
New SBD 

Alvin Tollestrup  11 24 04

1.  Some properties of new SBD.

àNoise.

The  noise  can  be  measured  from  data  in  the  abort  gaps.   The
SBD puts out a signal that is corrected for base line shift and for
cable dispersion.  The bins are 0.2 ns wide.

Figure 1
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In[355]:= 8Sqrt@Variance@noise@@All, 2DDDD,
Mean@noise@@All, 2DDD<

Out[355]= 80.000648648, −0.000234141<
The RMS noise on the data with 16 sweeps is 0.6 mV.  This can a
by looking at the front and back end of the pulses just after accelera

Figure 2
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Superimposed proton bunches at start of HEP
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In[352]:= 8Mean@
Sqrt@Variance@
Table@dat@p@kDD@@m, 2DD,8m, 1, 10<, 8k, 1, 36<DDDD,

Mean@
Sqrt@Variance@
Table@dat@p@kDD@@m, 2DD,8m, 90, 95<, 8k, 1, 36<DDDD<

Out[352]= 80.000582864, 0.000700445<
àCentroid accuracy.

The  following  graph  shows  the  variation  in  position  of  proton
bunch 1 during a 30 hour store.  The units along the bottom are
0.5 hours.
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Figure 3
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The  next  figure  shows  the  distance  between  adjacent  pbar
bunches just after HEP

Figure 4

5 10 15 20 25 30 35

395.425

395.43

395.435

395.44

395.445

395.45

4 Wed041124.nb



àReflections

There is a reflection at 2.5 buckets behind the main pulse caused
by a splitter box.  It is very small.  analysis later.

Analysis functions

A set of analysis functions for n=10 is shown below.

Figure 5
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A set of expansion functions for n=10
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The  following  analysis  requires  the  number  of  functions  to  be
fixed.   The ones  shown above have been selected to give equal
divisions  in  time.   In  the  past  we  have  used  equal  divisions  in
action.   We  note  that  the  functions  are  symetrical  about  the
origin.   The  input  pulse  should  also  be  centered.   As  shown
above,  the  center  of  the  pulse  can  be  measured  to  about  5  ps.
Also, it is assumed that the input pulse has a zero base line, but
there  is  noise  as  well  as  a  baseline  shift  possible.   In  order  to
center  the  pulse  to  better  than  0.1  ns  (half  the  bin  width)  or
correct the base line, the input must be processed. 

Analysis

y[x]=⁄n=1
Nf Cn fn@xD

The  data  are  y[xiD  at  the  points  xi.   The  answer  for  the  least
squares fit can be put in the form

C  =  M . y
Ø

Where x is the input vector of measurements, M is a matrix that
is  number  of  measurements  wide  and  number  of  functions
deep...ie nonRectangular.   It is only a function of the expansion
functions evaluated at the measurement points.  Once calculated
it can be used for any input signal.  
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Example:  24 functions

Fix the number of functions to 24 and the data points to 97 and
we  will  use  a  gaussian  input  whose  sigma  =  1.6  ns  which
matches the rms width of the proton pulses at HEP start.

à tvec linear

Figure 6
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Gaussian input pulse

Figure 7
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The fitted coefficients vs action or the phase space density.

Figure 8
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The  24  coefficients  for  0.6  mv  of  gaussian  noise  alone.   This
plot  is  generated by  generating  100 input  cases  and then taking
the RMS value for each coefficient.   The response is  linear and
so  comparing  with  Fig  7  the  noise  contributes  about  a  1%
uncertainty.

Figure 9
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The  figure   shows  the  correlation  of  where  the  various
coefficients  are  most  sensitive  to  base  line  noise.   The  24
coefficients have different colors.  The horizontal is the index of
xi.   The center of the rf bucket is in the center of the plot and it
extents from +/- 9.4 ns.
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Figure 10
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Fit residuals versus  xi index number.  See comment under fig 9.

Varying the time divisions.  Still 24 
functions

We have  studied  various  bid  width  divisions  shown  in  the  plot
below.  The results from the linear division are shown above.
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Figure 11
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The plot below compares the different choices in regard to their
noise sensitivity (see fig 8 above}
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Figure 12
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The  fit  residuals  with  the  same  color  scheme  are  below.   Note
the spike in the blue.  This seems to be caused by an unfortunate
beating  between  the  position  of  the  data  points  relative  to  the
divisions  for  the  functions.   It  results  in  a  poor  fit  to  the  data
around t=0. The gaussian is .25 volts high so a residule of 1% is
2.5 mV.
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Figure 13
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Test with real pbar data.

The following shows the  sdame data using  a reap pbar  pulse at
the start of HEP.  The set of 36 is shown below and the analysis
uses the smallest one.

Figure 14
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Coefficients for pbar[36]

Figure 15
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Figure 16
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Comparisions of the various choises for the time division.  Same
color  code  as  above.   Note  the  blue  spike  and  see  the  plot
following for its effect.

Figure 17

0 20 40 60 80

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

Figure 18

0.250.50.75 1 1.251.51.75 2

1.1×10−9

1.2×10−9

1.3×10−9

1.4×10−9

1.5×10−9
Linear Bin Width

16 Wed041124.nb



Use 47 functions with 189 data 
points at 0.1 ns

àGaussian input

First,  the  results  with  a  gaussian  input.   Figure  19  is  the  phase
space  density  and the  next  is  the  residuals.   The  residuals  have
been decreased by a factor of two and the fit if to 0.4%

Figure 19
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Figure 20

From In[248]:=

0 25 50 75 100 125 150 175

−0.001

−0.0005

0

0.0005

0.001

Linear time 0.1 ns

47 functions divided at 0.2 ns

Gaussian pulse

18 Wed041124.nb



àproton pulse in

Figure 21
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Residuals for proton pulse.

Figure 22
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àpbar pulse in

Figure 23
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Figure 24
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àSymetry of pulses

Figure 25
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Figure 26
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Effect of off center pulse.

We  will  use  a  gaussian  pulse  slightly  off  center  to  study  the
sensitivity  to  centering.   The  following  curve  shows  the
fractional  deviation  of  the  coefficients  for  a  0.4  ns  shift.   This
shift is acurately propotional to the square of the shift.  Only the
first out to 8 eV-sec are shown.  The effect is much smaller for a
sigma of 2.5 ns.

Figure 27
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àShifted proton pulse by o.2 ns

Comparison of residuals after shifting the proton pulse by 0.2 ns.

Figure 28
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Compare the coefficients of shifted and unshifted pulse vs action.
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Figure 29
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Figure 30
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