
16040812
DCV

Managing Embedded System Software
with the

RFIES Development Tools

Page 2 of 20
Revised 16040812 Revised 16040812
DCV

Table of Contents

2.0 The RFIES Software Development Model ... 3	

3.0 Projects .. 4	

3.1 Front-end Projects ... 5	

3.2 Shard Library Projects .. 6	

4.0 The Embedded System Development Tools ... 6	

4.1 Tailoring the Tool Environment ... 6	

4.2 Setup Tool – use: setup projectName [targetName [referenceType]] 8	

4.3 Target Tool – use: target [targetName] ... 9	

4.4 References Tool - use: references [production|test|development] 12	

4.5 Help Tool - use: helpme .. 13	

5.0 Building Software Modules with make .. 14	

5.1 Make Parameters ... 17	

5.2 Make Rules ... 17	

6.0 Environment Variables ... 19	

6.1 Developer Supplied Environment Variables .. 19	

6.2 Utility Environment Variables .. 19	

Page 3 of 20
Revised 16040812 Revised 16040812
DCV

1.0 Background - The Wind River Tools

The Accelerator Division uses Wind River’s Tornado, an integrated software
development environment for VxWorks to develop software for its control system front-
end computers. Tornado resides on the development node nova.fnal.gov and employs the
GNU compiler, linker and support utilities to translate C and C++ source code files into
object modules suitable for execution on front-ends. Tornado’s GNU tools are referred to
as cross development tools because they are designed to generate code on one machine,
that is intended to execute on another machine of different architecture. Various shell
environment variables and command line arguments configure the GNU tools for the
cross-translation process. Such attributes as target CPU instruction set, code optimization
level and object file format must be specified.

The AD Controls Department provides a family of shell scripts which configure the GNU
tools for the various front-end architectures used within the control system. These scripts
are easily accessible through ‘env_xxx’ shell aliases that are defined when logging-in to
nova. Many of the necessary GNU tool command line arguments are uniquely tied to
front-end code performance and must be provided by the developer. GNU’s powerful
make utility is employed to orchestrate the code translation process by invoking the
various tools in the correct sequence and with the appropriate command line arguments.
To accomplish this the make tool processes a collection of rules, dependencies and value
definitions provided by the developer in a text file named Makefile.

To generate executable code for any given target system the developer must write a
Makefile appropriate for the target’s architecture, invoke the proper env_xxx shell alias
to configure the GNU tools and finally invoke GNU make to run the compiler and linker
against project source code files. Furthermore, if the project software supports multiple
target architectures, as is the case for many general purpose shared libraries, this process
must be repeated for each one of the targets. Most of this tedious process is automated by
the RFIES embedded software development tools.

2.0 The RFIES Software Development Model
The RFIES embedded software development tools (hereafter referred to as “the tools”)
support a set of project management practices that ensure a stable and consistent
mechanical process for developing front-end software. Software is developed under a
three release level model. The three release levels are referred to as: ‘development’,
‘test’ and ‘production’. The tools assist the developer by automating the mechanics of
the process at each release level.

Development release level software is generally in the early stages of development, or
may be mature code that is being updated with new features or improved in some other
way. At this level the code is usually in a repeated edit – compile - test phase and is not
ready to be presented to users. Testing at this level is at the unit level and often involves
integration testing with related software modules. When the software is believed to be
feature complete and has passed all integration testing it is ready to be promoted to the

Page 4 of 20
Revised 16040812 Revised 16040812
DCV

test release level. The development release level phase does not require that the code be
committed to the repository.

Test release level software has undergone rigorous unit level and integration testing and
is ready to be tested in the target environment. Often this is referred to as beam or
machine testing. This is the first time the code is run with related production level
modules under actual operating conditions. Many times the complexity of the system is
high and testing under simulated conditions is not practical or for that matter even
technically possible. If test release level operation is unsuccessful the code is returned to
the development release level for further work. The test release level phase does not
require that the code be committed to the repository.

When the code has been demonstrated to be correct and is accepted by project
management it is ready to be promoted to the production release level. The project code
must be committed to the repository before it can be promoted to the production release
level. After committing the project to the repository a make production command will
install the final product in the appropriate production destination directory. See the note
“Creating CVS Projects” for details on placing project code into the CVS repository.

Software that is at any of the three release levels may be compiled and tested against
other modules that are themselves at any of the three release levels. Some combinations
may be meaningful, others not so much. It is up to the developer to understand the
dependencies and interactions between various modules at differing release levels. The
progression from one release level to the next is supported by the tools but the process is
not strictly enforced. It is up to the developer to be fastidious about adhering to the three
level development/release cycle.

3.0 Projects
A ‘project‘ is a functionally cohesive collection of one or more software modules
containing source code files as well as any related support material. There are shared
library projects that contain low level support features such as I/O drivers, and there are
front-end projects containing top level software that may use zero or more of the
supporting shared libraries. There is really little technical difference between the two
project types other than the way that they are linked, named and deployed. A third
project type called a DSP project is nearly identical to the shared library project differing
mainly in the way the library is deployed.

By convention projects are given a name (in all lower case) that indicates their intended
functionality. For example the miscvxworks project contains miscellaneous support code
for the VxWorks kernel while the millrf project contains the Main Injector Low Level RF
front–end code. A list of all existing project names can be obtained with the ‘listp’ tool,
and you can determine if some derivative form of a project name string has already been
used in the software repository with the ‘incvs’ tool.

Page 5 of 20
Revised 16040812 Revised 16040812
DCV

By convention projects are developed in a sandbox directory having the same name as the
project and located within ~/esd/src. At developer determined milestones the contents of
this sandbox are committed to the code repository for version control and ‘safe’ storage.
New project templates are created automatically with the ‘setup‘ tool. Setup is also used
to check existing projects out of the software repository and for rapid movement between
projects within the developer’s sandbox area. See section 4.2 for more details on the
setup tool.

Every project must contain a ‘Targets‘ file which lists all possible build targets, and a
‘Makefile‘ file that specifies special project build dependencies and any target specific
specialization. Both files are treated as any other source code file and reside with the
project’s source code in the sandbox directory. See section 4.3 for a description of the
target tool and the Targets file, and section 5.0 for a description of the Makefile file.

When a project is released at a given release level its public header files are placed in a
common header file pool and if it is a shared library its object module is stored in a
common library file pool. Front-end object modules are always stored in the front-end’s
unique download directory. Shared library header and object pool directories have the
release level encoded in their respective directory paths. Front-end object modules have
the release level encoded in their file name proper. See sections 3.1, 3.2 and 4.3 for more
information on object module installation.

Projects are built against other projects at any one of the three release levels and then
installed at any one of the release levels. For example one could build a development
level library against test level support libraries. The ‘refdev[elopment] ‘,‘reftest‘, and
‘refprod[uction] ‘ commands configure the release level of reference files and support
libraries while the ‘make development‘,‘make test‘ and ‘make production‘ commands
build the project at the specified level. See section 4.4 for a description of the
development, test and production command aliases, and section 5.2 for a more on the
make installation process.

3.1 Front-end Projects
A project is configured as a front-end project by including the line:

#include $(ESD_INC_DIR)/download.mk
near the end of the project’s Makefile. Front-end projects are special in that their object
modules are installed (on nova) in the /fecode-bd/vxworks_boot/fe/xxx directory tree. By
convention the front-end’s network node name, ACNet node name and project name are
identical and contain six or less lower case characters. For any project xxx the make
development, test and production commands place devxxx.out, testxxx.out and
libxxx.out, respectively, in the /fecode-bd/vxworks_boot/fe/xxx directory. This directory
should contain any front-end related script and configuration files. A sister /fecode-
bd/vxworks_write/fe/xxx directory supports front-end created files when necessary. Any
public header files will be installed in the same directories used by shared libraries as
described in section 3.2 below. See the note “Downloading Front-ends from fecode-bd”
for details on creating and using front–end download directories.

Page 6 of 20
Revised 16040812 Revised 16040812
DCV

3.2 Shard Library Projects
A project is configured as a shared library project by including the line:

#include $(ESD_INC_DIR)/install.mk
near the end of the project’s Makefile. Shared library projects are perhaps the most
common. Shared library object modules are installed (on nova) in the /fecode–
bd/vxworks_boot/fe/ORG/LIB directory tree where ORG represents the developer’s
organization (e.g., rfies, rfiinst) and LIB is one of devlib, testlib or lib depending upon the
release level. Public header files for the library are installed (on nova) in the
/home/rfies/esd/ORG/INC directory tree where INC is one of devinc, testinc or inc
depending upon the release level.

4.0 The Embedded System Development Tools
The tools assume the bash shell – use of other shells is not recommended. Developers
can temporarily switch to the bash shell by simply calling it from any other shell. If bash
is not your default shell, making it so will require the assistance of nova’s System
Administrator.

Developers who are new to nova can easily configure new accounts for use of the tools
by running the ‘useresdconfig‘ script to automatically create the standard developer
account directory structure and obtain copies of all required configuration files. A related
note “Configuring Accounts on Nova” describes the procedure for configuring your
account for use with the tools.

The tools are located in the /home/rfies directory on nova. The software repository used
by the tools is managed by CVS with its exact location transparent to developers. The
shell environment $CVSROOT points to the repository root directory. The default
configuration of the tools supports the UN*X bdrfinst group. Members of other UN*X
groups may tailor the tools as described in section 4.1 below.

4.1 Tailoring the Tool Environment
Developer access to the tools is established by copying the file
‘/home/rfies/esd/examples/useresdsetup.bash’ to a local scripts directory, optionally
editing the copy to establish any user specific requirements, and executing the updated
copy with the shell’s source command. There are four definitions in the
useresdsetup.bash file that may be modified by the developer:

• USER_ORGANIZATION must contain the developer’s organization name.
This variable helps specify the project location within the source code repository and
installation directories. Options include rfies and rfiinst – others may be added in the
future. By default USER_ORGANIZATION is rfies.

• USER _SCRIPT_DIR must point to a directory containing ‘callback scripts’
used by the tools to tailor tool operation to meet special project needs. By default
USER_SCRIPT_DIR is set to ~/esd/scripts.

• USER _SANDBOX_DIR must point to a directory containing one subdirectory
for each of the developer’s projects. The convention is to have a subdirectory for each

Page 7 of 20
Revised 16040812 Revised 16040812
DCV

project with the same name as the project (i.e., project foo would be in a directory called
$USER_SANDBOX_DIR/foo.) By default USER_SANDBOX_DIR is set to ~/esd/src.

• USER _REPOSITORY must contain either ‘CVS’ or ‘SCCS’. This variable
tells the tools which source code repository the developer prefers and allows the tools to
create aliases to simplify use of the repository. By default USER_REPOSITORY is set
to ‘CVS’.

Figure 1 represents an example useresdsetup.bash script containing definitions for a
developer who happens to be providing values identical to the defaults. By the way, the
name useresdsetup.bash is not sacred; developers may rename their copy as desired
because they are the only ones referencing this file.

#!/usr/local/bin/bash

Id: %M% %I% %G% %U%
Id: Id

Description:
Script to set up the rfies group's embedded system
development tools on behalf of the developer.
This script should be sourced by the caller.

set up the developers' development organization

export USER_ORGANIZATION=rfies

set up where tools find:
project_xxx scripts

export USER_SCRIPT_DIR=~/esd/scripts

set up where tools find:
directories, with same name as projects, containing project source

export USER_SANDBOX_DIR=~/esd/src

set up developers repository preference (e.g., CVS, SCCS or SCM)

export USER_REPOSITORY=CVS

set up embedded system development tools

source /home/rfies/esd/scripts/esdsetup.bash

End of script

Figure 1

Page 8 of 20
Revised 16040812 Revised 16040812
DCV

The final operation in the useresdsetup.bash file is to run the global tools configuration
script, once the script has been run the tools and software repository will be fully
configured and available for use.

4.2 Setup Tool – use: setup projectName [targetName [referenceType]]
The ‘setup‘ tool activates a project for development. In its most basic form:
‘setup projectName’, the tool is used to navigate to the project sandbox directory and
configure the tools for the specified project. Setup must be used to move to an existing
project or to move from one project to another (i.e., don’t cd into a directory expecting
the tools to work.) The optional targetName parameter specifies the target to be built in
all subsequent make operations. If targetName is not specified the most recently built
target will be used. If the project sandbox is clean (i.e., no previous build, or the project
has been made clean) the first target listed in the project’s Targets file will be used. The
optional referenceType parameter specifies the release level of referenced header and
object file pools to be used in subsequent make operations. If referenceType is not
specified the most recently used reference files will be used, and if the sandbox is clean
the production reference files are used. NOTE: If use of the referenceType parameter is
desired then the targetName parameter must also be specified in the order shown above.
See sections 4.3 and 4.4 for an alternative and perhaps more commonly used mechanism
for specifying targets.

If the setup tool does not find projectName in the developer’s sandbox it will look in the
software repository and if found there, setup will offer to check the project out into the
correct sandbox. If projectName is not found in the repository setup will offer to create a
new project with that specified name in the developer’s sandbox directory. This scheme
allows new projects to be created with the setup tool by simply typing ‘setup
newProjectName.’ In this situation setup will ask for the project type and offer to install
template project files.

In summary the setup command does the following for the developer:

1 - configures environment variable $PROJECT,
2 - sources $USER_SANDBOX_DIR/$PROJECT /setup-$PROJECT iff it exists,
3 - configures environment variables $TARGET and $VARIANT,
4 - creates handy aliases for using the repository with the project,
5 - does a cd to the project sandbox,
6 - runs the target tool and
7 - runs the references tool.

In item #2 above if an optional script named setup-xxx, where xxx is the project name,
exists the setup tool will source it. This allows the user to provide any project specific
definitions or shell environment variable modifications. The following example is taken
from the special project that supports the transition from the normal user sandbox
environment to the special environment required for EPICS development.

Page 9 of 20
Revised 16040812 Revised 16040812
DCV

Id: Id

Description:
File setup-epics.
Script to affect the transition from the normal environment
to the special EPICS development sandbox environment.

export USER_SANDBOX_DIR=~/esd/src/epics
echo "-t-> Switching to sandbox $USER_SANDBOX_DIR"
unalias make
alias make='gmake'

End of script

Figure 2

4.3 Target Tool – use: target [targetName]
When run without the optional targetName parameter the ‘target’ tool displays the
currently configured target. When specified the targetName parameter allows the
developer to establish a new target for subsequent make operations. Given a targetName
value the tool searches the project’s Targets file (described below) for a matching target
specification. If a match is found the target tool places the new target name in a project
configuration file named ‘Target’ and then configures the development environment as
needed. Since the Target file is in the make dependency list for all project object
modules this will guarantee that the project will be rebuilt on the next ‘make’ after any
target value changes.

Targets File
The user must provide a file named ‘Targets’ for each project. Each line of the Targets
file not beginning with a # is treated as a target definition. The first target definition
becomes the default (i.e., after a make clean.) Target definitions contain at least two
fields and have the following format:

TARGETNAME CONFIGSCRIPT [MAKEARGS]
Where TARGETNAME is the fully qualified target name, CONFIGSCRIPT is the
absolute path to an environment configuration script for the specified target and the
optional MAKEARGS is zero or more arguments to be passed to make on each make
operation.

The target definition TARGETNAME field is constructed with the following syntax:

targetName[-buildVariant][_buildTag] (in that order)
Where the required targetName provides the target’s base name which is placed in a
make variable as ‘TARGET=targetName, and a compile-time definition ‘–DTARGET
targetName’ to support conditional compilation and target dependent installs. By
convention target base names are all capitalized and reflect some significant

Page 10 of 20
Revised 16040812
DCV

characteristic of the intended target such as its CPU type or SBC model name (e.g.,
PPC603, MVME2434 or MVME5500.)

The optional –buildVariant extension provides this target’s name variant which is placed
in a make variable as ‘VARIANT=buildVariant’, and a compile-time definition ‘–
DVARIANT buildVariant’ to support conditional compilation and target variant
dependent installs.

The optional _buildTag extension is used to differentiate multiple target definitions
having the same target base name and variant but different configuration scripts (i.e.,
when building the same shared library target for two different operating system versions.)
The _buildTag extension value is not exposed to either make or the compiler.

The tools provide a standard header file ‘targets.h’ that developers may #include in their
project source files in support of target and variant conditional compilation. The file
contains standard macro definitions for the standard supported targets You may view the
file by typing the following shell command:

more `findinc targets.h`

Figure 3 represents the content of a typical Targets file.

When a build variant is not provided in in a target definition the variant takes on the
default value which is the current project name, so in the project mylib the target names
MVME5500_64 and MVME5500-mylib_64 would be identical. Target variants also
have an impact on the installation destination of the project’s object code.

For shared library projects the variant becomes part of the library object file name. Given
the project mylib a target with no variant will be installed in the shared library directories
as mylib.out while a target with the variant –mu2e will have the name mylib-mu2e.out.

For front-end projects the variant can modify the object file name and/or the object file’s
destination directory. Given the project myfrontend a target with no variant will be
installed in the front-end’s download directory as

Id: Id

MVME5500_64 /usr/local/vxworks/scripts/wind6.4_mv5500.bash
MVME2434_64 /usr/local/vxworks/scripts/wind6.4_mv2434.bash
MVME5500-debug_64 /usr/local/vxworks/scripts/wind6.4_mv5500.bash DEBUG=1
MVME2434-debug_64 /usr/local/vxworks/scripts/wind6.4_mv2434.bash DEBUG=1
MVME5500_55 /usr/local/vxworks/scripts/wind55_mv5500.bash
MVME2434_55 /usr/local/vxworks/scripts/wind55_mv2434.bash
MVME5500-debug_55 /usr/local/vxworks/scripts/wind55_mv5500.bash DEBUG=1
MVME2434-debug_55 /usr/local/vxworks/scripts/wind55_mv2434.bash DEBUG=1

Figure 3

Page 11 of 20
Revised 16040812
DCV

…/fe/myfrontend/dev|test|libmyfrontend.out while a target with the variant –mu2e will
have the name …/fe/myfrontend/dev|test|libmyfrontend.out.

The target definition CONFIGSCRIPT field contains the absolute path to the
configuration script used to initialize the tools for the target’s unique processor and
version of VxWorks. The available scripts can be determined by typing the following
shell command:

alias | grep env

The target definition MAKEARGS field contains zero or more make variable definitions
of the form xxx=yyy that will be passed to make on each make operation. The following
MAKEARGS values affect all projects and variants:

DEBUG=xxx - sets compiler options -g -O0 and define -DDEBUG=xxx
TEST=xxx - sets compiler define -DUNIT_TEST=xxx

The following MAKEARGS value affects front-end projects and variants only:
OBJ_FORM=xxx – adds options for install object file name and directory

Where xxx is one of: project, variant or target.

Advanced Topic – Front-end target variant install locations
By introducing the concept of short and long form object file names the OBJ_FORM=xxx
make arguments provide more options for a front-end project’s object file name and
install directory than those mentioned in the discussion of variants above. In general
short form names take the form project.out while long form names have the form project-
variant-target.out and are installed in different directories based upon the value provided
for xxx. The OBJ_FORM options include:

OBJ_FORM=project - Enables a short form object file name for any non-variant target
and long form object file names for target variants. Installs all object files in the project's
download directory.

Short form: …/project/dev|test|libproject.out
 Long form: …/project/dev|test|libproject-variant.out

OBJ_FORM=variant - Enables a short form object file name for any non-variant target
and long form object file names for target variants. Installs any non-variant object file in
the project's download directory, and variant object files in the variant's download
directory.

Short form: …/project/dev|test|libproject.out
Long form: …/variant/dev|test|libproject-variant.out

OBJ_FORM=target - Enables a long form object file name for all targets. Installs any
non-variant object file in the project's download directory, and variant object files in the
variant's download directory.

Short form: …/project/ dev|test|libproject-target.out
Long form: …/variant/dev|test|libproject-variant-target.out

Example – Front-end target variant install locations

Page 12 of 20
Revised 16040812
DCV

Given the front-end project ‘myfrontend’, the following example Targets file target
definitions produce the associated Installed object files for a 'make production' operation.

• Default object file name/location with OBJ_FORM not specified:

 MVME5500_t1 /scriptPath/wind6.4_mv5500.bash
 Installed object file: /bootPath/fe/myfrontend/libmyfrontend.out

 MVME5500-variant_t2 /scriptPath/wind6.4_mv5500.bash
 Installed object file: /bootPath/fe/variant/libmyfrontend.out

• Enhanced object file name/location with OBJ_FORM=project

 MVME5500_t3 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=project
 Installed object file: /bootPath/fe/myfrontend/libmyfrontend.out

 MVME5500-variant_t4 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=project
 Installed object file: /bootPath/fe/myfrontend/libmyfrontend-variant.out

• Enhanced object file name/location with OBJ_FORM=variant

 MVME5500_t5 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=variant
 Installed object file: /bootPath/fe/myfrontend/libmyfrontend.out

 MVME5500-variant_t6 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=variant
 Installed object file: /bootPath/fe/variant/libmyfrontend-variant.out

• Enhanced object file name/location with OBJ_FORM=target

 MVME5500_t7 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=target
 Installed object file: /bootPath/fe/myfrontend/libmyfrontend-MVME5500.out

 MVME5500-variant_t8 /scriptPath/wind6.4_mv5500.bash OBJ_FORM=target
 Installed object file: /bootPath/fe/variant/libmyfrontend-variant-MVME5500.out

4.4 References Tool - use: references [production|test|development]
When run without the optional parameter the ‘references’ tool displays the currently
configured object and header file reference release level. When specified the parameter
allows the developer to establish a new object and header file reference release level for
subsequent make operations. The production, test and development release levels are
supported. When given a reference release level the tool stores it in a project
configuration file named ‘References’ and configures the development environment to
build against files at the specified release level. Each time a target is built the tools use
the References file to determine which release level reference files to use. If the
References file is not present when they are run the setup and make tools will create a

Page 13 of 20
Revised 16040812
DCV

new file specifying the production release level. Since the References file is in the
dependency list for all project object modules this will guarantee that the project will be
rebuilt after any references value changes. For convenience the following shorthand
aliases are provided:

 Alias Equivalent references command
 ‘refs‘ ‘references‘
 ‘refprod‘ or ‘refproduction‘ ‘references production‘
 ‘reftest‘ ‘references test‘
 ‘refdev‘ or ‘refdevelopment‘ ‘references development‘

4.5 Help Tool - use: helpme

Since additional tools are likely to be added to the system over time the ‘helpme‘
tool prints terse but hopefully helpful hints about the various available tools and their
parameters. Figure 4 contains typical text produced by the helpme tool.

builddevelopment - do a make development for each target specified in Targets
buildnull - do a make without install for each target specified in Targets
buildproduction - do a make production for each target specified in Targets
buildtest - do a make test for each target specified in Targets
dumpesd - list all development tool related environment variables
finddsp fileName - find specified file in DSP directories (dsp, testdsp and
devdsp)
findinc fileName - find specified file in include directories (inc, testinc and
devinc)
findlib fileName - find specified file in library directories (lib, testlib and
devlib)
findproducts fileName - find specified file in PRODUCTS_INCDIR
findsrc fileName - find specified file in user's sandbox directory
findvx fileName - find specified file in VxWorks directory structure
helpme - list help (this list) for ESD tools
incvs pattern - check to see if 'pattern' is part of any project name in the
CVS repository
listp [orgName] :
 listp - list all projects in the repository belonging to group rfiinst
 listp orgName - list all projects in the repository belonging to members of
the specified organization
lists - list all projects in the user's sandbox
listt - list all targets for the current project
make [project=xxx] [target=yyy] [references=production|test|development]
[file=dspObjectFileName] [makeTarget] :
 make help - print help for makeTarget rules
 make install - print help for make install rules for current target
readme - do a more of any README file in the cwd
refdev - switch header and object file references to development for future
makes
refprod - switch header and object file references to production for future
makes
reftest - switch header and object file references to test for future makes
references | refs [production|test|development|default] :

Page 14 of 20
Revised 16040812
DCV

 references - display release level for header and object files referenced
during makes
 references production|test|development|default - set the release level for
header and object files referenced during makes
search searchPattern [dsp|fe|shared|all] - search source repositories for
definition of searchPattern
searchheaders searchPattern [inc|testinc|devinc] - search rfies headers for
(grep style) searchPattern
searchproducts searchPattern - search PRODUCTS_INCDIR headers for (grep style)
searchPattern
searchsrc searchPattern - search user's sandbox directory for (grep style)
searchPattern
searchvx searchPattern - search VxWorks headers for (grep style) searchPattern
setup projectName [targetname] [production|test|development] :
 setup projectName - cd to projectName sandbox & set up default target
 setup projectName targetName - cd to projectName sandbox & set up target
targetName
 setup projectName targetName production - cd to projectName sandbox & set up
target targetName using production headers
target [targetName] :
 target - display target for subsequent compiles
 target targetName - set up target targetName for subsequent compiles
targs | targets - list all targets defined in the Targets file
xpv& - X Window Project Manager/Viewer (run in background)

Figure 4

5.0 Building Software Modules with make
The conversion of collections of C and C++ source code files into useful executable
modules is accomplished with the aid of the GNU make utility. Make provides a
mechanism for codifying the rules by which software modules are built in a Makefile,
and then automatically applying those rules to invoke the language compilers and linkers
as necessary to produce final object modules. Many software modules contain code that
can be used in more than one application or be executed on more than one processor.
With the help of make these general software modules can easily be rebuilt for each such
target.

Tornado provides a set of make include files to simplify the process of creating Makefiles
but unfortunately these files support only single target builds. The functionality of the
Tornado make include files has been extended by the tools’ build.mk make include file,
to provide rules for compiling mixed C and C++ source code files and for creating object
modules for any specified target. The tools’ build.mk file is included by reference in the
project Makefile which needs only to provide high-level specifications of target module
composition. This allows the Makefile to be quite uncomplicated in appearance.

Figure 5 contains an example Makefile for a project supporting more than one processor
and target. The example appears to be quite lengthy because it includes examples of

Page 15 of 20
Revised 16040812
DCV

definitions for multiple processors and targets. Careful inspection reveals that most of
the definitions in the example are null and can be removed.

Id: %M% %I% %G% %U%
Id: Id

Description:
Makefile for projects.

specify sources which must be compiled
C++SOURCES = $(wildcard *.cpp)
CSOURCES = $(wildcard *.c)
specify all header files to be installed in the includes directory
HEADERS = $(wildcard [!_]*.h)

specify all startup script files to be installed in front-end
download directory
SCRIPTS = $(wildcard *startup)

specify compiler parameters which affect all builds
LIBRARIES =
INCLUDES =
DEFINES =
CFLAGS =
C++FLAGS = $(CFLAGS)

specify additional parameters which affect specific versions of VxWorks
where xxx is eg, 55 or 61
VW_xxx_C++SOURCES =
VW_xxx_CSOURCES =
VW_xxx_HEADERS =
VW_xxx_SCRIPTS =
VW_xxx_LIBRARIES =
VW_xxx_INCLUDES =
VW_xxx_DEFINES =
VW_xxx_CFLAGS =
VW_xxx_C++FLAGS = $(CPU_xxx_CFLAGS)

specify additional parameters which affect specific processors
where xxx is eg, MC68040 or PPC604
CPU_xxx_C++SOURCES =
CPU_xxx_CSOURCES =
CPU_xxx_HEADERS =
CPU_xxx_SCRIPTS =
CPU_xxx_LIBRARIES =
CPU_xxx_INCLUDES =
CPU_xxx_DEFINES =
CPU_xxx_CFLAGS =
CPU_xxx_C++FLAGS = $(CPU_xxx_CFLAGS)

specify additional parameters which affect specific targets
where xxx is eg, MVME2434 or MVME5500

Page 16 of 20
Revised 16040812
DCV

TARGET_xxx_C++SOURCES =
TARGET_xxx_CSOURCES =
TARGET_xxx_HEADERS =
TARGET_xxx_SCRIPTS =
TARGET_xxx_LIBRARIES =
TARGET_xxx_INCLUDES =
TARGET_xxx_DEFINES =
TARGET_xxx_CFLAGS =
TARGET_xxx_C++FLAGS = $(TARGET_xxx_CFLAGS)

specify additional parameters which affect specific variants
where xxx is eg, recycler or debug
VARIANT_xxx_C++SOURCES =
VARIANT_xxx_CSOURCES =
VARIANT_xxx_HEADERS =
VARIANT_xxx_SCRIPTS =
VARIANT_xxx_LIBRARIES =
VARIANT_xxx_INCLUDES =
VARIANT_xxx_DEFINES =
VARIANT_xxx_CFLAGS =
VARIANT_xxx_C++FLAGS = $(VARIANT_xxx_CFLAGS)

use character '@' for quiet makes, leave blank to detail make process
OUT = @

End of developer portion of makefile -- include xxx.mk include files
below

include build.mk # rules for building projects
include install.mk # rules for installing projects into libraries

End of makefile

Figure 5

An example Makefile may be copied from
$(ESD_BASE_DIR)/examples/project/Makefile.

The make tool passes the following definitions on the compiler command line so that
your source code can determine the environment for which it is being compiled:
 • -DCPU=wwww,
 • -DOS_VERSION=xxxx,
 • -DTARGET=yyyy and
 • -DVARIANT=zzzz
where wwww could be MC68020 or PPC603, xxxx could be VW_55 or VW_64, yyyy
could be MVME2434 or MVME5500 and zzzz could be rtbpm or mbpm for example.
The full set of CPU and OS_VERSION definitions is dependent upon the available

Page 17 of 20
Revised 16040812
DCV

Tornado tools. The TARGET and VARIANT definitions are provided by the developer
in the Targets file.

5.1 Make Parameters
The make tool supports optional command line parameters for modifying the default
make process:

make [project=xxx] [target=yyy] [references=production|test|development] \
[file=dspObjectFileName] [makeTarget]

The project parameter tells the make system which project is being built. The value
provided will override the PROJECT environment value. This switch is intended for
non-interactive use in other tools.

The target parameter tells the make system which target is being built. The value
provided will override the TARGET environment value. This switch is intended for non-
interactive use in other tools.

The references parameter tells the make system which reference files to include:
 • references=production – use the production reference files.
 • references =test – use the test reference files.
 • references =development – use the development reference files.
If these switches are not used the default action is to use the production reference files.

The file parameter tells make explicitly which object file to install in cases where there
may be more than one object file per project:
 • file=fileSpec[.ext] – install the specified object file.
If this parameter is not used the default action is to install projectName.ldr. If the
extension to the fileSpec operand is not specified .ldr will be assumed. This switch
applies only to DSP object module install operations.

The makeTarget parameter tells make which of the standard make rules to process. See
section 5.2 for a description of the make rules.

5.2 Make Rules
The make tool provides a set of rules for building projects and another set for installing
projects.

The build rules provided by build.mk direct the compiler and linker to produce object
modules supporting the specified CPU, OS version and target. The build rules include:

• make – Build (i.e., make all) the project for the currently specified target.
• make clean – Remove all generated files (i.e., .o, .a, .doc, and munching files)
from the cwd.
• make doc – Make document file for all source code files in the project.
• make echo – Print a list of the project’s header, source code and script files.

Page 18 of 20
Revised 16040812
DCV

• make help – Print help information about the make rules.
• make info – Print information about the current project configuration.
• make librarydirectory – Create production, test and development library
directories on fecode-bd for the current target. If the directories already exist
nothing will be altered. This is useful when building for a previously undefined
target.
• make lint – Run the lint program on all project C and C++ source code files.
• make map – Produce linker map file.
• make <file>.cppsym – List all preprocessor symbols for the specified file.
• make <file.ext>.doc – Make document file from the specified file.
• make <file>.lint – Run the lint program on the specified file.
• make <file>.out – Compile and munch single file into <file>.out.
• make <file>.pp – Produce preprocessor output only for the specified file.
• make <file>.s – Produce assembly source listing for the specified file.

The install rules, provided by install.mk and dspinstall.mk, use shell commands to copy
the project’s header and object files into the appropriate libraries. The install rules
include:

• make downloaddirectory – Create a download directory on fecode-bd for the
current project. If the directory already exists nothing will be altered. This is
useful when setting up a new front-end for downloading.
• make librarydirectory – Create production, test and development library
directories on fecode-bd for the current target. If the directories already exist
nothing will be altered. This is useful when building for a previously undefined
target.
• make install - Print help information about the make install rules.
• make installscript – Install all specified script files into the project’s download
directory.
• make production – Install the project’s object file in the production library and
its header files in the production reference files. Also create symbolic links from
the production libraries to the test libraries. In the case of projects that are to be
installed into download directories, the object module is placed in the download
directory and a symbolic link is made from libxxx.out to testxxx.out. This rule
effectively promotes the project from test to production.
• make test – Install the project’s object file in the test library and its header files
in the test reference files. In the case of projects that are to be installed into
download directories, the object module is placed in the download as testxxx.out
rather than libxxx.out.
• make development - Install the project’s object file in the development library
and its header files in the development reference files. In the case of projects that
are to be installed into download directories, the object module is placed in the
download as devxxx.out rather than libxxx.out.

A complete list of make rules can be produced by issuing the ‘make help[me]’
command.

Page 19 of 20
Revised 16040812
DCV

6.0 Environment Variables
The tools define and reference several environment variables. The variable name,
location defined and a short description of each variable follows.

6.1 Developer Supplied Environment Variables
The following environment variables are specified in the developer’s
~/esd/scripts/useresdsetup.bash file. The tools will provide standard default values if
none are provided.

USER_ORGANIZATION
Provides the name of the organization for which the tools are configured (e.g., rfies or
pbares). This organization is used by the tools to properly locate include and library
directories, and to search the repository for projects related to that organization.

USER_SCRIPT_DIR
Points to location where the tools can find (optional) developer supplied tool callback
scripts.

USER_SANDBOX_DIR
Points to location where the tools can find sandbox directories for the developer’s
working set of projects. By convention each directory in the sandbox has the same name
as the project that it contains.

USER_REPOSITORY
Indicates which repository the developer wishes to use (e.g., CVS, SCCS or SCM.)

6.2 Utility Environment Variables
The following environment variables are initialized by the tools for the convenience of
the developer.

ESD_BASE_DIR
Initialized in esdsetup.bash.
Points to the base directory for tool operations. This directory contains subdirectories
containing all tools, scripts and the SCM code repository.

ESD_DOWNLOAD_DIR
Initialized in esdsetup.bash.
Points to the base directory of the project download directories. Each front-end project
has a download directory containing the operating system, startup script and project
object module to be downloaded at boot time.

ESD_SCRIPT_DIR
Initialized in esdsetup.bash.

Page 20 of 20
Revised 16040812
DCV

Points to the directory containing tool scripts.

ESD_DSP_DIR
ESD_TESTDSP_DIR
ESD_DEVDSP_DIR
Initialized in esdsetup.bash.
Points to the base directory of the DSP loader libraries.

ORG_LIBDSP_DIR
Initialized in esdsetup.bash.
Points to the base directory of the DSP shared libraries.

ORG _LIB_DIR
ORG _TESTLIB_DIR
ORG _DEVLIB_DIR
Initialized in esdsetup.bash.
Points to the base directory of the project object libraries.

ORG _INC_DIR
ORG _TESTINC_DIR
ORG _DEVINC_DIR
Initialized in esdsetup.bash.
Points to the directory containing the project public header files pool.

PROJECT
Initialized in setup.bash. Contains the name of the current project.

TARGET
Initialized in setup.bash. Contains the currently active target name for the current project.

VARIANT
Initialized in setup.bash. Contains the currently active variant for the current project.

A complete list of environment variable definitions can be obtained with the ‘dumpesd’
command.

End.

