Tevatron BPM Software Specifications for Data Acquisition, Version 4.0, 3/15/2004

Tevatron BPM Software Design for Data Acquisition, Version 2.0, 3/11/2004

[image: image23.wmf]

Fermilab/BD/TEV

Beams-doc-1067-v4

March 15, 2004
Version 4.0

Tevatron Beam Position Monitor Upgrade

Software Design

DRAFT DRAFT DRAFT

Margaret Votava, Luciano Piccoli, Dehong Zhang, Dinker Charak

Fermilab, Computing Division, CEPA

Abstract

This document contains the proposed design for the BPM/BLM upgrade data acquisition software.

41
Introduction

52
The Recycler Software

52.1
Control

52.2
Buffering

62.3
Readout

62.4
ACNET Communication

62.5
Debug and Diagnostics

62.6
Alarms

73
Proposed Tevatron BPM Software

73.1
Control

73.2
Buffering

73.3
Readout

83.4
ACNET Communication

83.5
Debug and Diagnostics

83.6
Software Diagram

104
Software Design

104.1
Use Cases

114.1.1
Initialization

114.1.2
Change Mode

124.1.3
Buffer Readout

134.1.4
Diagnostic

144.1.5
Alarm

144.1.6
Readout

154.1.7
State Device Change

164.2
Class Diagrams

164.2.1
Tasks

174.2.2
Controls

184.2.3
Events

184.2.4
Event Listeners and Generators

194.2.5
Data

204.2.6
Alarms

214.3
Activity Diagrams

244.4
Sequence Diagrams

244.4.1
Initialization

264.4.2
Mode Change

274.4.3
Buffer Readout

284.4.4
Alarms

304.4.5
Events

304.4.6
Readout

314.5
Package Diagrams

325
Appendix – Class Diagram

Table of Figures

9Figure 1 - Proposed tasks, queues, command and data flow

10Figure 2 – Tevatron BPM front-end software use cases

16Figure 3 - Class diagram for tasks in the system

17Figure 4 - Main control classes

18Figure 5 - Events in the system

19Figure 6 - Event listeners and generators

20Figure 7 - Reading and saving data

21Figure 8 - Alarm classes

21Figure 9 - ControlTask flow

23Figure 10 - ReadoutTasks flow

24Figure 11 - BufferReadoutTask flow

25Figure 12 - Objects creation sequence

26Figure 13 - Tasks initialization

26Figure 14 - Changing modes

27Figure 15 - Fast abort buffer readout

28Figure 16 - Alternative fast time plot readout

29Figure 17 - Alarm generation

29Figure 18 - Clearing an alarm

30Figure 19 - Event generation

30Figure 20 - State device change

31Figure 21 - Fast abort trigger generation

32Figure 22 – Complete TBPM front-end software class diagram

1
Introduction

This document describes the design chosen for the front-end data acquisition software for the Tevatron BPM upgrade. The goal is to provide clear guidelines for implementing and delivering a system that fulfills the specifications requirements according to the document #860.

Besides the requirements, other factors have to be considered for the design in order to achieve high quality software. Those are:

· Maintainability: the software should be easy to maintain and make minor changes to adapt to new requirements;

· Extensibility: software should be easily extensible. The addition of new modes of operation should be a simple task involving minimal changes that do not affect existing components;

· Flexibility: configuration of the software should be easy to modify, adapting it to new and unexpected situations.

With these principles in mind the expected output will be:

· A generic software framework for Beam Position Monitor systems;

· A working Tevatron BPM system that is maintainable and extensible.

The next section the current Recycler front-end software is discussed. It will serve as base for the design and implementation of the Tevatron software. The next section describes the design of the system.

2 The Recycler Software

The current recycler software provides configuration, read out and diagnostics capability for a hardware setup specific to get proton position in the recycler ring. The hardware involved consists of:

· Motorola MVME processor board with two IP320 ADC and one IPUCD TCLK/MDAT

· IP carrier containing four IPTSG timing signal generator modules developed at Fermilab.

The software configures all timing devices and the echotek boards according to read out specifications passed through ACNET. The software allows the recycler BPM to run in the following modes:

· Background Flash;

· Flash;

· Closed Orbit;

· Turn-by-Turn;

· Turn-by-Turn Scan.

The following subsections describe the current software from the viewpoint of management, control and buffering techniques.

2.1 Control

The system has a main control task (ArmEventTask), which is responsible for spawning tasks for handling specific modes of operation. For example: RepetitiveFlashTask and TurnByTurnTask.

When switching modes, the ArmEventTask has to start a new task that has the ability to configure and conduct the read out for requested mode. When starting the new mode the new task is responsible for configuring the hardware (EchoTek board and timing system).

The communication between tasks is handled through message queues, for example to signal events such as measurement complete. Message queues are also used to signal triggers received by interrupt handlers.

	

2.2 Buffering

The data read out by the tasks is kept in buffers visible inside the BPM class (which is the main class in the system). The buffers have predefined size and are managed by the tasks that currently use it. Since there is only one readout task running at a time, there are no conflicts.

2.3 Readout

Readout tasks wait for signals from the message queue. The interrupt handlers receive the external trigger and send data to the queue, which is immediately received by the readout task.

2.4 ACNET Communication

In parallel to the readout, the software can receive ACNET/MOOC calls to retrieve data from the buffers. The software is accessed through callbacks, which extract raw data from the BPM buffers and calculates the positions and intensities. The data is packed and returned in the response to the online software.

2.5 Debug and Diagnostics

The recycler software uses the backdoor scheme for getting data using and alternative way to ACNET. It is a client/server facility, where the server is the front-end and the client is a remote application, currently labview.

The server receives requests to change configuration, return data, turn diagnostics on among others. The server is programmed by adding Accessors, which will serve as bridge to the internals of the system.

A new version of the backdoor software allowing peer to peer communication is planned.

2.6 Alarms

Not implemented in the current version of the recycler software.

3 Proposed Tevatron BPM Software

The similarities between the Recycler and the Tevatron systems allow the reuse of parts of the recycler software, such as timing control modules and readout procedures. Additionally, the tevatron system would benefit from the use of the backdoor services, making it possible to control and read out data bypassing the ACNET/MOOC infrastructure.

3.1 Control

Similar to the recycler software, the tevatron BPM software will have a control task that is responsible for receiving ACNET and backdoor command for switching between modes of acquisition. Differently from the recycler, this control task will not start a new readout task when there is a mode change. All readout tasks will have already been started during initialization, and the control task will need to resume or suspend tasks according to the mode selected. VxWorks takes 124 us to start a task, while it takes 24 us to resume or suspend it.

Before letting the readout task run, the control task must configure the EchoTek boards and the timing hardware. On the recycler software, the configuration is done by the readout task when it is started.

The control task will be always running at a high priority. Commands are received through an input command queue. MOOC and the backdoor send events to the queue. Status from the control task is passed back through a response mechanism. Certain types of trigger also generate events that are passed along to the control task via its command queue.

3.2 Buffering

Each readout task has its own data buffer. This buffer can be shared among readout tasks and also with the a buffer readout task, which handles outside data requests (from MOOC and backdoor). For controlling access and avoid race conditions all data buffers must be protected by semaphores.

Buffers can be used as a data destination or a data source. On a trigger, a readout task may request data from the hardware, or it may request data from an internal buffer. This will be handled transparently. In both cases, the destination of the read out data will be another buffer. The ability of having a buffer as a data source helps to implement slow read out buffers, which would get input data from fast read out buffers (e.g. Fast Abort Buffer vs Slow Abort Buffer).

3.3 Readout

The system will have several readout tasks. Each one will be responsible for filling at least one DA buffer (Fast Abort, Slow Abort, BLM). Every task runs within a closed loop and remains blocked until a trigger is received through the tasks input event queue.

A TCLK, BSYNC or State Device Change can generate the trigger. These triggers arrive at the crate controller via interrupts or software function calls, which in turn create a trigger entity and send it to the input queues of the readout tasks. The trigger awakes the readout task, which performs its job. It consists of reading the latest data from its data source and write it to its data destination(s).

3.4 ACNET Communication

ACNET requests will be handled via request queues. When a MOOC receives an external ACNET request (for reading, setting or something else) it invokes a callback. The callback is part of the tevatron BPM software, and according to the request will create and send a request to the control queue or buffer readout queue. After completing the request, the BPM tasks (control task or buffer readout task) send back a status and/or data to the callback.

3.5 Debug and Diagnostics

The backdoor scheme will be used in the tevatron BPM DA software. It will communicate with the DA similarly to ACNET/MOOC. Whenever a request comes from the labview interface that is mapped to a callback that sends the request through a queue and gets the reply from the system. The DA software will look the same from the viewpoint of the backdoor system and the ACNET/MOOC system.

3.6 Software Diagram

The following picture (Figure 1) shows the proposed tasks, queues, data and command flow within the Tevatron system. The blue circles represent the tasks; the green boxes are the input queues for the tasks; the yellow boxes are the data sources and data destinations; and the light blue boxes are external entities (triggers and MOOC/Backdoor).

[image: image1.png]Data Source
(EchoTek or buffer)

I
I
e o
,——*| Data Buffer
I
i
Do Apat
me e fr A
Trigger At M
e
Cofinqus.
Stute Delices e Staas: Datarequest
bar
Daanlen
s -
Contes

MOOC/Backdoor

Figure 1 - Proposed tasks, queues, command and data flow

Object oriented design is used to realize the entities depicted in figure 1. The Unified Modeling Language is used to describe general use cases, classes and its relationships, control and data flows.

4 Software Design

The remaining of this document describes the design of the Tevatron BPM upgrade front-end software. It takes in consideration general software quality aspects as well as aims to provide an extensible framework for future similar projects within the laboratory.

The following sections describe the use cases identified for the project, static structures and dynamic diagrams.

4.1 Use Cases

The TeV BPM DAQ system interacts with the extenal world through actions initiated by actors. The actors that interact with the system are: User and Trigger.

The User can be viewed as a control room operator or another software. The User interacts with the system by initializing it; requesting to change modes; reading out its buffers; activating diagnostics. On any of these interactions there can be alarms, which is handled by a separate use case.

The other actor in the system, the Trigger, is any external event that is capable of changing the internal state of the system. A trigger is an input to read out data from acquisition boards; and input to state device changes.

[image: image2.png]TeV BPM DAQ System

«usess

Initialization

User

auses»
Change Mode
auses»
Buffer Readout
auses»
Diagnostic
auses»

Trigger

Figure 2 – Tevatron BPM front-end software use cases

Figure 2 shows the use cases identified for the Tevatron BPM front-end system. Each ellipse represents one use case. The use cases are described in more detail in the following sections.

4.1.1 Initialization

4.1.1.1 Description

This use case allows the user to initialize one front-end DAQ system.

4.1.1.2 Basic Flow of Events

1. User ask the system (one crate) to be initialized

2. Read out tasks (Data acquisition) are created

3. Internal buffers are allocated

4. Buffer read out tasks are created

5. Alarm task is created

6. Alarm task is announced to the tasks in the system

7. Trigger generators are created

8. Trigger listeners are registered

9. System is enabled

10. All tasks are started

11. System is ready for use

4.1.1.3 Alternative Flows

None

4.1.1.4 Preconditions

System is not initialized.

4.1.1.5 Postconditions

System is taking data in normal operation mode.

4.1.2 Change Mode

4.1.2.1 Description

This use case allows the user to request a mode change of the front-end DAQ software. There are basically two modes of operation: closed orbit and turn-by-turn. The default mode is closed orbit, and the turn-by-turn mode is enabled when the user requests it. When changing modes, the system has to reload and reprogram the data acquisition and timing hardware according to the mode specification.

4.1.2.2 Basic Flow of Events

1. User requests a mode change (from closed orbit to turn by turn)

2. An internal request for mode change is created in the system (event generator)

3. Request is posted to the control task queue

4. Request is retrieved by the control task

5. EchoTek boards are configured

6. Timing system is configured

7. Triggers are enabled/disabled (e.g. 2ms closed orbit trigger)

8. Read out tasks are suspended/resumed

9. Mode has changed

4.1.2.3 Alternative Flows

1. Mode can not be changed

a. Return error to user

2. Failure to change mode

a. There are conditions preventing the system to change mode

3. Requested mode change to the current mode

a. Restart mode; or

b. Ignore request and return error.

4.1.2.4 Preconditions

System is in a known operational state.

4.1.2.5 Postconditions

System has been reconfigured to run in a new mode and is acquiring or ready to acquire data.

4.1.3 Buffer Readout

4.1.3.1 Description

This use case allows users to request data from the front-end software. Data is read out from the data acquisition boards and stored in internal buffers. Data from these internal buffers are requested in this use case, and portions of it or all its contents are returned.

4.1.3.2 Basic Flow of Events

1. User requests data buffer from the system

2. An internal request is created

3. Request is posted to the buffer readout queue

4. Request is retrieved by one buffer readout task

5. The request is verified and the buffer is selected

6. Buffer is read and converted to format to be sent back to user

7. A reply with the resulting data structure returns

8. Data is sent back to the user

4.1.3.3 Alternative Flows

1. No data in the buffer

a. Error is returned

2. Request is not valid

a. The data requested does not exist or is out of boundaries

4.1.3.4 Preconditions

Internal data buffers have data.

4.1.3.5 Postconditions

None

4.1.4 Diagnostic

4.1.4.1 Description

Use case used when user wants to get more information about the system health. Level of debug can be increased; buffers, queues and tasks are monitored more closely.

4.1.4.2 Basic Flow of Events

1. User requests system to enable diagnostics

2. An internal request is created

3. Request is posted to the control task queue

4. Request is retrieved by control task

5. Control task set the system diagnostics level

4.1.4.3 Alternative Flows

None

4.1.4.4 Preconditions

None

4.1.4.5 Postconditions

System is running at a higher diagnostics level. Performance of the system may be affected.

4.1.5 Alarm

4.1.5.1 Description

This is a use case used by other use cases in the system. It is triggered by alarm situations within the system. It is generated internally and there is no input from external actors. The alarm is handled by an alarm task, which may announce it to the external world, depending on how critical is the situation. The system enters an alarm state which is cleared when the alarm conditions have been removed.

4.1.5.2 Basic Flow of Events

1. An internal failure is detected

2. An alarm is created

3. Alarm is posted to the alarm queue

4. Alarm task retrieves alarm from queue

5. Task evaluates the priority of the alarm

6. Task generate an external alarm, if necessary

7. Control task is informed of the alarm state

8. Control task decides the alarm is cleared

9. Alarm clear event is create

10. Alarm clear is posted to the alarm queue

11. Alarm task retrieves alarm clear from queue

12. Alarm task clear the alarm state

4.1.5.3 Alternative Flows

None

4.1.5.4 Preconditions

A failure or a potential future failure is detected.

4.1.5.5 Postconditions

System is set to an alarm state; the state can be cleared after the alarm condition is removed.

4.1.6 Readout

4.1.6.1 Description

This use case describes the actual data acquisition part of the system. The external actors involved with this use case are triggers. A trigger is any entity that starts the action of data acquisition. Following a trigger, the system has to perform the read out of a data source (hardware or internal buffers) and save the data to internal buffers.

4.1.6.2 Basic Flow of Events

1. A trigger is generated and received by the system

2. A trigger event is created and posted to an event queue

3. The readout task retrieves the trigger from the queue

4. Readout task performs the data acquisition

5. Data is saved in an internal buffer

6. Readout task is ready for next trigger

4.1.6.3 Alternative Flows

1. Data source is not ready to send data

a. Readout task has to wait for a defined amount of time

b. if there is a time out an alarm is generated

4.1.6.4 Preconditions

Data acquisition hardware and timing system are configured and ready to provide data.

4.1.6.5 Postconditions

New data is saved in internal buffer and can be latter be retrieved by the user

4.1.7 State Device Change

4.1.7.1 Description

This use case illustrates the reaction of the system after a state device is changed. A state device can be considered an actor, more specifically a trigger, even though it does not trigger any data acquisition. The system has to monitor several state devices, which contain information about the accelerator status, beam type, etc. Those are important information that are part of the metadata sent back to the user (Buffer Readout use case).

4.1.7.2 Basic Flow of Events

1. A state change is received by the system

2. A state change event is created

3. The event is posted to the control queue

4. The control task receives the event

5. Control task updates the metadata

4.1.7.3 Alternative Flows

None

4.1.7.4 Preconditions

None

4.1.7.5 Postconditions

Metadata is updated with latest state device status.

4.2 Class Diagrams

This section describes the static structure of the system. The complete class diagram is available in the appendix section. We broken down the main diagram into pieces that handle a specific part of the system. Every piece is described bellow, each one contains a part of the full class diagram.

4.2.1 Tasks

The system has a certain number of independent processes; each one has a specific job. The tasks in the system are all subclasses of a VxWorks task wrapper (Class Task). The wrapper contains basic methods and attributes that represent a task. Figure 3 contains the task classes in the system. The upper class represents the wrapper.

[image: image3.png]TaskPool

Task
Tasks * Task . T
rrewpy E o Lpriorty : int
[+addTask(n task : Task) Frsuspend)
[+esume(
fung
[new)
[BufferReadoutTaskPool L%
[BufferReadoutTask| [ReadoutTask AlarmTask ControlTask

Y

[BLMReadoutTask| ~ [ClosedOrbitTask

[TurnByTurnTask

[TBPMControlTask

InjectionTBTTask

Figure 3 - Class diagram for tasks in the system

The system is overseen by a ControlTask, which is responsible for initializing most of the system, configure hardware (EchoTek boards and timing module), switching acquisition modes, control other tasks in the system and keep track of the overall state.

The ReadoutTask represents the tasks that are responsible for acquiring data and storing them in internal buffers. There can be several ReadoutTask subclasses, each one has a different acquisition method, can read data from different sources and store them in different destinations. Examples are BLMReadoutTask, ClosedOrbitTask and TurnByTurnTask.

BufferReadoutTask provides a standard interface to retrieve data from internal buffers. That interface can be used by MOOC and backdoor for requesting any type of data (closed orbit, turn-by-turn, display frame, etc.). The system can provide parallel access to the internal data buffers. That feature is available through the TaskPool class. The BufferReadoutTaskPool provides any number of BufferReadoutTask, which can handle requests in parallel.

The AlarmTask handles any alarms generated in the system. It is its responsibility to check the system alarm queue and decide whether to put the system in an alarm state and send an alarm to the outside world.

4.2.2 Controls

The main class in the system is the ControlTask. It is however controlled by the BPM class. The class BPM make a few assumptions about the system, and has common code for BPM systems in general. A more specialized class (TBPM) has specific implementation for the Tevatron BPM system. It contains objects of the classes TSG and EchoTek, which are the hardware present in the system VME crate. Additional hardware classes may not be shown in the diagram on Figure 4 (more are expected to come after the hardware specification document is completed).

[image: image4.png]1 BPM

4 frenableg

ControlTask
[measurement asks

Fstate - int TBPM TG
[+ehangeMode)

[+controlTask)

+enable [Frew0 1t [restbods)

[+setalarms() [)
|+createReadoutTasks() 1
[+createBufferReadout Tasks(
[+ereateTriggers(
[+registerTriggers() —
[+setState) Echotek

Frsethode(n mode -)
[HoadFilters)

TBPMControlTask

[FereateATarmTask)
[+tegisteralanmGenerators()
[+stateChange()

Figure 4 - Main control classes

The BPM class contains the entry point of the system. It is responsible for starting the ControlTask, which will in turn start the rest of the system.

4.2.3 Events

The system is composed of tasks and queues. The information flowing through the queues into the tasks are events. Event is the super class which has the most basic information about one event.

There can be several types of events. Those are described as subclasses of Event. Types of event are:

· Alarm: event generated by a task signaling an alarm situation;

· Request: generic request;

· ReadoutRequest: request to read an internal buffer;

· ControlRequest: request of some control action (e.g. change mode)

· Reply: generic reply for a request;

· ReadoutReply: reply for a buffer readout operation;

· Trigger: event generated on a trigger.

[image: image5.png][+handleEvent(

EventGenerator

EventListener
FeventListeners - EventListensr
FeventQueue - Gueue Event [delay - int
FrgetEvent(in evert receives e _generates [Fbroadcast]
prorty - int [+register(in listener : EventListener)
fimestamp : int +setEnabled(in enabled : bool)
[+setQueus(in queue : Queus) [+newp
FraetType -t
[new)
Request
replySemaphore Reply
Horward : boal output : void status it Trigger
input : void [raetstatus - nt

FraetReplySemaphore() - Semaphore
[+setReply(in reply * Reply)

pAN

[ReadoutReply]
ata

[ReadoutRequest| [ControlRequest

freetDatag
[+getData)

Figure 5 - Events in the system

An Event is generated by an EventGenerator. The EventGenerator has a list of EventListeners, to which an event is broadcasted after being generated. EventListeners can be dinamically added or removed from the list. The EventListener receives an event in its eventQueue. The Event is removed from the queue by handleEvent ().

4.2.4 Event Listeners and Generators

Events can be generated and received by any entity in the system. Figure 6 shows the classes that currently deal with events. EventListeners are:

· ReadoutTask: receive Trigger events signaling the data acquisition process;

· BufferReadoutTask: receive ReadoutRequest events when buffered data is requested.

EventGenerators are:

· StateChangeEventGenerator: generate a Trigger signaling a state device change;

· InterruptTriggerGenerator: generic event generator based on interrupts;

· TCLKGenerator: generate TCLK Triggers on interrupts;

· TimeTriggerGenerator: generate a time Trigger on every tick of a timer.

EventListeners and EventGenerators:

· AlarmTask: receives Alarms from other tasks in the system; and generates Events sent to the ControlTask to inform about the current alarm situation;

· ControlTask: receives ControlRequests and Triggers; and generates Alarms and Triggers.
[image: image6.png]EventListener

FeventQueue - Queue

FFgetEvent(in event - Evert)
[+getQueus()

[+handleEvert()
[+setQueus(in queue : Queue)

ReadoutTask

EventGenerator
eventListeners - EventListener
delay © int

Fbroadcast)

ftegister(in listener - EventListener)
[+setEnabled(in enabled : bool)

[newp

AlarmTask

[StateChangeEventGenerator]

[BufferReadoutTask

ControlTask

InterruptTriggerGenerator

pAN

[TCLKGenerator] [TimeTriggerGenerato

Figure 6 - Event listeners and generators

4.2.5 Data

During the data acquisition process the ReadoutTasks perform reads from a DataSource (EchoTek boards) and save the result to an internal DataBuffer. A DataSource defines a generic class for reading out DataEntries. There can be several types of DataSource. For the Tevatron BPM system two of them are defined: EchoTek and DataBuffer (see Figure 7). This means that data can be retrieved either from the EchoTek boards or from an internal buffer (e.g. a task can feed the slow abort buffer with data from the fast abort buffer).

The destination of data read by the ReadoutTask is a DataBuffer. It has knowledge of the Metadata used to tag the data, such as beam type, accelerator state and system status. All data entries are organized as DataEntries. The DataEntry can vary depending on the type of measurement.

[image: image7.png]ReadoutTask

[dataSource
| dataBufier

Datasource
DataBuffer

[rgetBufer)
[+readout

]

)

T

1

DataSource

[+getData(in idex i)
[+getDataAray() - DataEntry

I .

DataEntry

Echotek

[+sethode(in mode
[HoadFilters)

i)

DataBuffer

Fdata - DataEnry

Hock

position int

FpackStrategy : PackStrategy

PackStrategy

[+pack(in dataEniry - DataEniry) - char
[+isAligned(in address : char) : bool

“Strategy

[ClosedorbitPackstrategy

D int TBTPackStrategy]
—
Frpack) B
E +put)
[+SFull) : bool
[+fush DataEntry
Wetadata +pack(in strategy : PackStrategy) FimeStamp
beamStalus [tget0 status
beamType
TBPMMetadata] ypes
B BTMED:";% : BPMChanne|
Toss foal TawSignal annel —
position BPMData | ® -t
14 [

Figure 7 - Reading and saving data
The DataBuffers have data stored in a format that may be different from the format sent to the end user through the BufferReadoutTasks. Data is formated according to a PackStrategy. Depending on the data type and on the ReadoutRequest a specific PackStrategy is used (e.g. ClosedOrbitPackStrategy and TBTPackStrategy).

4.2.6 Alarms

The classes related handling and generating alarms are shown on Figure 8. An Alarm is generated by an AlarmGenerator. The generators in the system are the following tasks: BufferReadoutTaks, ReadoutTask and ControlTask.

The AlarmTask is responsible for receiving Alarms generated by the AlarmGenerators. It declares an alarm state depending on the Alarm received.

[image: image8.png]AlarmTask

Alam

AlarmGenerator

receives
oA I AlamQueus Queus
TepatchAam
Fetear bool | . [rgeneratearmy
I generates | ctalammQusus(n queus : Queue)
[rlearalamo
BufferRoadoutTask| [ReadoutTask| [ControlTask

Figure 8 - Alarm classes

4.3 Activity Diagrams

This section contains diagrams showing the work flow of different tasks in the system. Figure 9 contains the basic flow for the ControlTask. It basically has to take care of the initialization of the system and enter a closed loop waiting for commands from its input queue. These commands are requests from MOOC, backdoor messages, alarms or triggers.
What happens if the control task gets stuck and don’t read the input queue? What if a very high priority request comes into the queue? The control task has to deal with it ASAP. Perhaps there should be a pool of control tasks for reading the input queue?

[image: image9.png]Stan

StattControlTask
When a request is made, reply semaphor
is provided

Request ControlTask

\h

WaitForCommand

CreateReadoutTasks

CreateTriggers

MOOC/Alarm/BackDoor

RegisterTriggers

CreateAlammTask

RegisterAlanmQueus

ChangeMode

Figure 9 - ControlTask flow

Similarly, the ReadoutTasks run in a closed loop waiting for Triggers. Upon the reception of a Trigger, the ReadoutTask begins the data acquisition process from its DataSource, which can be a hardware or a software entity. The ReadoutTasks are independent of each other but may share some source code (e.g. TurnByTurn and InjectionTbT in the picture).

Figure 10 depicts several ReadoutTasks, but the functionality of some can be combined into only one task. For example, the FastAbort may also be responsible for the tasks performed by the SlowAbort. It is an implementation choice, and the final decision may be driven by the performance of the options.

The framework also allows a ReadoutTask to generate Triggers to another ReadoutTask. Suppose that there is a InjectionTbTClosedOrbit task. It would receive a trigger from the InjectionTbT task informing it that new data is in the internal buffer, and a closed orbit can be calculated.

The process of retrieving data from internal buffers is shown in Figure 11. A request comming from Mooc or backdoor is posted on the queue and one of the BufferReadoutTasks picks up the request, processes it and return the reply already in the format expected by the online applications (doc #860).

[image: image10.png]StanBPM

StartContralTask

StatTaks

nggev)é

Nggev)é

—

Nggevjé

FastAborTrigger

SlowAbortTrigger

DisplayTrigger
ProfileTrigger

InjectionTrigger/Arm

TTTriggertAm

BLMTrigger

ReadE:

SaveBuffer

SaveBuffer

SaveBuffer

SaveBuffer

WaitTrigger tigger

NBBEDé

Buffer

SaveBuffer

lateCO

X

»
D
<>

SaveBuffer

oo)

SaveBuffer

Figure 10 - ReadoutTasks flow

[image: image11.png]StartCant

StanBPM

trolTask

StatTaks

BufferRead

WatingForRequest

utTask (N)

Areadout request has a readout
specification and a reply semaphore
which will be posted when request

StartReadoutTasks

is complete

G&tFastAhnr\

G&ﬂumEyTuvD

GetBLM

Figure 11 - BufferReadoutTask flow

4.4 Sequence Diagrams

This section describes common software scenarios for the front-end Tevatron software. The diagrams contain objects of the classes previously discussed and shows interactions between them throughout the course of a given scenario. The sequences shown do not correspond exactly to the implementation, but they serve as a guide to understand how objects and classes are related to each other in a dynamic environment. The flow of events starts at the top of the diagram and go downwards, following the string of method calls.

4.4.1 Initialization

Figure 12 shows how the objects in the system are first created and what are the expected operations. The entry point is the BPM object, which will create the ControlTask. The ControlTask is responsible for creating most of the objects within the system, it must instantiate the ReadoutTasks, the BufferReadoutTasks, create the AlarmTask and create the EventGenerators.

[image: image12.png]new()

@
B
=

new()

controlTask

new()

There are more readout tasks!
slow abort, profile, BLM

fastAbortTask

i
AJ? createReadoutTasks()

createBuflerReadoutTasks()

new()

bufferReadoutTaskPool

new()

bufferReadoutTasks

addBufler(oufier DataBuffer) i

7 createAlanmTask()

new()

[|

7 registerAlarmGenerators()

getAlarmQuene()

setAlarmQuene(queue:Queue)

setAlarmQuene(queue:Queue)

addBufler(oufier DataBuffer)

setAlarmQuene(queue:Queu)

7 createTriggers()

new()

There ae other tiiggers in the
system’ slow abort, display. etc

fastAborTrigger

new()

stateChangeTrigger

7 registerTriggers()

i

i

! :

register(listener TriggerListener)
i

register(listener TriggerListener)

regi

Register readout tasks as
listeners of the controlTask

=
!

U]

i

i

i

i

i

i

i

i

i

i

i

i

i

i

1
installHandler() 1
i

i
i
i
i
i
i
i
i
i
i

Figure 12 - Objects creation sequence

Following the instantiation of the objects in the system, the tasks need to be started in order to do the actual work of data acquisition. The ControlTask is responsible for getting them to work, as shown in Figure 13. After starting the tasks, the normal mode of operation is enabled through changeMode ().

[image: image13.png]fastAbortTask
I
I
I
I
I
I
|
I
I
I
I
I
I

bufferReadoutTasks

And other redout tasks (Slow Abort, TBT...)

rung

rung

bufferReadoutTaskPool

start)

alamTask
I
I
I
I
i

changeMode()

rung

controlTask

enable(
enable(

3
=

enable(

Figure 13 - Tasks initialization
4.4.2 Mode Change

The system has the ability to change modes of operation when running. The most common modes are closed orbit and turn-by-turn. The closed orbit mode is the default mode of operation. Turn-by-turn mode is enabled on user request or on a programmed Trigger. Figure 14 shows the sequence of operations when changing from the default mode to the turn-by-turn mode.

[image: image14.png]T Y I
E
e I R HERRl [1----mmmmmmme-
8
<
= 2 R e
3 H
g
[e —
H
4 ¢ H
[) e e WA -
-l 1 P Fo-- T
2 I -
- £ E HE T
2 = gl a E
N e 4
HE 5
= | 0 S S
E E E
& f-----1 I e RREEE S J--t--t-
H
g
R -
g
g

MOOC setting callg

Figure 14 - Changing modes

In the particular case depicted on Figure 14, the mode change is triggered by an user command from MOOC. The command will be passed down to the controlTask as a ControlRequest through the controlQueue.

The controlTask is responsible for changing the mode of operation of the EchoTek boards (by loading a different configuration) and setting the timing system (TSG) to the turn-by-turn mode. It is also its job to suspend and resume ReadoutTasks according to the mode of operation.

After the new mode is enabled, the ControlTask returns a Reply to the MOOC framework containing the result of the operation. In the figure the MOOC framework remains blocked in a semaphore after submitting the request and is released upon receipt of the reply, which involves a semaphore post operation.

4.4.3 Buffer Readout

Buffer readout operations follow the structure defined in Figure 15. Similarly to the situation depicted in Figure 14, a request comes through the MOOC framework, a BufferReadoutRequest is created and passed to the BufferReadoutTasks. Those have to check the type of the request, get the data from the internal buffer and pack it in the format described by the document 860.

[image: image15.png]fastAbortPackStrate:

fastAbortBufier

bufierReadoutTask

replySernaphore

bufierReceiveQueue

bufferReadoutRequest

new()

request)

pack(dataEntry:DataEntry)

reply
I
I

pack()

setData()

new()

receive(

getType(

getReplySemaphore()

getData()

replyQ

Figure 15 - Fast abort buffer readout

Data packed from the internal buffer is passed to a Reply, which will be received by the MOOC framework upon the completion of the operation. Similarly to the sequence described in the above section, the MOOC framework remains blocked on a semaphore while the system is processing its request. The semaphore is released after the Reply is ready.

This buffer readout structure isolates MOOC from software internals. This allows standard communication with other frameworks, such as the backdoor. The price to be paid for the isolation of the code is the amount of processing involved.

For operations that require high rate of data readout, the sequence depicted in Figure 15 may not be efficient. For that purpose, it should be possible for the MOOC framework (or backdoor) to have direct access to internal buffers. Since fast time plots are nothing more than a single value, the access should be basically read the first element of the DataBuffer. Figure 16 shows this alternative scenario.

[image: image16.png]MooC

closedOrhitTask

fastAbortBufier

FTP Request(|
1

i
getBuffer() H

getData(index int)

FTP reply() i

Figure 16 - Alternative fast time plot readout
4.4.4 Alarms

[image: image17.png]Generate BPM Sick or BPM Dead alarm

based o the type of alarm received. I the
alarm originator is the control task, the alarm
may not be forwarded to it

The alarm state is cleared by the control task,
when it sends a clear alarm to the alarm queue.

fastAbortTask alamQueue alamTask MooC controlQueue controlTask

T new) darm

send)

1
1
receive() H

getType)

T
i
i
i
i
1
getEvent(event: Event) '

send()

receive) |

setState()

i
dispatchAlamm() |
i
i

alarm()

Figure 17 - Alarm generation
[image: image18.png]controlTask

clearalam(|

new()

alamQueue

alamTask

aam

send()

receive(

getType)

clearalarm()

Figure 18 - Clearing an alarm
4.4.5 Events

[image: image19.png]event)

eventGenerator

new()

broadcast()

eventQueue

eventlistener

event

getEvent(event: Event)

send()

receive(

@

This is called by the task running as listener

handleEvent)

Figure 19 - Event generation
[image: image20.png]stateChangeTrigger controlQueue controlTask

stateChange() |

i
broadcast() !
i
i

send()

receive(

stateChange()

Figure 20 - State device change
4.4.6 Readout

[image: image21.png]2msTriggerGenerator

igger()

Atrigger can be an interrupt time based, TCU
or BSYNC) or 4 state change

new()

triggerQueue

closedOrhitTask

fastAbortBufier

echotek

aypes
trigger

broadcast(]

getEvent(event: Event)

send()

receive(

getType)

7 readout)

putQ

getData(indéx int)

I

Figure 21 - Fast abort trigger generation
4.5 Package Diagrams

Shows what classes belong to what packages.

5 Appendix – Class Diagram

[image: image22.png]00T 'O} Y2IBIA "AepSaUpeps
weibeiq sse|n

(eecien]
(1 ool ujenass) Dereiecr Jsonbagionuoy| |senbawnopeay]
W evens]
Qanasi] o] Joreiauaniahby s e
Opuast, (e [oresauagy] Ll T
TRidon - Fidar i) idagiosy]
ananp oroudewes sioydewng : Qaioydewsgiidamiati]
OrdnuanEigespe] 1 Qsmieigiebd] pros - ynduy
Odnuswiaigeus| i smiers | pios ndno-
isipueiieu, Hdon sioydewagijdar
siaddemm siopxA Jsonboy

1 [iorerauaniabby pdntoy]
ise1g)uonaaluj)

[1oresauagiuangabueyparerg| .

(i)
T i - Qadk b
- durErsani| o6
— (mau+] - Awoud-| 2o0buL
e A 5 (1o0g pajgeua upajgeugtas+ Ju - adiy]
EIEQNE * uosar]) yse Luin Aguan| Gauaisuasg : auaisi ubiarsiais|
Hous JPULEYON A © [EuBIgHer oy - ssor] - peaiy (iseapeoiqs| sawiauab- [
outeuod|
<ty eleanda oeawia Lopngeeqiemoin) - Rerop]
I JAUBISENS © SiauBISTaMS
JoeIauaguany
: r
[(@nang - anenb WeNSNOWIENISSH] ¢.oioop.
(RBoengoed - ABaens uljoeds| Qnopeais) Quuepyoreiaats| i 1009 : Je3[o:
sniers - t Qioyngiofsf 100 © ey
dueygaun Ousnis) TAUNGEIR] * AUnGER| 0 SRR, - 10jeuBo,
- o0 : Qi tsi+ 1| _lelngeieq - lsyngeiep Jojeiauaguiely
waweq || i) e o2iosEiEg eomogeiep ey
(aeds| Knugereq - (Aewyeieqiabs] Jseinopeay
- P Wy nugeiea ~u xapu ueleqias]
aenge : i o
- ol aamoseieq
fBoeng- Fageleq : elep owigiost] sanaoal-
1agngereq (Js1abbuia1si6au4] (maud]
Abarenpoedngiopasop)| (js1955u] sjeaia+] 0 Quns Tameryear]
auinsais
E— omﬁm%_zwﬁmma%mzmaf (pusdsnos] (ananpuuely1abs|
1000 - (242 - ssaippe ujpaub) . ey e Quuefytporedsip|
seu © (Rnugereq : Augerep u)yaeds| P i
(seLionuoa, yse Lunely
asel
Faensoed aiean] b O3popsBueyos]
smieiguEan | oo o) [[enang - anank wananpias:]
L [Coweperon ASELY seau] Quwasgapuey,
— Aseonuo) Qananpias
(093¢ WawI0p Uy (ueng : waks ujaTiahs|
Pauyap SaINjamls ay) o[} PIOYS
abixoed |y ue o payaed v 2neng - nangiere]
S112yng Efep au) oy Saujaq Jauaisipuang
(s pe0r] Derqeued]
(u1 apows w)apopyas-, Gayngeieq - Jayng uiayngppes]
v ananp - ananpsanbar]
prev— wdg Jaungeleq siaungeiep]
¥seLnopeayiagng
N L Debueygaierss| i
™| (wous] (sioerauaguuelyiaisibar| .
Qapopiese]| » v Qpseiueryaieainy)
(ueis+| (4seL yse uipise ppes|
WdaL Uayngeleq : 1ayng uliayngppe+| (Omau4]
osL AseLionuoNdaL sk oser
|00 se pnopeatiayng loodyse L

Figure 22 – Complete TBPM front-end software class diagram
� EMBED Paintbrush Picture ���

3/15/04
PAGE
28
3/15/04

_1224013536

