigma

10
15
20

N = 40,
Sigma

10
15
20

N = 40,
Sigma
4
7
10
15
20

N = 40,
Sigma
4
7
10

B = 35, rho = 2.0

Sigma(Noise) Estimate
2.29395 4.1003
4.665 7.13677
6.87475 10.1414
10.4767 14.7257
14.045 19.2648

B = 40, rho = 2.5

Sigma(Noise) Estimate
2.29395 4.07242
4.665 7.19897
6.87475 10.1332
10.4767 14.8435
14.045 19.6748

B = 40, rho = 2.0

Sigma(Noise) Estimate
2.29395 4.08691
4.665 7.18831
6.87475 10.092
10.4767 14.7654
14.045 19.4553

B = 40, rho = 1.5

Sigma(Noise) Estimate
2.29395 4.10752
4.665 7.20806
6.87475 10.1264
10.4767 14.9508
14.045 19.6368

B = 40, rho = 1.0

Sigma(Noise) Estimate
2.29395 4.08407
4.665 7.2164
6.87475 10.1819
10.4767 15.1103
14.045 20.231
B = 20, rho = 1

Sigma(Noise) Estimate
2.29395 4.07017
4.665 7.12142
6.87475 9.87747

RMS Error
0.56438
1.01498
1.46738
2.29323

3.5122

RMS Error
0.529969
0.950067
1.26498
2.02634
2.92626

RMS Error
0.502204
0.929609
1.37636
2.14373
3.08455

RMS Error
0.483877
0.942227
1.36652
2.39919
3.59537

RMS Error
0.497232
1.00879
1.57399
3.05256
5.43581

RMS Error
0.555451
1.10394
1.58434

11

Bias
0.100303
0.136773
0.141444
-0.274263
-0.735169

Bias

0.07242
0.198973

0.13317
-0.156514
-0.325182

Bias
0.0869131
0.188309
0.0920412
-0.234614
-0.544733

X K K K X

Bias

0.10752
0.208056
0.126446
-0.0492463
-0.363184

Bias

0.08407
0.216403
0.181863
0.110318
0.231037

Bias
0.0701727
0.12142
-0.122528



12

15
20

N = 40, B = 40, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 40, B = 40, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 40, B = 40, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 50, B = 50, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 50, B = 50, rho
Sigma(Noise)

Sigma
4
7
10
15
20

N = 50, B = 25, rho
Sigma(Noise)

Sigma
4

10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395
4.665
6.87475
10.4767
14.045

2.29395

2 MEASUREMENTS USING A SINGLE NEW BPM

14.3544
18.6587

Estimate
4.06335
7.20757
10.1968

15.492
21.4448

.75

Estimate
4.10686
7.16496
10.2316
15.5351

21.546

Estimate
4.07752
7.13517

9.6472
13.9893
18.2343

1.5

Estimate
4.06496
7.1995
10.0738
14.9383
19.857

1.5

Estimate
4.06842
7.18546
10.1505
14.8953
19.7894

Estimate
4.,09588

2.64673
3.57477

RMS Error

0.489429
1.03638
1.79374
3.92596

8.8844

RMS Error

0.506805
1.06393
1.85805
4.66116
8.64922

RMS Error

0.575696
1.16759
1.66239
2.97361
5.10839

RMS Error

0.442941
0.826773
1.18978
1.81942
2.54129

RMS Error

0.449385
0.825454
1.19271
1.81766
2.90863

RMS Error

0.496471

-0.645559
-1.34135

Bias
0.0633478
0.207567
0.196782
0.492027

1.44482

Bias
0.106861
0.164962
0.231617
0.535062

1.54598

Bias
0.077519
0.135168

-0.3528
-1.01074
-1.76569

Bias
0.0649556
0.199501
0.0738001
-0.0616957
-0.142998

Bias

0.068423
0.185457 *okok ok
0.150462
-0.104663
-0.210592

Bias
0.0958808
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7 4.665 7.09844 0.91457 0.0984441
10 6.87475 9.95736 1.3842 -0.0426448
15 10.4767 14.4448 2.21003 -0.555167
20 14.045 18.8127 2.9749 -1.18733

N =50, B =50, rho =1

Sigma Sigma(Noise) Estimate RMS Error Bias
4 2.29395 4.06662 0.425365 0.0666171
7 4.665 7.21871 0.866704 0.218705
10 6.87475 10.1595 1.27897 0.159459
15 10.4767 15.0363 2.23764 0.0363131
20 14.045 19.7479 3.78972 -0.252122

2.4 Calibrating Beam Movement and DFG Current (if Necessary)

Almost certainly, the relation between DFG current and beam displacement is known well
enough that it need not be calibrated just for this study. If not, this sub-section discusses
how it can be measured, using existing BPMs. Actually, it might be superior to rely on the
new BPM, but I’'m uncomfortable with the possibility of circular reasoning in doing that.

The calibration step does not have to be very precise, because it will only set the scale
of the final resolution answer. For the purposes of addressing the resolution requirement, if
we can in the end say that the resolution is 6-8 microns, that will be fine. So the calibration
points can be chosen so as to produce just an accuarcy of 15%.

Also, one has to worry in principle about non-linearities in position response to changes
in DFG current. But the same series of measurements allows you to get a handle on those
non-linearities, and thus to verify that they, too, contribute to the answer at below the 15%
level.

The object is to get accurate enough calibration in as few measurements as possible.
Assuming we did not know this already (and thus do not have the calibration in hand by
doing no trials at all), here is how we could measure it:

The tricky part of planning the calibration step is that the current BPMs have discrete
outputs at the level of 150 microns, and that we don’t have a handle on the size of their
random (non-reproducible) fluctuations. Also, there are three major assets which we might
want to utilize make the calibration accurate and quick:

e We can set up the bump to cover some number of BPMs, not necessarily just the two
affected by the shortest possible 3-bump.

e We can take advantage of the fact that the S-functions are slightly different at different
BPMs.

e If we can do so without a priori knowledge of its resolution, we are free to make use
of the more precise measurements from the new BPM.

The strategy will consist of making 2k + 1 3-bump measurements, each using currents
in the 3 DFGs which are separated by ¢., the current (in that DFG) needed for a 3-bump
which would be predicted to produce a movement of roughly 7 microns. The central point
in this sequence could be zero.
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Thus we would measure with ¢ = mq. where m ranges from —k to k. We want kn to
be large compared to discretization error and fluctuations, but small enough that we don’t
have to worry about moving the beam too far or about large non-liniiarities. For example,
kn could be half a millimeter.

Given these measurements, we fit to a linear form, and that fit will have associated error
estimates for the slope and origin. The slope gives us our calibration at the remote BPM
points; it is trival to use the form for the orbit oscillation plus the S-functions at the other
BPM’s and at P to translate that to a calibration of displacement at P versus current. The
error estimate for the slope tells us the uncertainty in our calibration.

Actually, given n BPM readings, we would have n such calibrations, and all that remains
is to check that they are consistent, within the purported errors in each, and that the overall
error is not more than 15%. We could then take the average value to be the calibration
needed.

3 Measurements Using a Two New BPMs

How much would the situation inprove if there were two of the prototype BPM’s at our
disposal? The naive answer is that the number of pairs would double, therefore the number
of points taken should be reduced by a factor of v/2. Actually, the situation would be a
smidgen better than that, because part of the error in the o estimate comes from the non-
independance of the pair measurements, and that factor would be diminished given two
independant sequences of measurements.

On the other hand, since there are now two probably incommeasurate p values, instead
of being able to group many differences toghether to get a more accfurate fraction of correct
results, we would get twice as many points with half the data for each. This slightly hurts
the estimate accuracy. Also, since p needs to be small compared to o to get resolving power,
and jp needs to be large compared to o, there is some worry that we would not be able to
reduce the number of measurements taken by the full factor of V2.

If we had planned to do 35 measurements to achieve 15% accuracy, then the availability
of a second BPM might reduce that to just 25. On the whole, it doesn’t seem worth changing
any plans for this.

If there were dozens of BPMs available, we would still need on the order of 10 measure-
ments, because of the need to span ¢ by reasonable factors on both ends.

4 How Accurately Can Resolution Be Assesed in Full
System?

(Section not done yet.)



