Tevatron BPM ADC Board Testing, Version 1.0

[image: image8.wmf]

Fermilab/AD/TEV

Beams-doc-1114-v7
May 10, 2004

Tevatron Beam Position Monitor (BPM) Upgrade

EchoTek ADC Board Testing
DRAFT
Dehong Zhang, Vince Pavlicek, Margaret Votava
Fermilab, Computing Division, CEPA
Bob Webber, Jim Steimel
Fermilab, Accelerator Division
Abstract

This document outlines the plan and necessary procedures for the acceptance test of the modified EchoTek ADC board for the Tevatron Beam Position Monitor/Beam Loss Monitor (BPM/BLM) upgrade. All of these tests should have been exercised with the existing board, or well prepared with the expected modifications, before the 4 example boards arrive in early June. These tests should be completed within 2 weeks of the arrival of the new boards, and a conclusion reached regarding whether or not the new boards can meet our present and possible future needs without a re-layout.

3Overview

3Check the input impedance

4Verify VME access, perform EchoTek demo tests

4Verify the new multi-board driver works

4
9Perform the PREP quality control tests

11
11Check the accessibility to the FPGA firmware

While this document is in draft form, Dehong Zhang will be the editor. If you have suggestions or changes, use a copy of the document, turn on change tracking, and send the document to dhzhang@fnal.gov. He will integrate the changes into the database document. Thanks.

Overview

Compared to the current version, model “ECDR-GC814-FV”, the new EchoTek ADC boards, model “ECDR-GC814-FV-A”, will have the following modifications:
· front panel connectors from SMA to SMB;
· FIFO to SRAM for the channel outputs;
· VME interface chip from Cypress CY7C961 to Tundra Universe II (CA91C142).
With the 4 example boards, the SRAMs will be made like FIFOs to minimize the needs to change our daq software, including the driver, so the testing can quickly start. The following sections document a collective knowledge, mainly from the Recycler BPM project, about how we want/need/choose to test the new boards:

1. Check the input impedance;

2. Verify basic VME read and write, perform the demo tests with the original driver from EchoTek; With the outputs from the demo tests, we can check the DMA transfers, the ADC bits and their differential non-linearity, the noise level, the frequency response and the ability to access the whole SRAM (128K * 32 bits);
3. Incorporate necessary changes to Duane/Charlie’s “ecdrgc814multibrd” driver and perform their tests to verify the new multi-board driver works;
4. Perform the existing PREP quality control tests with the new “ecdrgc814multibrd” driver and repetitive external trigger;
·
5. Check the ability to re-program and update the FPGA firmware.

Here, tests 1 and 5 are independent of the others and hence can be performed with one of the boards while other tests are done with the 3 other boards, and done in the order listed. Test 2 is our first step and baseline because it uses only the original driver from EchoTek, with none of our modifications/additions. Test 3 can be run only when the original driver works, and when all our modifications/additions are done correctly. Test 4 is our pre-final tests with repeated hardware triggers and real time graphing.
·
Check the input impedance
Goal:

Check the deviations from 50 Ohm concentrating on the frequency range from 1 to 53 MHz.
Required Hardware:
· Network analyzer
· Power Supply
Required Software:

None
Performer:

Stefano Rapisarda
Date Exercise Done:

??
Time Allocated for Final Tests:

Half day
Status:

??
Verify VME access, perform EchoTek demo tests
Goal:

By doing basic VME read and write to the CSR, and by performing the demo tests of the original driver, we verify that the boards can be accessed and can perform in the way EchoTek describes, without any of our code involved. As an important by-products, the outputs from the demo tests enables us to check the DMA transfers, the ADC bits and their differential non-linearity, the noise level, the frequency response and the ability to access the whole SRAM (128K * 32 bits).

·

VME Access Tests:

Do a read and write to the CSR on the console

Demo Tests:

The original driver from EchoTek will come with a few example board setup files and a demonstration program so that the user can perform a few stand-along tests. With the current driver (for the current boards), there are 3 example setup files:

· “count.ch” for counting test where the board generates a fixed counting sequence,
bypasses the ADC, DDC and resampler, directly stores the data in the FIFO. VME D32 DMA is used to transfer the data from the FIFOs to the processor’s memory. The processor then writes out the data to 8 output files – one for each channel, which should contain the same sequential countings. Any discontinuity in the final countings would indicate problem in the digital data path including the FIFO and the VME transfer.
· “rawdata.ch” for testing the ADC output and the digital data path with D64 DMA transfers. Using a good quality, full scale (1.1 Vp-p) sine wave as input, we can check whether any ADC code is missing, check the differential non-linearity, check the noise level and partially check the FIFO memory. The frequency of the input sine wave should be low so we can see a smooth curve, and should be selected so that harmonics, aliased into baseband, do not coincide with the fundamental. We choose 3 MHz just to be the same as the PREP tests described below.
· “rcvrdata.ch” for testing the whole path including the ADC, DDC and resampler with D32 DMA transfers. In this test, a good quality, full scale (1.1 Vp-p) sine wave of 12.8 MHz is required as input. The total amount of decimation is 256, the final data output (I and Q) is a 10 Hz signal sampled at 312500 Hz.

In these 3 tests, the clock is set to run at 80 MHz. The board is set to take a software trigger and run in the “TRIGGER + BURST_COUNT” mode with the “BURST_COUNT” set such that the data fills the whole FIFO -- 512KB, for each channel. When the desired “BURST_COUNT” 32-bit words are acquired, the “Trigger Done (TDONE)” interrupt will be issued, and the DMAs started.
Required Hardware:
The BPM test stand in FCC3 including the following:

· Portable VME-64 crate

· MVME 2434 processor with ECSG-1R3ADC-PMC clock generator

· Tektronix TM5000A, with SG503 plug-in, sine wave generator

· HP 54542A oscilloscope
Required Software:

The original driver from EchoTek.

Performer:

Dehong Zhang, under supervision of Bob Webber and Vince Pavlicek

Date Exercise Done:

April 23
Time Allocated for Final Tests:

2 days

·
·
·
Status:
· Got the original driver for the current version of boards, built with small modifications to work around problems with the default path and automatically finding the “.ini” files;

· Modified the “.ini” files to point to our area instead of the disk on the EchoTek machine;

· Modified the “BURST_COUNT” in the “.ch” files so that the data fills up the whole FIFO (128k * 32 bits);

· Asked Denise Finstrom to set up a write area for “tbpmtst01”;
· Changed the boot script to set up the paths, load the driver and start the clock generator;

· On the command prompt of the console, typed the following:

ecdr814Demo_count("/write/Count_Test_01", 1, 0)
ecdr814Demo_rawdata("/write/Raw_Test_01", 1, 0)
-- 3 MHz to channel 0

ecdr814Demo_rcvrdata("/write/Rcvr_Test_01", 1, 0)
-- 12.8 MHz

Collected 8 (channels) + 8 + 8*4 (receivers) = 48 data files, ftp’ed to cdserver
· Made up 3 small LabView programs out of Duane’s original to analyze and graph the counting, raw and receiver data, example pictures follow:

[image: image1.png]! Count_test.vi Front Panel

Fle Edt Operate Took Browse Window telp

@] © 1] [zt Applcation Fort._|~

B

Counting data file to process:
% U:\EchoTek_Demo\Count_Test_01_ch0.dat

Data Points

Max Increment

Max Index

Min Increment

Min Index

262144

[x

[o

[x

[o

[image: image2.png]Raw ADC data file to process: # Data Points
% U:\EchoTek_Demo\Raw_Test_01_ch0.dat (& 262144

VLA

PV MY

00 1o s 10 s 10 a0 200

[image: image3.png]Raw_Test.vi Front Panel —[o) x|
Edt_Operate Tooks gronse windon_tielp
2 |& 1] [230t Application Font |~ | (B [T~

[
3
=

Hanning
Sampling Frequency First Point Last Point i

:[sooooooo o JM31071 o

Ll .IM“M.mmmMmmuuhMlm i Bt ot bt i el g
WHWIIII\WIIIIMIIWI\I\IHWlINW\WMIWWIIIlWWI III‘IIIIWWHNIWWIWUWIWWIWI\IWIIW .

OO0E+D 200E+6 40046 GOEHs BO0EH6 LOUENT 120547 140E47 L6OEHT LBOEH7 2.00E47 2020647 24047 260647 280647 S.00E47 320647 340647 O60E47 S80EH7 40047
Frequency (Hz)

Cusor0 oo Jssso b|melE- ‘ <8>

e0°

i o

[image: image4.png]Ho £ Operate_[oos_frowso Window
BE ZaptppliatonFot._ |~ =[S
Histogram Data
Vtest (p-p)
0.94 Ideal
Measured
100000
10000
4]
1001
10 !
8 1sdes
roccode

[image: image5.png]Fle Edt Operate Took Browse Window telp

S

> [@]© 1] [zt Applcation Fore._|

Differential Nonlinearity

16-)

Counts

i ”‘!

ADC Code.

e | H Al I‘\ \‘h‘ L ‘MH\‘ M‘ ‘ul.t \HHH B

Calculated B

16384

[image: image6.png]Fle Edt Operate Took Browse Window telp

DIe] @) 1] [zt remicationrort_ [~ 5[|2~ [0~
Receiver data file to process: # Data Points
% U:\EchoTek_Demo\Revr_Test_01_ch0_r0.dat (= 32768

1000 2000 3000 4000 SOD0 60DO 7000 BODO SOOD 10000 11900 12000 13000 14300 15000 16300 17000 13000 13000 20000 21000 22000 23000 24900 25000 26000 27000 25000 29000 30000 o0 327

Receiver Output sample
eursor o [15:00 230+, W 8

[image: image7.png]B Reve

Front Panel

Fle Edt Operate Took Browse Window telp
o[23pt Applcation Fort__|~ | [B | [aa |2~

Hanning

Revr output rate (Hz) First Point Last Point
312500 o EIET

on

18002

17007

160.0%

150.0%

Intensity (db)

Q00Es) 200+ 400+ GOOEHL BODEH LooE+2

120E+2

LavE+2 LeoE+2
Frequency (Hz)

LatE+2

Cursar 0

el iz @uav‘

200842

220842

240842

260842

280E42

300842

&1
-

· Created a cvs module “echotek_driver” to hold the current (ECDR-GC814-FV) driver and the preliminary driver for the new (ECDR-GC814-FV-A) boards. In the ECDR-GC814-FV subdirectory, one can also find the “Demo_outputs” and the “LabView” programs which can be used to process the output files.
Verify the new multi-board driver works
Goal:

Understand the modifications EchoTek introduces in their original driver to reflect the hardware changes, incorporate the necessary parts into Duane/Charlie’s existing multi-board driver for the current board, perform the checks and demo tests included in the multi-board driver and verify the new multi-board driver support normal operations.

Changes EchoTek Introduced:

Compared to the old original driver for the current board, EchoTek introduced the following changes:
· Removed “CY7C961_Transfer.cpp”, added “UniverseII.cpp”;
· “ecdr814gcDevCreate.cpp”: changed single board support to multi boards, changed hVME registers/VME Address mapping to UniverseII registers/VME Address mapping, added mappings for the 3(*8) other receiver channels, added FPGA registers/VME Address mapping, try to download the FPGA firmware if can not prob the board, init UniverseII VME interface;

· Added/changed some global variables in “ecdr814gcGlobals.cpp”;

· ecdr814gcInstallISR.cpp: changed CY7C961 ISR to UniverseII ISR, added Enable/Disable ISRs;
· ecdr814gcIntHandler.cpp: removed “cy7c961Good/BadIntHandler”;

· ecdr814gcIoctl.cpp: “diff” shows a lot of changes where a lot of them may be just different ordering and different tabbing/spacing; need careful compare;
· ecdr814gcRead.cpp: added reads for the 3(*8) other receiver sub-channels;

· ecdr814gcRemove.cpp: remove all the boards now;
· ecdr814gcScanFile.cpp: initialize all 4*8 buffers;
· added “ecdr814gcSetup.cpp”, “ecdr814gcErase/Program/Re/UnlockFlash.cpp”, “ecdr814gcTest/VarifyFlash.cpp”, “ecdr814gcVerify.cpp”;
· Removed “ecdr814gcDevCreateVI.cpp”, “ecdr814gcReadThroughput.cpp”, “ecdr814gcSingleReadTransfer.cpp”;
· Changed many “LONG” to “INT32” in many files.
Changes Duane/Charlie introduced:

The original driver from EchoTek for the current board can only support one board. The new driver for the new board may also support just one board at a time. Duane and Charlie had to make the following modifications/additions to achieve multi-board support
and smooth operations:
· change all the “printf” statements to “logMsg”s;
· change the “pointer” for one-board to array for multi-boards;
· change the ISR so that DMAs are done one after another, instead of return then re-activate the task;
· add EIEIO_SYNC and cacheInvalidate.
A detailed list is as follows:

ecdr814gcClose.cpp
ND

ecdr814gcDevCreate.cpp
small D, single board to array

ecdr814gcDrv.cpp
ND

ecdr814gcFunctions.cpp
No such file or directory

ecdr814gcGlobals.cpp
very small D, single board to array

ecdr814gcInitialize.cpp
ND

ecdr814gcInstall.cpp
ND

ecdr814gcInstallISR.cpp
medium D, mainly single board to array

ecdr814gcIntHandler.cpp
medium D

ecdr814gcIoctl.cpp
large D

ecdr814gcOpen.cpp
small D, printf to logMsg

ecdr814gcProgramGray.cpp
medium D, SYN_DLY handling

ecdr814gcReadbackGray.cpp
medium D

ecdr814gcRead.cpp
large D

ecdr814gcRemove.cpp
very small D, single board to array

ecdr814gcScanChannel.cpp
medium D, mainly printf to logMsg

ecdr814gcScanFile.cpp
small D

ecdr814gcSingleReadTransfer.cpp
ND

ecdrgc814test.cpp
No such file or directory

Key_Hit.cpp
small D

getFile.cpp
very small D, comment out 1 printf

EC_Get_Option.cpp
small D

sortString.cpp

ND

CY7C961_Transfer.cpp
medium D, coordinate many boards

tstbpm.cpp

echotest.cpp

adc.cpp

RACElink_MS.h

PLX_9080.h

EC_Shared.h

EC_Rcvr_6620.h

EC_Error.h

acnetheaders.h
acnet

ecdr814gcDrv.h
medium D

EC_Driver.h
small D

CY7C961.h

bpmdefs.h

machine.h

adc.h

Tests:
· “ecdr814gcIoctlShowBrd” verifies the setup of a given board
· “start_loop” and “end_loop” to test a single board in a loop
· “start_loopall” and “end_loopall” to test multi- boards in a loop
Required Hardware:
The BPM test stand in FCC3 including the following:

· Portable VME-64 crate

· MVME 2434 processor with ECSG-1R3ADC-PMC clock generator

· Tektronix TM5000A, with SG503 plug-in, sine wave generator

· HP 54542A oscilloscope
Required Software:

New driver from EchoTek, and the existing multi-board driver for the current board
Performer:

Dehong Zhang, under supervision of Bob Webber and Vince Pavlicek

(may need help from Charlie Briegel, Dinker Charak and Margaret Votava)

Date Exercise Done:

May 6
Time Allocated for Final Tests:

5 days

Status:
· Obtained from EchoTek a preliminary driver for the new board;
· Compared the original driver for the current board with the current multi-board driver, discussed with Charlie about, and hence clarified, what Duane and Charlie did with the current board;

· Hopefully get a compile-able version within a week, then present to Charlie for a review.

Perform the PREP quality control tests

Goal:

To run PREP quality control tests successfully on the new hardware, with new multi-board driver and repetitive hardware triggers
Tests:
· A full scale (1.1 Vp-p) sine wave of 3 MHz to test the ADC bits
· A filter test to check the DDC
Required Hardware:

The BPM test stand in FCC3 including the following:

· Portable VME-64 crate

· MVME 2434 processor with ECSG-1R3ADC-PMC clock generator
· Accelerator controls fiber optic repeator

· Accelerator controls clocks box
· Tektronix TM5000A, with SG503 plug-in, sine wave generator
· HP 8110A pulse generator
· HP 54542A oscilloscope

·
Required Software:
· New multi-board driver
· “tstbpm” package and the corresponding LabView host program from Duane Voy

Performer:

Dehong Zhang

Date Exercise Done:

April 23
Time Allocated for Final Tests:

2 days
Status:
· Got “tstbpm” package and LabView program from Duane, built/installed;
· Processor boots from “fndaut”, instead of “fecode-bd”, to avoid the fire-walls;

Uses name and IP address for “oneppc02”, need to register for its own name

and IP address if this is going to be long term;
· Exercises working since April 16, with small glitches;

Verify that the FPGA firmware can be modified and reprogrammed.
Goal:

Check to see whether we can load and run the FPGA firmware through the processor

Required Hardware:
· The BPM test stand in FCC3
Required Software:
· Known FPGA firmware
· A VxWorks loader program

Performer:

Dehong Zhang and Mark Bowden designate
Date Exercise Done:

Code can be compiled and simulated before the new boards arrive. A plan for the test code is needed.
Time Allocated for Final Tests:

Half day
Status:
Got an example loader program, able to make a working version once the board specific details become available – maybe the week of April 26
� EMBED Paintbrush Picture ���

� We may be able to ask the EchoTek hardware engineer to also implement the final FPGA firmware so that the SRAMs are configured in the way we want for the final setup.

11
5/10/04

_1220927168

