Tevatron BPM Front-End Software Design for Data Acquisition, Version 17.0, 2/1/05

Tevatron BPM Front-End Software Design for Data Acquisition, Version 17.0, 2/1/2005

[image: image36.wmf]

Fermilab/BD/TEV

Beams-doc-1067-v17

February 1, 2005
Version 17.0

Tevatron Beam Position Monitor Upgrade

Front-End Software Design

Luciano Piccoli, Margaret Votava, Dehong Zhang, Dinker Charak

Fermilab, Computing Division, CEPA

Abstract

This document contains the design for the BPM/BLM upgrade data acquisition software. The proposed design defines a general BPM framework that can be used on other similar BPM projects across the laboratory. A specialization of the framework provides the functionality necessary to meet the requirements of the Tevatron BPM upgrade project.

51
Introduction

62
Proposed Tevatron BPM Software

62.1
Control

62.2
Buffering

72.3
Data Acquisition

72.4
ACNET Communication

72.5
Buffer Readout

82.6
Debug and Diagnostics

82.7
Calibration

82.8
Software Diagram

113
Software Design

113.1
Use Cases

123.1.1
Initialization

133.1.2
Mode Change

143.1.3
Buffer Readout

153.1.4
Diagnostic

153.1.5
Alarm

163.1.6
Data Acquisition

173.1.7
State Device Change

173.1.8
Configuration Change

183.1.9
Calibration

203.2
Front-End Events

203.3
Arming and Triggering

213.4
Tevatron BPM Data Buffers

213.5
Tevatron Metadata

243.6
Tevatron BPM State Diagram

253.7
Class Diagrams

253.7.1
Tasks

263.7.2
Controls

273.7.3
Events

283.7.4
Event Listeners and Generators

293.7.5
Data

313.7.6
Alarms

313.8
Timing Diagrams

343.9
Activity Diagrams

373.10
Sequence Diagrams

373.10.1
Initialization

423.10.2
Mode Change

433.10.3
Buffer Readout

443.10.4
Alarms

453.10.5
Events

463.10.6
Data Acquisition

473.11
Packages

473.11.1
Generic BPM classes (GBPM)

483.11.2
Tevatron BPM classes (TBPM)

493.12
Implementation

493.12.1
Building The Generic Framework

523.12.2
Building Tevatron BPM Software

554
Appendix

554.1
Class Diagram

595
Bibliography

Table of Figures

9Figure 1 - Proposed tasks, queues, command and data flow

10Figure 2 - Tasks for the TBPM system

11Figure 3 – Tevatron BPM front-end software use cases

24Figure 4 - Tevatron BPM state diagram

25Figure 5 - Data acquisition task state diagram

26Figure 6 - Class diagram for tasks in the system

27Figure 7 - Main control classes

28Figure 8 – Handling events in the system

29Figure 9 - Event generators

29Figure 10 - Event listeners

30Figure 11 - Reading and saving data

30Figure 12 - Buffer readout related classes

31Figure 13 - Alarm classes

32Figure 14 - Timing diagram for the BPM fast abort DAQ

32Figure 15 - Timing diagram for BPM fast and slow abort DAQ and BLM fast abort DAQ

33Figure 16 - Timing diagram for a turn-by-turn measurement

35Figure 17 - ControlTask flow

36Figure 18 - DataAcquisitionTasks flow

37Figure 19 - BufferReadoutTask flow

38Figure 20 – Initialization sequence

39Figure 21 - Hardware initialization sequence

39Figure 22 - Metadata initialization sequence

40Figure 23 - Buffer initialization sequence

40Figure 24 - Data acquisition tasks initialization sequence

40Figure 25 - Alarm initialization sequence

41Figure 26 - Event generators initialization sequence

41Figure 27 - Tasks initialization

42Figure 28 - Changing modes

43Figure 29 - Return to close orbit mode

43Figure 30 - Fast abort buffer readout

44Figure 31 - Alarm generation

44Figure 32 - Clearing an alarm

45Figure 33 - Event generation

45Figure 34 - State device change

46Figure 35 - Fast abort trigger generation

47Figure 36 - Turn by turn data acquisition

55Figure 38 – Complete TBPM front-end software class diagram

1 Introduction

This document describes the design chosen for the front-end data acquisition software for the Tevatron BPM upgrade. The goal is to provide clear guidelines for implementing and delivering a system that fulfills the requirements as specified in document #860.

Besides the requirements, other factors have to be considered for the design in order to achieve high quality software. These are:

· Maintainability: the software should be easy to maintain and can be easily adapted to new requirements with only minor changes;

· Extensibility: software should be easily extensible. The addition of new modes of operation should be a simple task involving minimal changes that do not affect existing components;

· Flexibility: configuration of the software should be easy to modify, adapting it to new and unexpected situations.

· Portability: software can be reused on another machines (e.g. Main Injector)

With these principles in mind the expected output is:

· A working Tevatron BPM system that is maintainable and extensible.

· A generic software framework for Beam Position Monitor systems;

The next section describes the proposed design for the Tevatron BPM front-end software.

2 Proposed Tevatron BPM Software

The proposed Tevatron front-end data acquisition software is based on the software developed for the Recycler. Many of its components can be reused on the Tevatron systems, such as timing control modules and data acquisition procedures.

Additionally, the Tevatron system would benefit from the use of the backdoor services, making it possible to control and read out data bypassing the ACNET/MOOC infrastructure.

2.1 Control

Similar to the recycler software, the Tevatron BPM software will have a control task that is responsible for receiving ACNET commands for switching between modes of acquisition. The control task will have all data acquisition tasks started at initialization
, so no additional time is needed to create tasks while the system is running. The control task needs to resume or suspend tasks according to the mode selected. VxWorks takes about five times longer to start a task than to suspend or restart it (microseconds on the PPC603 processor).

Before letting the data acquisition tasks run, the control task must configure the EchoTek boards and the timing hardware. In the recycler software, the configuration is done by the data acquisition task when it is started.

The control task will receive commands through an input/command queue. MOOC and the backdoor send events to the queue. It is also possible to run simple control commands within the context of MOOC, avoiding the queueing overhead. The control task also is able to receive certain events, such as specific TCLKs (e.g. $47 for Tevatron abort).

2.2 Buffering

Each data acquisition task has a data source and an output data buffer. Its data source can be either hardware entities (EchoTek or BLM boards), or the output buffer of another task, while its output data buffer can be another task’s data source. For controlling access and avoiding race conditions, the implementation may use of semaphores or other mechanisms to protect data buffers.

Buffers can be used as a data destination or a data source. On a trigger, a data acquisition task may request data from the hardware, or it may request data from an internal buffer. This should be handled as transparently as possible. In both cases, the destination of the read out data will be another buffer. The ability of having a buffer as a data source helps to implement slow read out buffers, which would get input data from fast read out buffers (e.g. Fast Abort Buffer vs. Slow Abort Buffer (a more detailed list of buffers is given in sections 3.4 and 3.11.2.1)).

2.3 Data Acquisition

The system will have several readout tasks. Each one will be responsible for filling at least one data buffer (e.g. BPM Fast Abort, BPM Slow Abort and BLM Display). Every task runs within a closed loop and waits for an event, which is received through its input event queue.

The input event can be generated by other tasks in the system or by interrupt handlers. The control task can issue an event for arming a turn-by-turn measurement, which is sent to the input queue of the turn-by-turn task. The data acquisition task uses it to prepare for the acquisition which happens when the timing board generates an interrupt. The interrupt handler creates an event that goes into the task’s queue, informing that the EchoTek boards can be readout.

Similarly, for TCLKs, when an interrupt is generated by the PMCUCD card, the interrupt handler creates an event and puts it into the event queue of the task that is expecting that particular TCLK.

In general terms, the data acquisition cycle is: data acquisition is armed; task receives an event task performs the acquisition; data is saved into a data buffer.

2.4 ACNET Communication

All communication via ACNET will be handled by callbacks, which in turn will invoke the BPM system. There are basically two types of commands coming from ACNET: control commands and data request commands. The bottom part of Figure 1 shows the interaction between MOOC and the front-end system.

Simple commands can be handled directly at the callback level. An example of simple command is the change of a single EchoTek channel configuration through the SETDAT protocol. For commands that require more complicated actions, such as changing the mode of operation, the callback posts a request (or event) into the control task’s input queue.

Data request commands, on the other hand, are handle directly by the callbacks invoked by MOOC. The callbacks will select the buffer that was requested, pack the data into the format expected by the online side and send it.

2.5 Buffer Readout

The user requests for reading data buffers are received via MOOC/ACNET according to the above section. The callback provided to MOOC for handling data requests contains access to all buffers in the system and knows how to pack the data according to the online specifications. It is important to notice that this code will run within the MOOC context and not in other task’s context (as when handling mode changes).

2.6 Debug and Diagnostics

The backdoor scheme may be used in the Tevatron BPM data acquisition software. The communication with the data acquisition software will follow the same method used by ACNET/MOOC calls. Whenever a request comes from the labview interface it is mapped to the same callbacks used by MOOC.

2.7 Calibration

The calibration of the system is done in the offline processing. However, the front-end software is required to know when a data acquisition is generating data for offline calibration. Any data generated has to be tagged as calibration data. Additionally, the front-end is able to change configuration of the timing system and EchoTek boards for calibration operations. The data also will have metadata describing the configuration used for data acquisition.

2.8 Software Diagram

The following picture (Figure 1) shows the proposed tasks, queues, data and command flow for a generic BPM system. The structure shown is valid for one crate within the system. The blue circles represent the tasks; the green boxes are the input queues for the tasks; the yellow boxes are the data sources and data destinations. The boxes on top of MOOC represent the callbacks used to direct control commands and to retrieve data from the buffers.

[image: image1.png]Trigger
Source

temupts)

lam rom anypartof = sysem)
ciear

NI (v

Hode Changs
TeLk

Hode thangs
Controlresast

RETDAT/SETDAT

Figure 1 - Proposed tasks, queues, command and data flow

Object oriented design is used to realize the entities depicted in Figure 1. The Unified Modeling Language is used to describe general use cases, classes and its relationships, control and data flows.

Figure 2 shows a specialized version for the Tevatron based on the generic BPM system (for a single crate). In the picture there are several data acquisition tasks (named BPM Fast Abort Task, BPM Slow Abort Task, Turn by Turn Task, etc), some buffers are defined (BPM Fast Abort Buffer, BPM Slow Abort Buffer, Turn by Turn Buffer, etc. It also shows the control task handling directly the timing, diagnostic and calibration hardware, besides the EchoTek cards.

The figure bellow also defines the TCLKs received by the system. The control task receives TCLK $71, $77, $4D and $47. TCLK $71 signals prepare for beam; TCLK $77 signals an arm turn-by-turn measurement; $47: beam has been aborted; and $4D: arm injection turn-by-turn measurement. Other TCLKs are directed to data acquisition tasks, such as TCLK $75 for a BPM profile measurement, TCLK $78 for BPM display measurement and TCLK $76 for BLM profile measurement.
[image: image2.png][queve
[OTask

tsac
Trgger

Tiing board

MHardware
[IDsta Buffer

[Dsta Source &
Buffer

g

Tiing board

i
Trgger i

e
T
e
T
e
T
tewcns
T
Oata [ajam from anypartef the sysem)
S b
om0
Trigger 371977 $0 4 alamn
ot e
el
\
Control Buffer Readout Alam,
Pl
e e o

wooc

Figure 2 - Tasks for the TBPM system
3 Software Design

The remaining sections of this document describe the design of the Tevatron BPM upgrade front-end software. It takes into consideration general software quality aspects as well as aims to provide an extensible framework for future similar projects within the laboratory.

The following sections describe the use cases identified for the project, static structures and dynamic diagrams. Use cases follow the format adopted by Alistair Cockburn [Cockburn] and the notation of static and dynamic diagrams follow the UML standard [Fowler].

3.1 Use Cases

One crate in the TeV BPM DAQ system interacts with the extenal world through actions initiated by actors. The main actors interacting with the system are: User and Event. Actors being used by the system are: EchoTek, BLM and TimingSystem.

The User can be a control room operator, a beam physicist or other software. The User interacts with the system by initializing it; requesting mode changes; reading out its buffers; activating diagnostics or calibration. In any of these interactions there can be alarms, which are handled by a separate use case.

The other actor in the system, the Event, is any external event that is capable of changing the internal state of the system. An event activates the data acquisition from BPM and BLM boards; and is input to state device changes. The user may request configuration changes of the system at any time.

[image: image3.png]TeV BPM DAQ System (crate)

Initialization

«us

s>

«us

User

Mode Change

£

«usess
Buffer Readout

auses»
onfiguration
Change

«usess

Diagnostic

«usess eusps»
Calibration

«usess

Event

Data Acquisition

TimingSystem

EchaTek

Figure 3 – Tevatron BPM front-end software use cases

Figure 3 shows the use cases identified for the Tevatron BPM front-end system. Each ellipse represents one use case. The use cases are described in more detail in the following sections.

3.1.1 Initialization

3.1.1.1 Description

This use case allows the user to initialize one front-end DAQ system crate.

3.1.1.2 Basic Flow of Events

1. User asks the system (one crate) to be initialized

2. Control task is created

3. Configuration for the crate is downloaded

4. Configuration task initializes status of state devices

5. Control task initializes EchoTek hardware

a. EchoTek hardware is tested (optional)

6. Control task initializes BLM hardware

a. BLM hardware is tested (optional)

7. Control task initializes timing system

a. Timing hardware is tested (optional)

8. Control task creates data acquisition tasks

9. Control task allocates internal buffers

10. Control task creates alarm task

11. Alarm task announces itself to the tasks in the system

12. Trigger generators are created

13. Trigger listeners are registered

14. System is enabled

15. All tasks are started

16. System is ready for use (READY state)

3.1.1.3 Alternative Flows

1. Control task fails to start (2) – other basic OS failures follow same steps

a. Report error to user through ACNET variable

b. Generate alarm (if alarm task is running)

2. Could not download configuration (3)

a. Use default configuration

b. Limit usage of the system (e.g. don’t support turn-by-turn requests)

c. Report error to user through ACNET variable

3. EchoTek card(s) did not pass test (5.a)

a. Generate internal alarm

b. Set ALARM state

c. Report error to user through ACNET variable

4. BLM board(s) did not pass test (6.a)

a. Generate internal alarm

b. Set ALARM state

c. Report error to user through ACNET variable

5. Timing system did not pass test (7.a)

a. Generate internal alarm

b. Set ALARM state

c. Report error to user

3.1.1.4 Preconditions

Crate is turned off or rebooted.

3.1.1.5 Postconditions

System is taking data in normal operation mode (READY state) or in a limited operational mode.

3.1.2 Mode Change

3.1.2.1 Description

This use case allows the user to request a mode change of the front-end DAQ software. There are basically two modes of operation: closed orbit and turn-by-turn. The default mode is closed orbit, and the turn-by-turn mode is enabled at user requests or at a certain TCLK event. When changing modes, the system has to reload and reprogram the EchoTek boards and timing hardware according to the mode specification.

3.1.2.2 Basic Flow of Events

1. User requests a mode change (e.g. from closed orbit to turn by turn)

2. MOOC call back creates an internal request for mode change

3. Request is posted to the control task queue

4. Request is retrieved by the control task

5. Control task checks the request

6. EchoTek boards are configured

7. Timing system is configured

8. Triggers are enabled/disabled (e.g. 2 ms closed orbit trigger)

9. Read out tasks are suspended/resumed

10. Mode has changed (CLOSED_ORBIT or TURN_BY_TURN state)

3.1.2.3 Alternative Flows

1. An event triggers a mode change (1,2)

2. Mode cannot be changed (4)

a. Generate internal alarm

b. Return error to user through ACNET variable

3. Requested mode change to the current mode (4)

a. Restart mode (e.g. second turn-by-turn request); or

b. Ignore request

c. Return error to user through ACNET variable

4. Data acquisition task for current mode is in the middle of a readout (4)

a. Data partially read must be thrown away

b. Pointers and counters are not updated

c. Data acquisition task has to go back to a safe place when it is restarted, i.e. it cannot go back to where it was when the mode was changed (unless there is no data loss or data read is consistent).

5. Failure to change mode (6 to 9)

a. There are conditions preventing the system to change mode

b. Return error to user through ACNET variable

3.1.2.4 Preconditions

System is in a known operational state.

3.1.2.5 Postconditions

System has been reconfigured to run in a new mode and is acquiring or ready to acquire data.

3.1.3 Buffer Readout

3.1.3.1 Description

This use case allows users to request data from the front-end software. Data is read out from the data acquisition boards and stored in internal buffers. Data from these internal buffers are requested in this use case, and portions of it or all its contents are returned.

3.1.3.2 Basic Flow of Events

1. User requests data buffer from the system

2. Callback for buffer data readout is invoked by MOOC

3. The request is verified and the buffer is selected

4. Buffer is read and converted to online format (see document #860 for structures)

5. Data is sent back to the user

3.1.3.3 Alternative Flows

1. Request is not valid (3)

a. The data requested does not exist or is out of boundaries

b. Return error stating the problem found

2. No data in the buffer (4)

a. Return error specifying that there is no data to be read

3.1.3.4 Preconditions

Internal data buffers have data.

3.1.3.5 Postconditions

None.

3.1.4 Diagnostic

3.1.4.1 Description

Use case used when user wants to get more information about the current system situation. Level of debug can be increased; buffers, queues and tasks are monitored more closely.

3.1.4.2 Basic Flow of Events

1. User requests system to enable diagnostics through an online application

2. An internal request is created

a. A request can be:

i. Increase debug/diagnostic level

ii. Return statistics information

iii. Start test sequences (for EchoTek, timing board, calibration subsystem)

3. Request is posted to the control task queue

4. Request is retrieved by control task

5. Control task performs the diagnostic request

3.1.4.3 Alternative Flows

1. System cannot enter diagnostic mode (5) (e.g. system is currently in turn-by-turn mode – high priority)

a. Return error to the user through ACNET variable

3.1.4.4 Preconditions

System has been initialized and may not be performing well.

3.1.4.5 Postconditions

If item 2.a.i – system is running at a higher debug/diagnostics level. Performance of the system may be affected.

If item 2.a.iii – test are finished and system is back to normal operation.

3.1.5 Alarm

3.1.5.1 Description

This is a use case used by other use cases in the system. It is triggered by alarm situations within the system. It is generated internally and there is no input from external actors. The alarm is handled by an alarm task, which may announce the alarm to the external world, depending on how critical is the situation. The system enters an alarm state that is cleared when the alarm conditions have been removed.

3.1.5.2 Basic Flow of Events

1. An internal failure is detected

2. An alarm is created

3. Alarm is posted to the alarm queue

4. Alarm task retrieves alarm from queue

5. Alarm task evaluates the priority of the alarm

6. Alarm task generates an external alarm, if necessary

7. Control task is informed of the alarm state (if control task is not the generator of the alarm)

8. Control task decides the alarm is cleared

9. Alarm clear event is created

10. Alarm clear is posted to the alarm queue

11. Alarm task retrieves alarm clear from queue

12. Alarm task clears the alarm state

3.1.5.3 Alternative Flows

1. User clears the alarm through the online software (8)

3.1.5.4 Preconditions

A failure or a potential future failure is detected.

3.1.5.5 Postconditions

System is set to an alarm state; the state can be cleared after the alarm condition is removed.

3.1.6 Data Acquisition

3.1.6.1 Description

This use case describes the actual data acquisition part of the system. The external actors involved with this use case are the triggers, EchoTek and BLM. A trigger is any entity that starts the action of data acquisition. Following a trigger, the system has to perform the read out of a data source (EchoTeks, BLMs or internal buffers) and save the data to internal buffers.

3.1.6.2 Basic Flow of Events

1. A trigger is generated and received by the system (TCLK or time trigger)

2. A trigger event is created and posted to an event queue

3. The data acquisition task retrieves the trigger from the queue

4. Data acquisition task performs the data acquisition

5. Data is saved in an internal buffer

6. Data acquisition task is ready for next trigger

3.1.6.3 Alternative Flows

1. Data source is not ready to send data (4)

a. Data acquisition task has to wait for a defined amount of time

b. If there is a time out an alarm is generated

3.1.6.4 Preconditions

Data acquisition hardware and timing system are configured and ready to provide data. The configuration is changed by the control task.

3.1.6.5 Postconditions

New data is saved in internal buffer and can latter be retrieved by the user

3.1.7 State Device Change

3.1.7.1 Description

This use case illustrates the reaction of the system after a state device is changed. A state device can be considered an actor, more specifically a trigger, even though it does not trigger data acquisition. The system has to monitor several state devices, which contain information about the accelerator status, beam type, etc. Those are important information that is part of the metadata sent back to the user (Buffer Readout use case).

3.1.7.2 Basic Flow of Events

1. A state change is received by the system

2. A state change event is created

3. The event is posted to the control queue

4. The control task receives the event

5. Control task updates the metadata

3.1.7.3 Alternative Flows

None

3.1.7.4 Preconditions

None

3.1.7.5 Postconditions

Metadata is updated with latest state device status.

3.1.8 Configuration Change

3.1.8.1 Description

The configuration use case describes the actions taken by the user in order to change the behavior of the system. The user can specify new values for calibration, timing, filter settings, etc. During the initialization, the system receives a default configuration, and this use case represents system changes after the initialization phase.

3.1.8.2 Basic Flow of Events

1. User requests a configuration change (through some mechanism not defined yet) Still true?
2. A control request is created

3. Control task receives the request

4. Request is validated

5. Check if configuration can be changed

6. Change configuration

3.1.8.3 Alternative Flows

1. Request is handled at the callback level – skip to steps (2, 3)

2. Request is not valid (4)

a. Generate user error through ACNET variable

b. Do not change configuration

c. Generate internal alarm

3. Configuration cannot be changed (e.g. system is in turn-by-turn mode) (5)

a. Generate user error through ACNET variable

b. Generate internal alarm

3.1.8.4 Preconditions

System is initialized.

3.1.8.5 Postconditions

New configuration has been applied to the system.

3.1.9 Calibration

3.1.9.1 Description

This use case shows the steps that allow the user to take a calibration run with the system. This use case is identical to the Data Acquisition use case (section 3.1.6). The difference is that data returned to the online user is tagged as ‘calibration data’.

3.1.9.2 Basic Flow of Events

1. Tag data as being ‘calibration data’

2. Use Data Acquisition use case

3.1.9.3 Alternative Flows

Same for the Data Acquisition use case.

3.1.9.4 Preconditions

Same for the Data Acquisition use case.

3.1.9.5 Postconditions

Same for the Data Acquisition use case.

3.2 Front-End Events

The front-end software is composed of several tasks running concurrently. The communication between the tasks happens via message queues. Tasks are able to send and retrieve information from the queues.

The information sent and received from the queues is called an event. An event is a simple data structure that signals that something has happened and some action has to be taken by the receiver.

One example of usage of an event is when the front-end receives a TCLK. The TCLK is first serviced by an interrupt handler, which fills an event with the TCLK information and sends it to the queue of the task that is waiting for that specific TCLK.

Similarly, when EchoTek boards have new data from from a turn-by-turn measurement, the timing board generates an interrupt that is caught by an interrupt handler, which in turn creates an event with information about the new measurement and sends it to the task that is waiting for the turn-by-turn measurement to complete.

3.3 Arming and Triggering

The Tevatron BPM front-end software must switch modes when arming itself for turn-by-turn and injection turn-by-turn measurements. The following tables (Table 1 and Table 2) define the events for arming and triggering BPM and BLM readouts.

	DAQ Type
	Arm
	Readout Trigger

	Fast Abort Closed Orbit
	TCLK $71; Return from TBT
	2 ms timer

	Slow Abort Closed Orbit
	TCLK $71; Return from TBT
	1 second timer

	Fast Time Plot (FTP)
	TCLK $71; Return from TBT
	User request

	Profile
	TCLK $71; Return from TBT
	TCLK $75

	Display
	TCLK $71; Return from TBT
	TCLK $78

	Snapshot
	TCLK $71; Return from TBT
	User request

	Turn By Turn
	User request
	Timing board interrupt

	Injection Turn By Turn
	V:BPJINE and TCLK $4D
	Timing board interrupt

	Injection Closed Orbit
	TCLK $77; User request
	Injection Turn By Turn complete

Table 1 - BPM arming and triggering

	DAQ Type
	Arm
	Readout Trigger

	Fast Abort
	Initialization
	1 second timer

	Display
	Initialization
	TCLK $76

	Fast Time Plot (FTP)
	Initialization
	User request

Table 2 - BLM arming and triggering

Table 1 does not show interactions between the timing board and the EchoTek boards. Additional arming and triggering using TVBS occur between the boards timing board and the EchoTek boards (see timing board document #???). Does Bill have a document yet? The front-end software does not receive the TVBS signal and does not trigger the EchoTek boards for closed orbit or turn-by-turn measurements (e.g. the timing board received the TVBS $77 signal which triggers a turn-by-turn measurement). The only interaction between front-end software and the EchoTek boards is during configuration and data readout from the EchoTek random access memory.

3.4 Tevatron BPM Data Buffers

The data input for the system comes from the EchoTek boards and the BLM chassis. Basically they provide information about the beam position, intensity and loss. All those values, however, need to be taken at different times and hardware configurations. All data acquired in different modes and times must be kept in distinct buffers, making it accessible at any time by the online user.

These buffers are defined in the specifications document (section 2.3) and illustrated in the AD document #903. The following tables (Table 3 and Table 4) describe the buffers identified for the Tevatron BPM system.

	Buffer
	Type
	Size
	Readout Trig.
	Source
	Stops
	Cleared

	Fast Abort
	Circular
	1024
	2ms timer
	EchoTek
	TCLK $47; TBT
	never

	Slow Abort
	Circular
	1024
	1 second timer
	Fast Abort
	TCLK $47; TBT
	never

	Fast Time Plot
	Circular
	
	User request
	Fast Abort
	never
	never

	Profile Frame
	FIFO
	128
	TCLK $75
	Fast Abort
	when full
	TCLK $71

	Display Frame
	FIFO
	1
	TCLK $78
	Fast Abort
	never
	never

	Snapshot
	FIFO
	1
	User request
	Fast Abort
	never
	never

	Turn By Turn
	FIFO
	8192
	Timing board intr
	EchoTek
	end TBT
	TBT Arm

	Injection TBT
	FIFO
	8192
	Timing board intr
	EchoTek
	end TBT
	TBT Arm

	Injection C.O.
	FIFO
	1
	Inj. TBT complete
	TBT Buffer
	end TBT
	TBT Arm

Table 3 - BPM Buffers

	Buffer
	Type
	Size
	Readout Trig.
	Source
	Stops
	Cleared

	Fast Abort
	Circular
	1024
	1 second timer
	BLM
	never
	never

	Display Frame
	FIFO
	1
	TCLK $76
	Fast Abort
	never
	never

	Fast Time Plot
	Circular
	
	User request
	Fast Abort
	never
	never

Table 4 - BLM Buffers

3.5 Tevatron Metadata

Table 5 shows all metadata kept by the system. Following the table is a description of the columns and the values they might contain.

	Data
	Valid Values
	Source
	Update at
	Where
	Output

	Starting turn number
	0 through N
	Timing Board
	Readout
	Data Buffer
	5 and 7

	Total time within the cycle
	>= 0
	Timer
	Readout
	Calculated

on Output
	5, 6 and 7

	Number of detectors
	1 through 12

12 or 24
	Internal Config
	Readout
	Main Metadata
	5 and 6

	Number of turns
	1 through 8196
	EchoTek,

Timing Board User Request
	Readout
	Data Buffer
	10

	Endianess
	0 for little endian

else for non little endian
	Internal Config
	Static
	Main Metadata
	7

	Header version
	any
	Internal Config
	Static
	Main Metadata
	7

	Overall status
	0 is ok
	Internal
	Readout
	Main Metadata
	7

	Detector status
	0 is ok
	EchoTek

BLM
	Turn
	Data Buffer
	3 and 4

	Time stamp
	>= 0
	Timer
	Readout,

Channel Read
	Data Buffer
	7, 3 and 4

	Data type
	Flash/Fast Abort

Slow Abort

Profile

Snapshot

Display

Turn By Turn

Injection TBT

Inection Closed Orbit
	Data Buffer
	Readout
	Data Buffer
	7

	Trigger type
	periodic

TCLK
	
	Turn
	Main Metadata
	7

	Data source
	Beam

Calibration

SW Diagnostics

HW Diagnostics
	Internal Config
	Turn
	Data Buffer
	7

	Particle type
	Proton

Pbar
	
	Turn
	Data Buffer
	7

	Bunch type
	Coalesced

Uncoalesced
	V:COALP

V:COALA
	Turn
	Data Buffer
	7

	Scaled data
	Scaled

Raw
	User Request
	Readout
	Calculated on Output
	7

	Machine state
	1 - 24
	V:CLDRST
	Turn
	Main Metadata
	13

	Helix state
	
	V:HELIX
	Turn
	Data Buffer
	13

	Proton bunches
	
	V:PBKTC
	Turn
	Data Buffer
	13

	Pbar bunches
	
	V:ABKTC
	Turn
	Data Buffer
	13

	EchoTek config
	Turn By Turn

Closed Orbit

Calibration

Diagnostic
	Internal Config
	Mode Change
	Data Buffer
	

	EchoTek status
	0 is ok
	EchoTek
	Board Read
	Data Buffer
	5 and 10

	BPM state
	To be defined
	Internal state
	To be defined
	Main Metadata
	13

Table 5 - System metadata
Source: defines where data comes from

EchoTek: data is retrieved from the EchoTek board(s)

BLM: data is retrieved from the BLM chassis

Timing Board: data retrieved from the Timing Board

Timer: internal timer that is reset on a TCLK to be defined

User Request: data comes with the ACNET request

State Device: data is updated from a state device change (e.g. V:CLDRST)

Internal Config: data is kept internally by the syste

Data Buffer: data is within a data buffer (e.g. BPM Fast Abort Buffer)

Update at: defines when data is updated

Turn: data is updated every turn or every time EchoTeks and BLMs are read

Readout: data is update/calculated when processing online request

Board Read: data is updated when an EchoTek board is read

Mode Change: data is updated when there is a mode change

Channel Read: data is updated when reading channel (equivalent to Board Read)

Static: data does not change during normal operation

Where: defines where the data is kept internally

Data Buffer: data kept within the data buffer and is unique for every entry (turn)

Calculated On Output: data is calculated at online readout request

Main Metadata: data is kept by the system main metadata structure
Output: define what returning structures contain the metadata (AD doc #860 section 4.2 – Data Structures (Output Data)):

	ID
	Structure
	Contains

	0
	BPM_TIME
	-

	1
	TRIGGER_INFO
	-

	2
	TEVATRON_BPM_TBT_TURN
	-

	3
	TEVATRON_BPM_TIME_SLICE_VALUE
	-

	4
	TEVATRON_BLM_TIME_SLICE_VALUE
	-

	5
	TEVATRON_BPM_FRAME_DATA
	0 and 13

	6
	TEVATRON_BLM_FRAME_DATA
	0

	7
	TEVATRON_BPM_HEADER
	0 and 1

	8
	TEVATRON_BLM_DATA
	6 and 7

	9
	TEVATRON_BPM_ORBIT_DATA
	5 and 7

	10
	TEVATRON_BPM_TBT_DATA
	2, 7 and 13

	11
	TEVATRON_BPM_TIME_SLICE_DATA
	3, 7 and 13

	12
	TEVATRON_BLM_TIME_SLICE_DATA
	4, 7 and 13

	13
	TEVATRON_BPM_STATE_DATA
	-

Table 6 - Output data structures
3.6 Tevatron BPM State Diagram

The possible states for the front-end system are displayed in Figure 4. The upper part of the picture depicts the states assumed by the control task, while the lower section contains state diagrams for the data acquisition tasks. Additionally, other states shown in the middle section define states and transitions traversed by the MOOC task running BPM code through its callbacks.

The system’s default mode of operation is ClosedOrbit, and it gets to that default state during initialization, passing through the states ChangeEchoTekMode and ChangeTimingMode. Depending on events received while at ClosedOrbit, the system enters other modes, such as Diagnostics, Calibration, TurnByTurn and Alarm.

[image: image4.png][enable closed orbit]

Change Tirning Corifig

[set diagnostics]

[enable calibration]

[configure timing] [enable TbT]

[diagnostics done]
Diagnostics

[calibration done] s — i
Calibration ¢

i when: [V:BPJINE &8 TCLK §4D |
[change system configuration] TOLR 77 I

i calibration ||
diagnostics

1

echotek done] ™
Change EchaTek Mnde\/ ! 1 TumByTum & H

ClosedOrbit

Default mode
of operation

" lstate device change]

[system boots] e -
. Initialize QVaN State Device change) [State Device Changej

[from any state] [to any state] [spawn DAQ tasks] [MOOC request]
Aarm

Fast Abort Task |
Q Initialize J&&—

Wait Request

wﬂ | Slow Abort Task i ! BLM Task P
l L{ actie j

[data take] ; [stop]
de)7 ; : 4

[take data] Othertasks, &.g. profile and displa
S ; ate not shown in the digram. Their
i i state diagram is the same as any

DAQ task
[end]

Figure 4 - Tevatron BPM state diagram
Figure 4 shows only four data acquisition tasks. However the system contains more tasks. Their state diagrams are similar and are therefore not repeated in the picture. Notice that the states for the data acquisition tasks are the same. The difference between the tasks is located in the internal state diagram defined for the state active. Figure 5 describes the internal states for an active data acquisition task. The difference between tasks is in the type of event it waits on order to perform data acquisition. For example, the turn-by-turn task waits on an interrupt from the timing board while the BPM profile task waits for the TCLK $75.

[image: image5.png] J

[take data]

[event received
TCLK, 2ms, 1sec] [data stored]

when: [data read]
Generate Alam J— ("1 Perform DAQ

Save Data
-

[error)

Figure 5 - Data acquisition task state diagram

3.7 Class Diagrams

This section describes the static structure of the system. The complete class diagram is available in the appendix. We broke down the main diagram into pieces that handle specific parts of the system. Every piece is described below, each one contains a part of the full class diagram. Classes shaded in gray are specific to the Tevatron BPM system. Remaining classes are part of the generic framework. Class names throughout the text are written in italic.

3.7.1 Tasks

The system has a certain number of independent processes; each one has a specific job. The tasks in the system are all subclasses of a VxWorks task wrapper (Class Task). The wrapper contains basic methods and attributes that represent a task. Figure 6 contains the task classes in the system. The upper class represents the wrapper.

[image: image6.png]Task

W
priority : int

Frsuspend)
fesume(
fung
[new)

ControlTask AlarmTask
Fenew(in source - DataSource, in bufler - DataBufter) [rdispatchalam() - int
freadout() [+getAlammQueus() - Queue
f+setSource(in source : DataSource) [+clearalam(- int
[+setBuffer(n buffer - DataBufer) [+processalarmg - int

[TBPMControlTask| [TBPMFastAbortTask | [TBPMTurnByTumTask| [TBLMFastAbortTask | [TEPMAlarmTask|

[FsetDaneq - int

7

[TBPMinjectionTurnByTurnTask

Figure 6 - Class diagram for tasks in the system

The system is overseen by a ControlTask, which is responsible for initializing most of the system, configuring hardware (EchoTek boards, BLMs, timing module, calibration and diagnostics hardware), switching acquisition modes, controlling other tasks in the system and keeping track of the overall state.

The DataAcquisitionTask represents the tasks that are responsible for acquiring data and storing them in internal buffers. There can be several DataAcquisitionTask subclasses, each one has a different acquisition method, can read data from different sources and store them in different destinations. Examples are TBLMFastAbortTask, TBPMFastAbortTask and TurnByTurnTask.

The AlarmTask handles any alarms generated in the system. Its responsibility is to check the system alarm queue and decide whether to put the system in an alarm state and send an alarm to the outside world.

3.7.2 Controls

The main class in the system is Control which is contained by the BPM class. The class BPM makes a few assumptions about the system, and has common code for BPM systems in general. A more specialized class (TBPM) has a specific implementation for the Tevatron BPM system. It contains objects of the classes TimingSystem, EchoTekPool (EchoTek) and TBLM, which are the hardware present in the system. Additional hardware classes may not be shown in the diagram on Figure 7.

[image: image7.png]DiagnosticSystem CalibrationSystem

Fnialize : it Fealizeg) it
[+sethdode(: int 1 [ssetvodeq int
[+changeConfiguration(: int [+changeCanfigurationp
[TBPMDiagnosticsSystem

[TBPMCalibrationSystem
[
1
! BPM
-~
Control [rstan it 1

Fstate it 1

FrehangeNode(n mode -) it

[+start() - int T

[+setélams(: int TBPM EchoTekPool imingSystem

ereateDatshcauisiionTasha(- it o rumBoads it

createTriggers(: in [+fndGoards(- it [+sethode(in mode - nt) - int

[+registerTriggers() - int 19 [inow [newp

[+setState(in state - int) : int [sinitialize(- int

[+ereateBufiers() - int 1

[initHardware() int é

+stateChange(in variable int, in newValue : inf) : int 24

[+registerAlarmGenerators() - int

+createAlarmTask() © int TBLM EchoTek

[inithetadata() - int

[+=ethode(in mode « int)
[+oadFilters()

[TBPMControl [tinitialize()

Figure 7 - Main control classes

The BPM class contains the entry point of the system. It is responsible for starting the ControlTask, which will in turn start the rest of the system.

3.7.3 Events

The system is composed of tasks and queues. The information flowing through the queues into the tasks are events. Event is a simple structure which has the most basic information about an a BPM system event.

Events are classified by their field type. Based on the type of the event a specific action is taken. For example, when a TCLK $75 is received by the interrupt handler, it puts in the queue of the BPM profile task an event structure whose type indicates that a TCLK $75 has occured.

Similarly, other types of events can be defined by using distinct values for the type field. It can define distinct types of alarms for instance. Additionally, the structure contains a void pointer (called payload), which can be used for passing additional information within the event. Using the same example, the payload can have additional information about the alarm being generated.

[image: image8.png]- structures EventGenerator
EventListener Event — ey

[FeventQueue : Queue [Ftype - int Fbroadcast(in event - Event, in delay - inf)
FrgetEvent(in evert - Evert) timestamp - long {——————— 4 ictonar - EventLietenen - int
+processEvent(in event : Event) | [rprioity : int +sefEnabled(in enabled : bool)

isten() it [+ payload : void remove(in itensr - EventListener : int
[istenin timeout - inf) - it [sstar) - int

Figure 8 – Handling events in the system

An Event is generated by an EventGenerator. The EventGenerator has a list of EventListeners, to which an event is broadcasted after being generated. EventListeners can be dinamically added or removed from the list. The EventListener receives an event in its eventQueue. The Event is removed from the queue by processEvent ().

3.7.4 Event Listeners and Generators

Events can be generated and received by any entity in the system. Figure 9 shows the classes that currently generate events, while Figure 10 shows classes able to receive events. EventListeners are:

· ControlTask: receives requests and events.
EventGenerators are:

· StateChangeEventGenerator: generate an event signaling a state device change

· InterruptEventGenerator: generic event generator based on interrupts

· TCLKGenerator: generate TCLK event on interrupts

· TimeEventGenerator: generate an event on every tick of a timer

· Control: generates alarms for the alarm task and events for data acquisition tasks
EventListeners and EventGenerators:

· AlarmTask: receives alarm events from other tasks in the system and generates events sent to the ControlTask to inform about the current alarm situation

· DataAcquisitionTask: receive events signaling the data acquisition process; may generate events to other DataAcquisitionTasks
[image: image9.png]EventGenerator

Fdelay - int

[+add(in Tistener - EventListenen) « it
[+termovein listener - EventListener) : int
[+start - int

[+broadcast(in event : Event, in delay © int)
[+setEnabled(in enabled : bool)

7

AlarmTask [StateChangeEventGenerator]

InterruptEventGenerator|

Control

Fostate it

FraspatchATamm(-t

[FinstallHandler)

[+processAlarm() « int
[+clearalam(- int
[+getAlamQueus() - Queue

pAN

[TCLKEventGenerator| [TimeEventGenerator

Finterval - it

[rsetintervaln nterval - int)

[+readout)

[+setSource(in source : DataSource)

[+setBuffer(n buffer - DataBufer)

[#new(in source : DataSource, in buffer : DataBufer)

Frstantg -t

[+changeMade(in mode int) - int
fsetalams() - int
frereateBufiers() - int
frereateAlarmTask(- int
feteateDataAcquisitionTasks() © int
[rereateTriggers) - int
[+tegisterTriggers(- int
[+tegisterlarmGenerators() - int
finitHardware() - int
finitMetadata() - int
f+stateChange(in variable © int, in newalue

[+setState(in state - int) int

int)

int

Figure 9 - Event generators

[image: image10.png]EventListener
[feventQueue - Queue
F+getEvent(in event - Evert)
[+processEvent(in event : Event)
[+isteng - int

[Histenin timeout - int) - int

7

ControlTask AlarmTask DataAcquisitionTask
Fedispatchalam() - int [+readout)
l+getlamQueus() : Queus | [+setSource(in source : DataSource)
frelearalam(- int [+setBuffer(n buffer - DataBufer)
[#pracessAlamm(- int [+new(in source : DataSource, in bufler - DataBuffer)

Figure 10 - Event listeners

3.7.5 Data

During the data acquisition process the DataAcquisitionTasks perform reads from a DataSource (EchoTek or BLM boards) and save the result to an internal DataBuffer. A DataSource defines a generic class for reading out DataEntries. There can be several types of DataSource. For the Tevatron BPM system three are defined: EchoTek, BLM and DataBuffer (see Figure 11). This means that data can be retrieved either from the EchoTek boards, BLM boards or from an internal buffer (e.g. a task can feed the slow abort buffer with data from the fast abort buffer).

The destination of data read by the DataAcquisitionTask is a DataBuffer. It has knowledge of the Metadata used to tag the data, such as beam type, accelerator state and system status. All data entries are organized as DataEntries. The DataEntry can vary depending on the type of measurement.

[image: image11.png]DataSource

FraarteTo(in entry - DataEntry) - it

pA

DataBuffer EchoTek TBLM
[Poufer - DataEntry
[fsize - int FreetMode(n mode -)
[fourrent : int [HoadFitters(
fmext : int leinitialize()
Frwte - int
+next(: DataEntry P
+read() : DataEntry
+peek(in position - int) : DataEntry | |
+clear() - int DataEntry struciures truciures
[risFull) : int Wiimsstamp *Torg [TBPMPosition | [TBPMChannd
+readDone(: int ¢
+ack(pes fistatus - int ooton foar | {1 short
[tunlock(: int [Feapy(in entry - DataEntry) - int [fRbatklficat g

rcularBuffer =TT T | i
::“Ef“ “"‘ [Pmachinestate - int e 3 [y
pradint | ldataSource - int «structures

biounchType: nt [EchoTekTurnData
B fielixState : int jp——f+stalus : int
féprotonBunches - int | ¢ 1, [*tumNumber: int
truciures fépbarBunches : int
[TBLMChannd fimachineState - int

[#status

[Hioss - float

int

Figure 11 - Reading and saving data
The DataBuffers have data stored in a format that may be different from the format sent to the end user through MOOC by invoking the BufferReadout class (Figure 12). Data is formated according to a Packer (Figure 12). Depending on the data type and on the user request a specific Packer is used (e.g. TBPMClosedOrbitPacker and TBPMTurnByTurnPacker).

[image: image12.png]BufferReadout

Packer

[+getDatain buflerSource - int in format - nt, in numElernents
[+getFTPData(in dataType - int): float

i)

char

[Pheaderversom - it
[#endianess int

[TBPMBufferReadout

[+pack(in bufler - DataBufter, in begin - it in end - 1)

[+isAligned(in address : char) : bool

char

[TBPMClosedOrhitPacker

[TBPMTumByTurnPacker

TBPMPacker

Figure 12 - Buffer readout related classes
3.7.6 Alarms

The classes responsible for handling and generating alarms are shown on Figure 13. An alarm event is generated by an AlarmGenerator. The generators in the system are the following: DataAcquisitionTask and Control.

The AlarmTask is responsible for receiving Alarms generated by the AlarmGenerators. It declares an alarm state depending on the alarm received.

[image: image13.png]AlarmTask

[rdispatchalam() - int
[+getAlanmQueus() - Queue
[+clearalam(- int
[+processAlarm(: nt

structures
Event
reteie oo AlarmGenerator
vioriy - int FelarmQueue - Queue
ftimestarnp * int [+generateAlarm(
~generate
finayload - void [+setAlamQueus(in queue : Queue)
Control DataAcquisitionTask
frstate - int
frehangeModein mode - nt) - int +readout)
fstart(- int [+setSource(in source : DataSource)

[+setélams(« int

[rereateTriggers(

[rereateBuffers)
finitHardware()

[+ereateAlarmTas!
[rinithetadatal)

freteateDataAcquisitionTasks() © int

int

[+tegisterTriggers(- int
[+setState(in state : int) int

int
int

f+stateChange(in variable int, in newalue
[+tegisterlarmGenerators() - int

K - int
int

int)

int

[+setBuffer(n buffer - DataBufer)
[+new(in source : DataSource, in bufler - DataBuffer)

Figure 13 - Alarm classes

3.8 Timing Diagrams

This section contains timing diagrams illustrating the behavior of the several components of the system during data acquisition operation. The default mode of operation of the BPM front-end system is the closed orbit mode. In this mode, the EchoTek boards are readout every 2 milliseconds. All EchoTek boards present in the in the TeV ring are expected to be read out during this 2 milliseconds interval. Figure 14 shows the components involved in the closed orbit mode, and at what time they are expected to be run or be accessed. The 2 millisecond interrupt enables the BPM fast abort task to take a measurement, which accesses the EchoTek cards by reading their random access memory at the location where closed orbit measurements are stored. While reading the boards, the task also needs to access the fast abort buffer, where the data will be stored in the front-end side. The amount of time to access data from EchoTek boards is expected to take most of the processing time of the BPM fast abort task. The task will also have to acquire the lock for the fast abort buffer in order to avoid data access while it is being written. This lock must be configured to allow priority inversion, so that if a user is accessing the buffer, the processor will bump its priority up in order to allow the BPM fast abort task to gain the buffer control.

Figure 14 - Timing diagram for the BPM fast abort DAQ
The system contains other data acquisition tasks running besides the BPM fast abort task. Figure 15 shows the situation where other data acquisition tasks run concurrently to the fast abort task. In addition, it is considered that the 2 millisecond interrupt generates the event at 1 second which enables the BPM slow abort task. After the fast abort task is done reading out the EchoTek boards, the BLM fast abort task is allowed to run. The readout controller reads out the BLM chassis and saves data to the BLM fast abort buffer. Figure 15 shows the BLM fast abort task being interrupted by another cycle of the BPM fast abort task. The BLM fast abort task will resume the readout after the BPM fast abort has finished its new cycle. Before a new 2 millisecond event the processor is able to run other data acquisition tasks. The picture shows the BPM slow abort task being scheduled, and it accesses the BPM fast abort buffer and the BPM slow abort buffers. (Sentence fragment ->)Similarly, other tasks such as the BPM display or BLM display. Other tasks, such as the BPM display or BLM display would use the remaining time between the BPM fast abort readout cycles.

Figure 15 - Timing diagram for BPM fast and slow abort DAQ and BLM fast abort DAQ

Figure 16

 illustrates the process of making a turn-by-turn measurement. When entering the turn-by-turn mode, the system must receive TCLK $77, which is received by the control task. The control task is responsible for disabling the closed orbit mode and for arming the turn-by-turn task. While in turn-by-turn mode, tasks that read closed orbit measurements (either from the EchoTek boards or from the BPM fast abort buffer) must be stopped. The BLM fast abort task can still be allowed to run in turn-by-turn mode because it does not depend on the EchoTek boards.

Figure 16 - Timing diagram for a turn-by-turn measurement
After receiving the turn-by-turn done interrupt from the timing board, the turn-by-turn task performs the EchoTeks readout and saves data into the turn-by-turn buffer. The control task is signaled that the measurement is complete, allowing it to reconfigure the EchoTek boards and resume closed orbit related tasks.

The order of execution of data acquisition tasks is dictated by the priority it has. Table 7 shows the expected priorities of the different tasks in the BPM system. Smaller numbers represent higher priorities, i.e. the control task has the highest priority while the BLM display task has the lower.

	Task
	Priority

	Control task
	0

	Turn by turn task
	1

	Injection turn by turn task
	1

	BPM fast abort task
	2

	Alarm task
	3

	BLM fast abort task
	4

	BPM slow abort task
	5

	BPM profile task
	6

	BPM display task
	6

	BLM display task
	6

Table 7- Task priorities

3.9 Activity Diagrams

This section contains diagrams showing the work flow of different tasks in the system. Figure 17 contains the basic flow for the ControlTask. It basically has to take care of the initialization of the system and enter a closed loop waiting for commands from its input queue. These commands are requests from MOOC and other events generated within the system.

After receiving a request from its input queue, the ControlTask starts to process it. This is represented by the ProcessRequest state, in which all types of input requests are handled. As an alternative for simple requests, the MOOC callback directly invokes the code for processing the request.
[image: image14.png]StartContralTask

MOOC ControlTask

CreateReadoutTasks

WaitForCommand

MOOC Request

CreateTriggers

RegisterTriggers

CreateAlamTask

RegisterAlarmQueus

L—{ProcessRequest

ChangeMode

Figure 17 - ControlTask flow

Similarly, the DataAcquisitionTasks run in a closed loop waiting for Events. Upon the reception of an Event, the DataAcquisitionTask begins the data acquisition process from its DataSource, which can be hardware or a software entity. The DataAcquisitionTasks are independent of each other but may share some source code (e.g. TurnByTurn and InjectionTbT in the picture).

Figure 18 depicts several DataAcquisitionTasks, but the functionality of some can be combined into only one task in the final implementation. For example, the FastAbort may also be responsible for the tasks performed by the SlowAbort. It is an implementation choice, and the final decision may be driven by the performance.

The framework also allows a DataAcquisitionTask to generate Events to another DataAcquisitionTask. Suppose that there is an InjectionTbTClosedOrbit task. It would receive a trigger from the InjectionTbT task informing it that new data is in the internal buffer, and a closed orbit can be calculated.

The process of retrieving data from internal buffers is shown in Figure 19. A request comming from MOOC enters the callback which in turn calls methods from the BufferReadout class. This class provides methods for retrieving the data from the internal buffers and a Packer is used to format the data according to the online applications (doc #860).

[image: image15.png]StanBPM

StartContralTask

StatTaks

FastAbort

Abort ! ofile

splay

(Wa\ﬂnggev)é i

@amggel

Nggev)é

FastAborTrigger

SlowAbortTrigger

DisplayTrigger
ProfileTrigger

InjectionTrigger/Arm

TTTriggertAm

BLMTrigger {

GeadE

@aveﬁuﬂev i

|

SaveBuffer i

SaveBuffer

InjectionTbT

TurnByTurn

BLM

WaitTrigger

ReadEchotek

<}
e |
)

=

SaveBuffer
CalculateCO

SaveBuffer

A

@a\ﬂnggev

Wa\tTnggeDé

D)

SaveBuffer

Figure 18 - DataAcquisitionTasks flow

[image: image16.png]MOOC

)

FTP BLMDisplay BPMFastAbort
BLMFastabort BPMSlowAbort
BPMProfile

/\EPMD\sp\ay

>{ Tum By Tum

Injection Turn By Tum

PackData

Figure 19 - BufferReadoutTask flow

3.10 Sequence Diagrams

This section describes common software scenarios for the front-end Tevatron software. The diagrams contain objects of the classes previously discussed and show interactions between them throughout the course of a given scenario. The sequences shown do not correspond exactly to the implementation, but they serve as a guide to understand how objects and classes are related to each other in a dynamic environment. The flow of events starts at the top of the diagram and go downwards, following the string of method calls and returns.

3.10.1 Initialization

Figure 20 shows how the objects in the system are first created and what are the expected operations. The entry point is the BPM object, which will create the ControlTask. The ControlTask delegates the actual work to the Control class, which is responsible for creating most of the objects within the system. It must instantiate the DataAcquisitionTasks, create the AlarmTask, EventGenerators among other initialization procedures.

[image: image17.png]new()

@
B
=

new() controlTask

; new()

+7 initHardhware()

7 inithetadata()
7 createBufiers()

7 createDataAcquisitionTasks(

7 createAlanmTask()

7 createTriggers()

Figure 20 – Initialization sequence

The following pictures describe in more detail every step the Control class goes through when being initialized. Its first task is to configure the hardware system. This is depicted in Figure 21. The EchoTek boards must be found and initialized (crates have different number of EchoTek boards), as well as the timing, calibration and diagnostics hardware.

[image: image18.png]control

initHardware) |

new() echotekPool.

:

findBoards()
new() echotek
initialize() 3
— 0

| new() ! timingSysterm

H initialize() | i

| | L

| new() ! calibrationSystern

! initalize() 1 !

new()

diagnosticSystem

initalize()

initHardware()

<

Figure 21 - Hardware initialization sequence
Following the hardware initialization, the system must get information about the initial state of its metadata (Figure 22). Most metadata is controlled by the system itself, such as (the state) clarify? and state of the EchoTek cards. Remaining metadata comes from outside the system and must be retrieved at initialization. An example of external metadata is the current Tevatron state, given by the ACNET variable V:CLDRST.

[image: image19.png]control

initMetadatal) 1
i

metadata

inithetadata()
<

getStateDevice()

Figure 22 - Metadata initialization sequence
Figure 23 shows the creation of the several data buffers in the system. They don’t need to be created at a particular order, but at this point that their size is defined. During its creation the buffer initialization allocates the memory that will hold the data read from the EchoTeks and the BLMs.

[image: image20.png]control

createBuflers) |

new() | bpmFastAbortBufler

new() | bpmSlowAbortBufler
1 new) ! TumByTumBufler
' new() 3 7 InjectionTumBy TumBuffer
' T newp j T

bpmProfileBufier

bpmDisplayBufier

blmFastAbortBufler

blmDisplayBufier

createBufiers()

Figure 23 - Buffer initialization sequence
After creating the buffers, the data acquisition tasks are created (Figure 24). The tasks receive the data source and data buffers that will be used as arguments to the new method

[image: image21.png]control

createDataAcquisitionTasks)

new(echotek, bpmFastAbortBuffer) bpmFastAbortTask

new(bpmF astAbortBuffer, bpmSlowAbortBuffer) bpmSlowAbortTask

new(echotek, tumByTumBufler)

tumByTumTask

new(echotek, injectionTbTBuffer)

injectionThTTask

new(bprmF astAbortBuffer, bpmProfileBufier) | bamProfileTask

new(bprrF astAbortBufer, bprDisplayBuffer) bpmDisplayTask

new(blm, blmF astAbortBuffer)

blmFastAborTask

new(blmF astAbortBuffer, blmDisplayBufer)

blmDisplayTask

createDataAcquisitionTasks()

=

Figure 24 - Data acquisition tasks initialization sequence
The next step is the initialization of the alarm scheme by instantiating the alarm task and informing other tasks in the system about the alarm queue. Alarms generated in the system are posted to the alarm queue, which is constantly read by the alarm task.

[image: image22.png]control

createAlanmTask() |

bpmFastAbonTask

bpmSlowAbotTask

tumByTumTask

injectionThTTask

bpmProfileTask

bpmDisplayTask

blmFastAborTask

blmDisplayTask

new() alarmTask

7 registerAlarmGenerators() |
1 i
47—“

getAlarmQuene()

setAlarmQuene (alanmQueue)

i

i

i

i

i

i

i

i i
: i

i i

i i

setAlarmQuene (alanmQueue) !

setAlarmQuene (alanmQueue)

setAlarmQuene (alarmQueue)

i setAlamueue(alamOuete) |

3 setAlarmQueue(alamQueue) ;

i | setAlarmQueus(alarmQueus) '

i ! cetélarmQueue(alarmOueue)]
! ! I setAlanmQueue(alamQusue) '

createAlanmTask()

pa

(:
¥
]
1
1

;

Figure 25 - Alarm initialization sequence
Following the alarm initialization, the event generators are created. They are basically interrupt handlers that will create events when called. The events are then placed into the input queues of the listeners. Figure 26 also shows which are the listeners for each event generator.

[image: image23.png]control

P

createTriggers) |
new() 2msEventGenerator
add(bpmFastAbortTask) H
new() T 1secEventGenerator
add(bpmSlowAborTask) ;
add(1secEventGenerator) ' L
1
add(h\mFastAhnnTask)T ;
‘ iy
newd) | T telkEventGenerator
add(controlTask) H !
T T
] 1 L
add(bpmProfieTask) ! ;
1 1
add(bpmDisplayTask) ! T
: i
1 1
add(blmDisplayTask) ! |
Inew() | T tumByTumEventGenerator
i i
add(tumByTumTask) | |
i] ! L
add(njectionTumByTurmTask) : i
i i T
. 1 ! L
installHandler() 0 H T
! : ! :
installHandler() 1 1 u '
i ; i
| | |
T installHandler) | ! |
1 1
createTriggers(! !
- 1 1
i i

oy
|
!

Figure 26 - Event generators initialization sequence
In the last step of the initialization sequence, the tasks are allowed to start and the system enters in the normal mode of operation which is enabled through changeMode () (Figure 27).

[image: image24.png]2msEventGer

blmDisplayTask

blmFastAborTask

bpmDisplayTask

bpmProfileTask

injectionTbTTask

tumByTumTask

bpmSlowAboTask

bpmFastAborTask

alamTask

controlTask

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ I S

[

run()
return()

start)
return()

Figure 27 - Tasks initialization
3.10.2 Mode Change

The system has the ability to change modes of operation when running. The most common modes are closed orbit and turn-by-turn
. The closed orbit mode is the default mode of operation. Turn-by-turn mode is enabled on user request or on a programmed TCLK event. Figure 28 shows the sequence of operations when changing from the default mode to the turn-by-turn mode.

[image: image25.png]telkGenerator controlTask. control echotek timingSystem | | bpmFastAbortTask_ || tumByTumTask

TCLK§770 | ! ' !] i !
' ! ! /
! ' | i ! |
broadcast(TCLK $77,0) | H ! ; : |
! 1 ; { ' ;
! ' 1 1 ' ;
(getEvent(TCLK §77) ! | | | ' !
i | | | | |
' i i ! |
T ; i ; ' ! :
! ! processEvent(TCLK §77) 1 | | | !
: ' i i ! |
| 1 i 1 ! |
' changeMode(TumByTurn) ' | | ! |
getEvent(STOP) | 3 |
sethode(TumByTurr) ! u !
listen) . |
setMode(TumByTum) |] !
getEvent(START) | 3
changeMode() i ! | u

1 1 1

1 1 '

i i !

Figure 28 - Changing modes

In the particular case depicted on Figure 28, the mode change is triggered by the TCLK $77. The event will be passed down to the controlTask which calls control. In the changeMode method the mode of operation of the EchoTek boards are changed (by loading a different configuration) and setting the timing system (TSG) to the turn-by-turn mode. It also suspends and resumes DataAcquisitionTasks according to the mode of operation.

The action of suspending and resuming the DataAcquisitionTasks is accomplished by sending control events via their input trigger queue. When a DataAcquisitionTask receives a STOP command it will ignore any events from that moment on. Upon the reception of a START command, the DataAcquisitionTask starts processing events again.
Upon the completion of a turn-by-turn measurement, the system must return to its default mode closed orbit. The sequence illustrated in Figure 29 shows the steps taken by the system when returning to its default mode of operation.

[image: image26.png]tumByTumTask

setDone()

new()

controlQueue controlTask

setDone()
-

T T
estructures i i
doneTBT. H H
getEvent(doneTET) !
| | send(doneTBT)
H receive(doneTET) |
i
: getType(
listen()

changeMode(TURN_BY_TURN)

changeMode()

Figure 29 - Return to close orbit mode

3.10.3 Buffer Readout

Buffer readout operations follow the sequence defined in Figure 30. A user request comes through the MOOC framework, which invokes the BufferReadout class. The bufferReadout selects the data buffer according to the request specification and calls a Packer for arranging the data in the format expected by the online user.

The Packer object is able to compute the position and intensity of the beam for the data entries in the buffer, if configured to do so. Another option for calculating position and intensity is at readout time (see section 3.10.6). The calculation uses the selected calibration constants and selected algorithm to produce the position and intensity data.

For different types of user requests, a different packer can be used (e.g. closed orbit or turn-by-turn).

[image: image27.png]MooC

packer

fastAbortBufier

request()

reply()

bufferReadout

getData(bpmFastAbortBufierlD, TEVATRON_BPM_FRAME_DATA, N)

pack(bpriFastAbortBuffer, FIRST_ENTRY, LAST_ENTRY)

Tock()

read()

unlock()

Avoid data to
be updated while
packing it

Figure 30 - Fast abort buffer readout

3.10.4 Alarms

All tasks in the system are capable of generating alarms. Figure 31 shows the sequence of an alarm generation. A task in the system creates an alarm and it is sent to the alarmQueue, which is monitored by the AlarmTask. This task decides the criticality of the alarm and sends out a MOOC alarm and informing the ControlTask that the system is in an alarm state.

[image: image28.png]bpmFastAbonTask

T newo

Generate BPM Sick or BPM Dead alarm L

based o the type of alarm received. I the
alarm originator is the control task, the alarm
may not be forwarded to it

The alarm state is cleared by the control task,
when it sends a clear alarm to the alarm queue,

alamQueue

«structures

alamTask MooC

controlTask controlQueue

alarm

T getEvent(alarr)

| send(alarm)

receive(alarm)

getType()

7 processAlarm()

T
i
i
i
i
i
i
i
1
dispatchalarm(|

alarm()

getEvent(ALARM_STATE)
11

send(alarr)

receive(alarm)

setState(ALARM)

—

Figure 31 - Alarm generation

The alarm state can be cleared by the ControlTask or by the online user by sending a clear message to the AlarmTask (see Figure 32).

[image: image29.png]controlTask

D\:\eavA\avm()

Mooc clearalarm()

Alatm clear request can
be started from the control
task or from a user request

control

new()

alamQueue

alamTask

«structures
aarm

getEvent(event: Event)

send(clear)

receive(clear)

getType)

processEvent(clear)

clearalarm()

Figure 32 - Clearing an alarm
3.10.5 Events

Figure 33 shows a generic view of how an Event is handled in the system. The EventGenerators create Events, which are sent to EventQueues owned by EventListeners. An EventListener is usually a task and will receive events from its queue and process them within the processEvent () method.

[image: image30.png]eventGenerator

event |

eventQueue eventListener
T T
broadcast(event, 0) ' |
estructures ! i
newl event ! '
T ! i
T oetEvent(eent | |
T
! i send(event)
i
! receive(event)]
' :
! i
| 1
i getType) listen) (
j
i
i
i
i

processEvent(event Evert)

Figure 33 - Event generation

A particular case of event handling is shown in Figure 34, where the generator is of the type StateChangeEventGenerator, and the receiving side is the ControlTask.

[image: image31.png]stateChangeEventGenerator

controlQueue

controlTask

stateChange()

getEvent(stateChange)

i

3
broadcast(stateChange, 0)

i

stateChange

| send(stateChange)

receive(stateChange)

listen)

processEvent(stateChange)

stateChange(VX0K, newValue)

stateChange()

metadata

changeStateDevice(V: 300, newValue)

changeStateDevice()

Figure 34 - State device change
3.10.6 Data Acquisition

The data acquisition process is similar to the event handling scheme in Figure 33. The illustrated event is a 2 millisecond event, generated by the 2msEventGenerator. The event is sent to the bpmFastAbortTask which will acquire data from the echoTek and save it to the fastAbortBuffer. This process is illustrated in Figure 35. After the data is read from the echoTek object the I and Q values can be used to calculate the beam position and intensity. The data acquisition will use a selected algorithm and calibration set defined for the current running state of the machine. Particle position and intensity can also be calculated when data is being read out from the front-end card.

[image: image32.png]fastAbortBufier

echotek

bpmFastAbonTask

eventQueue

2msEventGenerator

H

2 B = B H
S H
B 5
H
a4y
2| £
g
[
\\\\\\\\\\\\ B e =
i 7z
g H
S g
25| s & g
1] O TR sy VO
28| 4
¥ £
&
=4)
O

2ms intermupt)

Figure 35 - Fast abort trigger generation
A similar diagram in Figure 36 is provided for the turn-by-turn case, where the turnByTurnEventGenerator receives the interrupt from the timing board signaling data ready, which is passed down to the turnByTurnTask, which carries out the data acquisition.

[image: image33.png]tumByTumEventGenerator

timing board interupt(|

new()

«structures
tumByTumDoneEvent

getEventtumByTumDoneEvert)

orbit made

eveniQueve tumByTumTask echotek | | tumByTumBufer
7 1 7 T
' 1 ' /
: 1 : !
i | ! |
1 1 '
T ! 1 !
| send(tumByTumDonsEvent) ! |
|
T ' /
receive(tumByTumDaneEvent) | ' !
H { !
T ! /
| getTypeq : !
| ! i
| readout() | !
! = ! |
' 3 : !
: next) | |
1 1
| witeTo(dataEntry) | T
H listen() ! !
! {
! 1
! wite) | !
{ |
1 T
1 1
1 1
' setDane() '
1 1
' vetum to closel '
1 1
1 1

Figure 36 - Turn by turn data acquisition

3.11 Packages

The system is designed to provide a generic and flexible framework for BPM projects including the Tevatron. For this purpose, the classes are divided in a generic BPM class package and Tevatron BPM package.

3.11.1 Generic BPM classes (GBPM)

These are generic classes that form the BPM framework. These should make up a running system with hooks for machine specific code. It contains classes that provide data acquisition, control, configuration management, alarms and buffering. The following classes are part of the GBPM package:

· BPM

· Task

· ControlTask

· DataAcquisitionTask

· AlarmTask

· Control

· Queue

· Semaphore

· EventGenerator

· StateChangeEventGenerator

· InterruptTriggerGenerator

· TCLKGenerator

· TimeTriggerGenerator

· AlarmGenerator

· Event

· DataSource

· DataBuffer

· CircularBuffer

· Metadata

· DataEntry

· Packer

· CalibrationSystem

· TimingSystem

· DiagnosticSystem

· BufferReadout

3.11.2 Tevatron BPM classes (TBPM)

These are classes that implement the specific BPM behavior for the Tevatron machine. Code for specific hardware and Tevatron alarms must be implemented in these classes. Table 8 lists the classes that belong to the TBPM package.

	Superclass
	Subclasses

	BPM
	TBPM

	ControlTask
	TBPMControlTask

	Control
	TBPMControl

	DataAcquisitionTask
	TBPMClosedOrbitTask

	
	TBPMTurnByTurnTask

TBPMInjectionTurnByTurnTask

TBLMFastAbortTask

	AlarmTask
	TBPMAlarmTask

	DataSource
	EchoTek

	TimingSystem
	TBPMTimingSystem (TSG)

	Metadata
	TBPMMetadata

	Packer
	TBPMClosedOrbitPacker

	
	TBPMTurnByTurnPacker

	
	TBPMTimeSlicedPacker

	
	TBLMPacker

	
	TBLMTimeSlicedPacker

	DataEntry
	TBPMData (EchoTekTurnData, TBPMPosition, TBPMChannel)

TBLMData (TBLMChannel)

	BufferReadout
	TBPMBufferReadout

	CalibrationSystem
	TBPMCalibrationSystem

Table 8 - TBPM classes
3.11.2.1 TBPM Buffers

Even though the data sources of position, intensity and loss data are only from the EchoTek boards and the BLM chassis, the system must keep several types of data in different buffers. Some of the data may be the same, differing only in the event that triggered its acquisition. According to AD document #903, these are the buffers that must be implemented in the system:

BPM buffers:

· Fast Abort Buffer – circular (array)

· Slow Abort Buffer – circular (array)

· Fast Time Plot Buffer – circular for high readout rates

· Profile Frame Buffer – FIFO (array)

· Display Frame Buffer – FIFO (single entry)

· Snapshot Buffer – FIFO (single entry)

· Turn By Turn Buffer Buffer – FIFO (array)

· Injection Turn By Turn Buffer – FIFO (array)

· Injection Closed Orbit Buffer – FIFO (single entry)

BLM buffers:

· Fast Abort Buffer – circular (array)

· Display Buffer – FIFO (single entry)

· Fast Time Plot Buffer – circular for high readout rates

These buffers are realized in the system by the class DataBuffer. The Fast Time Plot buffers are the only ones that do not have their own memory location. When handling a FTP request, the system will return the latest value(s) from the Fast Abort Buffer.

Data from the buffers are read by the BufferReadout class and organized by a Packer according to the structures defined in AD document #860.

3.12 Implementation

This section is a guideline for the implementation of the system. It is divided into two parts: the first one contains the elements related to the generic BPM framework and the second lists the components of the Tevatron system.

It is highly recommended that every class have a unit test associated to it. The tests should call all methods from the classes and check the returned data and status.

3.12.1 Building The Generic Framework

Implementation of classes is independent unless otherwise noted First level of elements can be implemented in parallel, while elements within (a – z) usually require sequential implementation. Here is the list of implementation tasks:

1. Buffers

a. Implement DataSource
This is a generic class to provide means to get data. It can return data points or data arrays. The returned data are of the generic type DataEntry.

b. Implement subclass that generates a known pattern (e.g. TestDataSource)

We need a data source class capable of generating predefined patterns for testing, debugging and to provide diagnostics.

c. Implement DataEntry
It is a generic data point, it does not define the type of data it will carry as this should be defined in its subclasses. It contains minimum information such as a time stamp and the status of the data.

d. Implement Subclass of DataEntry (e.g. TestDataEntry)

This would be a class for testing and debugging the code. It can contain a simple integer as the data.

e. Implement DataBuffer
Generic class that allocates memory for containing DataEntries. Has methods for controlling its contents and is able to return a pointer to elements within the array.

f. Implement Packer
Generic class that provides the method interface for packing data. This will be used by the system when the user requests data. Data has to be read from the internal buffer and repackaged into some format. The subclasses of Packer will provide the appropriate algorithm for packing the data according to the users request.

g. Implement subclass of Packer (e.g. TestPacker)

To complete the Test environment, TestDataEntry needs a packer. It Should be a simple class that implements an algorithm for packing the TestDataEntry type of data and follows the interface defined in the Packer class.

2. Wrappers

a. Implement Task
This is a VxWorks task wrapper. It will allow a class to be a task by providing a run () method, which is called by start (). start () will encapsulate the system call taskSpawn. The class also should take care of operating system errors that may ocurr and should keep information such as priority and task id as attributes.

b. Implement Queue
Wrapper for the VxWorks queues. Should take care of operating system errors and keep information about its status. Should provide methods for retrieving current status and statistics.

3. Events (requires 2b)

a. Implement Event
An Event is a generic container for any kind of event in the system. Examples of events are: a 2ms trigger generated by a timer, a TCLK, and an interrupt coming from the timing system.

b. Implement EventListener (requires 2b)

The EventListener is a class that has an input queue through which it receives Events. Subclasses of EventListener will be able to receive Events. It also provides interfaces for handling the received events.

c. Implement EventGenerator
This class provides means to broadcast Events to EventListeners. It contains a list of listeners, and when an event is generated it is passed to the members of the list. The class provides calls for adding and removing listeners.

d. Implement InterruptEventGenerator
Contains interface to install, enable and disable an interrupt handler. The interrupt handler is a method within the class.

e. Implement TimeEventGenerator
Subclass of InterruptEventGenerator. Configures software timer to call the interrupt handler.

f. Implement TCLKEventGenerator
Subclass of InterruptEventGenerator. Configures TCLK PMCUCD card and handles its interrupts.

4. Alarms

a. Implement AlarmGenerator
Provides the ability to send events to the AlarmTask.

5. Control

a. Implement Control class

This class contains code for managing a generic data acquisition environment. Provides calls for adding DataAcquisitionTasks and buffers.

i. Implement Metadata
This class contains any generic metadata associated with the data acquisition system. An example is the current status of the system.
6. Tasks (requires on 2a)

a. Implement ControlTask

b. Implement DataAcquisitionTask
The actual data acquisition work is performed by the DataAcquisitionTask. Generically this task repeats the following operation upon the reception of a trigger: read the DataSource, save DataBuffer and wait for another Trigger. Specialized subclasses can implement code for dealing with specific hardware. This class should also be available to use in an actual system without adding any code, if the DataSource and DataBuffers don’t require any special handling (e.g. the BPMDisplayTask on Figure 2 may be only a DataAcquisitionTask whose DataSource is the BPMFastAbortBuffer and whose DataBuffer is a BPMDisplayBuffer).

c. Implement AlarmTask
This task receives internal Alarms, and decides if external alarms should be generated.

7. Buffer Readout

a. Implement BufferReadout
This class handles user data requests. Data is read from internal buffers and is formatted according to a Packer before being sent to the user.

8. Hardware Support

a. Implement TimingSystem
Defines basic interface for a BPM timing system but does not have implementation of specific timing system. Subclasses must define the behavior of the timing system.

b. Implement CalibrationSystem
Defines basic interface for a BPM calibration system but does not have actual implementation. Subclasses must define the behavior of the calibration system.

c. Implement DiagnosticSystem
9. External Communication

Implementation of calls (set of classes and wrappers) that can be made from ACNET/MOOC for data request, data acquisition specifications and control requests.

An implementation of the generic framework should produce a test version of the system generating fake data and receiving comands and requests from users.

3.12.2 Building Tevatron BPM Software

The implementation of all classes for the Tevatron specific system are independent. Any requirement for input/output data can be fulfilled by using Test classes from the generic framework. For example, it is not necessary to have the EchoTek class in place to generate data, one can use the TestDataSource class for that purpose or implement a TestEchoTek class which generates simulated data. The list of implementation tasks follows:
1. BPM hardware

a. Implement EchoTek
Contains all EchoTek related code. Provides interface for configuring the board, setting diagnostics mode, enabling debugging, etc.

b. Implement EchoTekPool
Represents a set of EchoTek objects. Has the ability to probe the VME bus for boards and add them to the pool automatically. Provides access to a single board and is able to send commands to all boards.

2. BLM hardware

a. Implement TBLM
Software representation of the BLM hardware that provides the interface for reading and writing to BLM registers.

3. Timing system

a. Implement TBPMTimingSystem
Contains the implementation of the interfaces defined by the TimingSystem class. This class is able to configure, diagnose, enable and disable the Tevatron BPM timing system.

4. Control

a. Implement TBPMControlTask
Extends the functionality of the ControlTask class by adding code for dealing with specifics of the Tevatron BPM system. The TBPMControlTask is responsible for creating the DataAcquisitionTasks in the system and has the knowledge of how to make mode changes (when to configure the EchoTek cards and the timing system). Controls the overall system status, is able to clear internal alarms; receive TCLK triggers and forward them to the DataAcquisitionTasks , and controls what DataAcquisitionTasks are currently active (receiving triggers or ignoring them).

5. Data

a. Implement TBLMData
Class containing a BLM data entry.

c. Implement TBPMData
Class containing a BPM data entry.

d. Implement TBPMChannel
Structure containing information about a single BPM channel.

e. Implement TBLMChannel
Structure containing information about a single BLM channel.

f. Implement TBPMPosition
Structure containing information about a single BPM position (proton and pbar).

g. Implement TBPMClosedOrbitPacker
Implementation of the pack strategy for closed orbit measurements. This class receives DataEntries from a DataBuffer and generates a structure that is sent to the user in response to a request.

h. Implement TBPMTurnByTurnPacker
Pack strategy for turn-by-turn measurements.

i. Implement TBPMTimeSlicedPacker
Pack strategy for time sliced closed orbit requests.

j. Implement TBLMPacker
Pack strategy for BLM requests.

k. Implement TBLMTimeSlicedPacker
Pack strategy for BLM time sliced requests.

6. Data acquisition

a. Implement TBPMClosedOrbitTask
This class has to deal directly with the EchoTek boards and the timing system. It reads data or receives interrupts from the EchoTek and timing boards, but does not configure them (that is done by the TBPMControlTask). Cannot use the generic DataAcquisition class for readout.

b. Implement TBPMTurnByTurnTask
This is a specialized class and like the TBPMClosedOrbitTask it has to communicate with the EchoTek boards and the timing system.

c. Implement TBPMInjectionTurnByTurnTask
This is a specialization of the TBPMTurnByTurnTask. There are not many additions to the code. In the implementation it is possible that a subclass is not even necessary to implement this feature.

d. Implement other data acquisition tasks: The tasks shown in Figure 2 are able to use the generic algorithm implemented in the DataAcquitisionTask class. They basically will read data from an input buffer and save it to an output buffer. With the exception of the TBLMFastAbortTask, which will get input data from the BLM chassis.

7. Buffer Readout

a. Implement TBPMBufferReadout
Add functionality specific to the Tevatron BPM system (the generic BufferReadout may be enough).

8. Alarms

a. Implement TBPMAlarmTask
Contains code for handling internal alarms and decides when to generate external alarms. Can change the system state to ALARM, and is able to receive clear alarm commands from the TBPMControlTask.

9. Calibration

a. Implement TBPMCalibrationSystem
This class contains the calibration constants being used during run time. There can be several sets of constants which are used according to the mode and status of the system.

4 Appendix

4.1 Class Diagram
[image: image34.png]#00Z G0 A ' AepSaUpas,
weibelq sse|n

(e uljewapas+]

T - easpur]
L Sl
OFETTY Ioeiouen IATOWIL prT——
W1 slEgaun e [DITIETREN
01 : sayaungueqs saunjnisy
u egunywme] b | £ sayaunguopidy
Wi snse @ W 2RISR I%d s uin Aguin | uoipafuldgL] hva
w1+ adf L yaundy
©requin e Lowp.
! mms_._m“;wg; i 1 : adnoselEpy LN (uajpuepeisu]
[() - adk iaBBugy 1 : alEIgaUIyaEL Gowaams
T L Sleandal eEequaL 1neseuaguuanpdniei| Jojerauaniuangabueyyaies|
v L e fadiiets]
W yseLum Aguin iwaall e
pion - peojede]
FETERS TR i (lgugeieq © e u)idoos] 1agngaenop)| 7 - dueremuy]
Woys ;| 10y - uojoic L SmEls i : Quers+, 1w Ao
prne— Buo) : dwejsauny 1 © (iausisruang - Jsusis| ulakowals] W - sdf)
UL DNdE] e
4ainlanis EBIMINIS > Anuzeieq u: Qyaojun AEAMO AT AN 1Y (wauy oAl
- 0, (jo0q : pajmeus u)pajqeuiest| sajeisush-
i (330 «ainjanisy
L 1 : Jauogpeat 1 : (i3UBISINENT © JaUBIS| UDpRE+|
i 35k G+ Aejap up a3 © ana uDiseIpeniGs]
- Queala 1 - felapa
FauZereq © (u : uomsod ulyeack se1Nq10pasOWdEL| p—
fugeieq © Qpeat oeAd
Inopeagayngndall Ageeq ; Qeu+]
W Qe !
e L [eungeieq - Japng U "eunogeleq | sin0s uwal] enano - ananb upnanouierss] o g
101 JuaLna] — (Iagngeeq © Iaung u)iagngies. Quueyateiauafi+
teay : (i - adk1eien uele0d 1 ieb+ i azisy (saunogeleq : aunos ulaunogias+ \|LV ananp : ananpuuEe:
JBYS T (UL | S1UBWIBIZWINL U1 1Ul ¢ 1BULI0 U1 U] ¢ S3IR0SIANG U)eleqiah - Anugeleq - isynag L (Qinopesn Iojereuaguiey
1ayngereq
Inopeetiopng , 52 uonsinbayereq
]
Wi (igugeieq © Aua ujojajms]
w1 - erepeiapure] sangaa-
1 - (se| unelyaieains]
dIepAN[AAINOS Wi - (siojeisuaguue wiisihal] Trau]
Ll QU @njeAMRU ULl : ageLes ullaRueLnEleIsH Qunin 1 - Quielys5300.0+]
0az1Enun] 1 < QaiempiE UL+ (awnssi 1 : (Ube e[+
- (siagngajeainy, (pusdsnsy] anang : Jananguue yiahs
i AlRIS ATRISIAS S Tarond T uussfgedsipe
0 weishgopsoubielqida Wi - (siabbu e Bart] - v __5 o
521 A_w Wi 2 0518081 ajeais,]
13yIedNIEL e Eo:m,m Lpol w2 QsssELuas nbavE e QaIEai EOEIIEER Asel sseuuery
Ju1 - ap: POIESH Qmaud Wy fsuepese L - Quaisijs|
QuonemByuoaBueL 4| - Opersr ! !
WiaL - Goponmen 9 (ueag © wess uuangsssaoids,
yaloyag wun : (jui : apow uhapopabuel4] Tluang : ana uhjuangjahe
1R uingAguInL 4] . ey ananp : ananpuanag]
s washsansoufieig Jos3u0) JouasINaAT
L @ L
fwane] L L 1 L
JeyEdqIopaso DAl W : Ospieegpust] b Omaurt] W : Queis+
1 - Spieoguinty] ~ b —
1009 : (o0 - sseppe ulpaUBIys] [oo ueonon WdaL Wdg L < yseonuns e Luire il dgl|
JEya (i pus ui i © uBag i ayngejeq : tayng ulpoeds] [
Wy - sseueipUa r i ; e
Wi : uosiaAIspEs L UDORIET ,
ookd Omau] (wauy W01 - saUunBieqi
W - spous ullspojyiess| | DUPHEIBBUEORRUED 1 (1 anjeAwan Ul - sonsp ullaanagelEigabUE Y] i : saypungUoId pp—
Gieyo - abessau noJonmIs e i apopast 0 - Gaanaqaelgabs] g ¥sejonuoDpdg.|
(1eya : sBessau ujpuss+ (nsods] Quaut Jur - sdk L yauncgl
waisAsBunm L 0 apEigauy e U : 33nogee
wapshsu 1 - ajeigaun aeu ¥ Sejens
anan 1 2nies i adfLien0u
0 swoudeuos 5 o e s ereA
U - si0jaBlagWdgWNLY]
(aziEmun] DozEmun T

wiaysks buui Wdg Ll

wasguonelquesnddl]

Figure 37 – Complete TBPM front-end software class diagram
4.2 Operation of the Echotek ADC Boards
Each Echotek board provides 8 receiver channels of 14-bit, 80 MHz (maximum) analog-to-digital conversion and digital processing in a single 6U VME slot. It supports 3 operating modes:
1. Gate Mode – data is collected as long as the external sync signal is active;

2. Trigger & Free Run – data collection begins at the rising edge of the external sync signal, or when the Software Sync Bit is written, and continues until the Trigger Clear bit is written;

3. Trigger & Counted Burst – A preprogrammed number of samples (burst counts) is acquired and processed with each occurrence of an external sync pulse, or writing to the software bit – This is the mode the Tevatron BPM system will be using.
In the trigger modes, the external sync signal can be delayed to each pair of channels (0 & 1, 2 & 3, 4 & 5, 6 & 7). The SYNC_DELAY registers are 12-bit counters that are clocked at the ADC sample rate.
The 8 channels on each board can be independently configured to output one of 3 types of data:
1. Count Data – the on-board FPGA generates a continuous counting sequence and puts the data directly into the memory. This bypasses the whole chain of analog-to-digital conversion and digital processing, is hence intended for checking the data handling within the board and checking the VME interactions.

2. Raw Data – the ADC counts are stored into the memory directly, bypassing the digital processing. The samples are right justified with the two least significant bits always set to zero. Every two samples are packed together to form a 32-bit word.
3. Receiver Data – the ADC counts are digitally down-converted, decimated and filtered to output an interlaced sequence of 24-bit I’s and Q’s. The 24-bit I’s and Q’s can be either truncated to 16-bit then packed into 32-bit words each consisting one I and the corresponding Q, or directly output in 32-bit words.
The memory for each channel is a 128 K x 32 bits SRAM operating in a FIFO fashion.
The procedure to initialize the boards is as follows:
1. read in all the setup files (.ini and .ch files), parse the files then create an array of “ghSetup” structures in the crate controller’s memory by calling “ecdr814gcReadSetup” in the startup script;
2. install a driver for each board by calling “ecdr814gcInstall”;

3. open the driver by calling “open”;
4. allocate data buffers in the crate controller’s memory;

5. set the buffer pointers in the driver to the buffers in the crate controller’s memory by calling “ecdr814gcSetBufferBrd”;
6. copy the desired setup from the “ghSetup” array to all the boards by calling “ecdr814gcCopySetupAll”;
7. set the channel-pair delays by calling “ecdr814gcIoctlCopysyncDelayAll”;

8. program all the Gray chips by calling “ecdr814gcProgramGrayAll”;

9. set up the daq conditions by calling “ecdr814gcRdSetupAll”;

10. set the trigger counters by calling “ecdr814gcSetNumTrigsAll”;

11. reset the boards by calling “ecdr814gcIoctlClearAll”.
Steps 4 through 11 need to be repeated when changing to a different operation mode.
After initialization, the boards need to be enabled by calling “ecdr814gcEnableSyncAll”. Then the boards can be disabled and read out by calling “ecdr814gcReadAll”. These two function calls form a complete daq cycle.
4.3 Operation of the Timing Generator Fanout Board
4.4 Within the Tevatron BPM system, the TGF serves two purposes:
1. decode the TCLK events transmitted through the Tevatron Event Clock system to provide arming signals and Acnet requests to the DA system;
2. decode the BSYNC events transmitted through the Tevatron Beam Sync Clock system, then apply appropriate time delays to provide a sequence of synchronization signals to 8 Echotek ADC boards.
4.5 It has 2 interrupt channels each with a separate multiplexer to select the interrupt source.
4.6 The TCLK decoder can be set to wait for up to 16 TCLK events, and generates a VME interrupt upon the receival of any of them. It stores the most recent event in a register for user reference. The procedure to set up the TCLK decoder is as follows:
1. install an interrupt handler for vector 198;
2. set one of the 2 IRQ Vector registers, e.g. Reg 1 at offset 0x60 for interrupt channel one, to fire at one of the 2 interrupt levels (5 & 6), e.g. 5, with an interrupt vector 198;
3. set the corresponding IRQ Source Mux register, e.g. offset 0x70, to choose the interrupt source to be TGF_SOURCE_TCLK (0x0A);
4. set the desired TCLK events in the TSG registers, offsets 0x80 through 0x9E – at power up, these registers are set to the invalid value of “0xFE”;
5. enable the TCLK decoder by writing to bit 8 of the Control And Mode register;
6. enable the interrupt by writing to bit 12 of the corresponding IRQ Vector register.
4.7 The timing part uses two timebases: the Tevatron turn marker event from the BSYNC system as a coarse clock, and the 53.104696 MHz Tevatron RF clock, multiplied by 2, as a fine clock.
4.8 The start of the synchronization sequence can be triggered by a turn scaler, or by the receival of a specified “start event”. The selection is made by a “start source” multiplexer, and the start can be delayed by a “pre-trigger delay” in units of “turns”. Through another multiplexer, the “trigger source”, the delay timer can be activated by the receival of the “start event” itself, or by the receival of the “start event” delayed by the “pre-trigger delay”, or by an the external input.
4.9 When the “activate” condition is met, or external trigger received, the TGF uses the Tevatron turn maker events as references, outputs 8 sequences of synchronization signals through 8 spigots. Each synchronization sequence can have its own 0.5-bucket delay with respect to the turn makers. In closed orbit mode, one sequence consists of only one pulse; in turn-by-turn mode, it has 8192 pulses with the same 0.5-bucket delay with respect to 8192 consecutive turn makers.
The procedure to set up the timing part is as follows:
1. install interrupt handlers, e.g. vector 160 for closed orbit mode and 161 for turn-by-turn mode;
2. set the Turn Event register;
3. for closed orbit mode, set the Turn Scaler/Modulus register; for turn-by-turn mode, set the Start Event register;
4. set the Gate Count register to 1 for closed orbit mode, 8192 for turn-by-turn mode;

5. set the other IRQ Vector register, e.g. Reg 2 at offset 0x62 for interrupt channel two, to fire at the other interrupt level, e.g. 6, with an interrupt vector 160, interrupt auto-clear “false” for closed orbit mode and interrupt vector 161, interrupt auto-clear “true” for turn-by-turn mode – when the auto-clear is “true”, the interrupt will disable itself after the first occurence;
6. set the other IRQ Source Mux register, e.g. offset 0x72, to choose the interrupt source to be TGF_SOURCE_PERIODIC (9) for closed orbit mode and to be TGF_SOURCE_START (1) for turn-by-turn mode;

7. write to the Control and Mode register to: enable the BSYNC decoder, the pre-trigger delay counter and the delay timer, set the Start Source to be Turn Scaler/Modulus for closed orbit mode and Start Event for turn-by-turn mode, set the Trigger Source to be Pre-Trigger Delay, and set the Single Strobe bit;
8. enable the interrupt by writing to bit 12 of the corresponding IRQ Vector register.
At present, the TGF is configured to output only one sync pulse for each closed orbit cycle. It is possible to output multiple sync pulses if the Gate Count register is set to a value more than 1. This way, a closed orbit measurement can be derived from a few turns of turn-by-turn data in the front-end processor, and the closed orbit mode and the turn-by-turn mode only differ in the start event and the gate count. This should eliminate the need to re-load the Echotek boards when switching modes, and hence significantly simplify the DA package.
5 Bibliography

[Cockburn] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

[Fowler] Martin Fowler, UML Distilled: A brief guide to the standard object modeling language, Addison-Wesley, 2003.

[Votava] Margaret Votava, et al. Tevatron Beam Position Monitor Upgrade Software Specifications for Data Acquisition, version 22, AD document #860.

[image: image35.png]

Fermilab/AD/TEV

Beams-doc-1067-v13

Date April 13, 2004

Tevatron BPM Software Design for Data Acquisition

L.Piccoli

M.Votava

D.Zhang

D.Charak

Introduction

References

Change Log

	Version
	Issue Date
	Description of Change

	1.0
	March 10, 2004
	Original

	2.0
	March 11, 2004
	

	3.0
	March 12, 2004
	

	4.0
	March 15, 2004
	

	5.0
	March 16, 2004
	

	6.0
	March 24, 2004
	

	7.0
	March 26, 2004
	

	8.0
	March 26, 2004
	

	9.0
	March 31, 2004
	

	10.0
	March 31, 2004
	

	11.0
	April 1st, 2004
	

	12.0
	April 2nd, 2004
	

	13.0
	April 13, 2004
	

Concurrence

Following persons reviewed and concur with the content of this document.

Steve Wolbers, Project Manager (/ /)

Bob Webber, Deputy Project Manager (/ /)

Jim Steimel, Technical Coordinator (/ /)

Brian Hendricks, Subsystem manager (/ /)

Following persons reviewed this document:

Jim Kowalkowski

Duane Voy

Charles Briegel

� EMBED Paintbrush Picture ���

2 ms

4 ms

6 ms

2 ms Interrupt

BPM Fast Abort Task

BPM Fast Abort Task

2 ms Interrupt

+4 ms

+2 ms

1 sec

BLM Fast Abort Task

BLM Fast Abort Buffer Access

+6 ms

8 ms

EchoTek Readout

BPM Slow Abort Task

BLM Fast Abort Task

BPM Fast Abort Task

TCLK $77

Fast Abort Buffer Access

EchoTek Readout

2 ms

TBT Done Interrupt

2 ms Interrupt

Turn By Turn Task

1 sec

1 sec + 2 ms

1 sec + 4 ms

1 sec + 6 ms

BPM Fast Abort Buffer Access

BLM Readout

BPM Slow Abort Task

BPM Slow Abort Buffer Access

EchoTek Readout

Turn By Turn Buffer Access

Control Task

EchoTek Configuration

� The recycler software has only one data acquisition task running at a time. When modes are switched, the control task starts the task for that new mode.

� The tasks depicted in the picture (swim lanes) do not necessarily represent how the system will be implemented. Functionality of tasks can be combined (e.g. the InjectionTbT and TurnByTurn could be one task).

� There can be a turn-by-turn request when the system is already in turn-by-turn mode. In this case, the system must halt the current measurement and restart it according to the new specification

2/1/05
PAGE
58
2/1/05

_1224013536

