ANALOG BOX DESCRIPTION Stan Bristol Rod Gerig October 20, 1982 ### 1. O INTRODUCTION This document describes the Analog Box portion of the Beam Position Monitor system (BPM) for the Fermilab Energy Doubler. The Analog Box is the hardware that resides between the RF Modules and the Multibus hardware. For a general description of the BPM system see Operations Bulletin #888, FERMILAB ENERGY DOUBLER BEAM POSITON MONITOR SYSTEM, Rod Gerig, 7/82. The initial section of this document describes the Analog Box from the perspective of a block diagram. The next section builds on the block diagram description but provides a circuit description. Throughout this document signal names will be followed by a slash (/) if the signal is logically true at a TTL "O" state. For instance SNEN/ means that SNapshots are ENabled when this signal line is at a TTL level of O volts. A signal line will be called Asserted or Active when it is Logically true. To negate a signal means to make it logically false. ### 2.0 BLOCK DIAGRAM DESCIPTION The Analog Box contains two major circuits. One of these is the daughter card of which there is one for each detector. The second is the mother board of which there is one per Analog Box. ### 2.1 Analog Box Daughter Card Refer to Fig. 1. The position and intensity signals from the RF modules are sent directly to each daughter card. The purpose of the daughter card is to provide a computer readable value of these signals at card edge, measured in a beam triggerable manner. To do so it must: - o Provide a means of arming and disarming the trigger circuit. - o Provide a trigger circuit with a variable intensity threshold, that produces a gate for the S/H. - Contain fast gatable Sample and Hold (S/H) amplifiers for both position and intensity signals. - o Make sure that the processor is informed if the trigger circuit falsly triggered. - o Provide circuits for getting the analog voltage in the correct range for the Analog to Digital Converter (A/D). In the case of the intensity signal this includes transforming the voltage, which is linearly proportional to the intensity, into a signal with a logarithmic response. - Provide a fast A/D which upon command will digitize either position or intensity. - o Provide a means of reading out the desired value, either position or intensity. - 2.1.1 Daughter Card Arming The arming of the daughter cards—is under control of the mother board with the ARM/ and DISARM/ pulses being bussed to all cards simultaneously. The S/H gate—generator will disarm—the—card at the leading edge of the gate to prevent further triggering. The FLAG signal (FLAsh Gate) must be asserted (which—it—always—is during Snapshots) to arm the daughter card. Whenever FLAG—is—not—active—the—daughter—card—is—disarmed, regardless—of the state of the ARM/ and DISARM/ lines. More will be said about the origin of these control lines in the description of the motherboard. - 2.1.2 Daughter Card Triggering And Gate Generation At the heart of the triggering circuit is a comparator which receives intensity signal at one input and a settable threshold at the other. A portion of the logical output is fed back to the threshold input to provide stability at intensities near the threshold voltage. The output of the comparator called BIP/ (Beam Is Present) is sent back to the motherboard, but more importantly, its leading edge triggers the gate generator. The duration of the gate depends on the choice of modes. If batch mode is selected the gate will be 200 nanoseconds, and if bunch mode is selected, 40 nanoseconds. The gate generator has the responsibility of reporting on the validity of the measurement. It does this by setting a line, THAGL/ (Track and Hold Amplifier Gate Latch) which when active indicates that BIP/ was active throughout the gate. In other words the intensity must be greater than the threshold level during the entire gate for THAGL/ to be asserted. The motherboard sends a pulse, ACLR/ prior to each arming which clears THAGL/. An additional line from the motherboard is called CHEN (CHannel ENable). This signal, when negated, prevents the comparator from firing, and forces THAGL/ into an inactive state. - 2.1.3 Sample And Hold Amplifiers The gate from the gate generator passes through a level shifter, an isolating pulse transformer and is applied to the gate input of two FET switches. These switches allow the input position and intensity signals to charge the S/H storage capacitors. - 2.1.4 Signal Conditioning The position signal from the RF modules covers a range of +/+ 2.2 volts. The A/D will digitize an input signal in the range of 0 to \pm .5 volts. A resistor network provides level shifting and attenuation. The intensity signal is applied to a logarithmic amplifier which consists of a matched pair of transistors used in a transdicide configuration in the feedback loop of the amplifier. - 2.1.5 Daughter Card Digitizing The conditioned signals are coupled to the A/D through a second set FET switches. The selection of which switch is on is made by a line called INSEL/ (INtensity SELect). INSEL/ is negated throughout Snapshot data taking, thereby always selecting position. A START CONVERT pulse from the the motherboard prepares the A/D for conversion, and 11 cycles of the 10 MHz clock are applied to the clock input of the A/D to perform the conversion. - 2.1.6 Data Readout The 8-bit output of the A/D appears at both output buffers. The position buffer is a transparent latch, so that under Snapshot conditions when only position information is needed, assertion of POS STROBE/ will place the position data on the data bus. In Flash mode when both position and intensity data are needed, LPOS/ (Latch POSition) must be asserted after the conversion of the position signal to store the data for a later POS STROBE/. Then INSEL/ is asserted and the intensity signal is converted. Intensity data is then available by asserting INT STROBE/. ## 2 2 Motherboard Block Diagram Description Refer to Fig 3. The motherboard is divided into four functional groupings. - Read/Write registers which contain primarily downloaded data. - Address decoding for data registers on the daughter cards. - 3. Snapshot control circuits. - 4. Flash timing and control circuits. Flash control and Snapshot control share some common circuits. - 2.2.1 Read/write Registers There are five registers (six bytes) of downloaded data used by the Analog Box. The registers and their uses are described below. A list of addresses is found in Appendix A. - o Intensity Threshold This 8 bit register provides input for a D/A converter which in turn provides the analog signal used by each daughter card as the threshold voltage at the comparator. The actual voltage used by the comparator is divided down on the daughter card. - o Miscelleanous Bits This register contains 2 R/W control bits and 3 read only bits used for diagnostic purposes. - BIT O Batch/Bunch control. Batch = O. This signal is bussed to all daughter cards where it is used to set the length of the S/H gate. - BIT 1 FTO/ (Flash Time Out) Described below. - BIT 2 SNARM (SNapshot ARM) Described below. - BIT 3 FIP (Flash In Progress) Described below. - BIT 4 Unused - BIT 5 Unused - BIT 6 Unused - BIT 7 Proton or antiproton control. PBAR(antiproton) = 1. This signal which indicates measurement of either protons or antiprotons is used by the Flash timing circuits and additionally is made available to external hardware on the back of Analog Box via a BNC connector. This signal line will be called PBAR (antiprotons indicated by TTL high) - Dead Channel Mask This is a 16 bit register requiring two read or write operations to access. Actually only 12 of the bits comprise the mask, each bit is sent to its corresponding daughter card where it becomes CHEN (CHannel ENable). A signal line, BPDR/ which is discussed later is routed to the MSB of the byte containing only 4 bits of the mask. This read only bit is used for diagnostic purposes. - o Flash Width As will be discussed later, the arming of the daughter cards in the Flash mode of operation is gated so that precise timing can be specified. The width of the gate is under host control, and the 8 bit value is stored in this ragister. One LSB equals 1 microseconds. - o Flash Delay The application of this register is similar to the Flash Width register except this specifies a delay used before any gates are generated. One LSB equals .1 microsecond. 2.2.2 Address Decoding For Data Registers — All of the registers which contain beam oriented data reside on the daughter cards. The Multibus hardware or software can access this data directly by specifying its address (See Appendix A for address specifications). The motherboard decodes the addresses and generates the strobes mentioned earlier in discussing the daughter cards. In addition to the strobes, the decoding hardware generates control signals to enable a bus driver which puts the data on the dataway to the Multibus, while at the same time disabling the bus tranceiver which connects the R/W registers to the dataway. The motherboard also allows readout of the 12 THAGL/ bits which are used to indicate a valid reading. This is accomplished in two different ways. One of the ways the reading is done is via a set of two octal inverting buffers which place the set of THAGL/ bits on the data lines when the appropriate adresses are selected in a read operation. The so called THAG register is read in this manner after a Flash. The second way the THAGL/ bits can be read uses a 12 to 1 inverting multiplexer and a seperate data line to Multibus. The same address lines which generate the position strobes select the corresponding THAGL/ line and place it on the THAGR line to Multibus. This in effect becomes a nine bit read operation, and is the technique used in reading Snapshot data. 2.2.3 Snapshot Control - Although this section of the motherboard description is called Snapshot control it is somewhat a misnomer. The process of taking Snapshot data is under Multibus control with the motherboard acting as a slave generating the appropriate signals upon command. Snapshots are enabled when the motherboard receives an enable on SNEN/ (SNapshot ENable). If there is no beam detected when SNEN/ is asserted, the arming process begins immediatly. The presence of beam is determined by a signal called BPOR/ (Beam Present OR) which is the ORing of all daughter card BIP/s. If BPOR/ is active no arming will occur until it is negated. Note that all detectors must simultaneously report 'no beam' before the arming process can begin. Note also that BPOR/ is sent back to Multibus where its assertion negates SNEN/ and begins timing the process of digitizing and reading the data. Once the motherboard detects the assertion of SNEN/ and the negation of BPOR/ the arming process begins. This consists of generating an ACLR/ pulse to clear the THAGL/ bits, and generating the ARM/ pulse. A one-shot is triggered at this time which will generate a DISARM/ pulse after it times out. This is used only when beam does not arrive in the expected amount of time. At this time the daughter cards are sampling the position signal and the motherboard is waiting for Multibus to send a CVEN (ConVert ENable). When this pulse arrives the motherboard responds by generating a START CONVERT pulse which is sent to all daughter cards, and then gates 11 cycles of the 10MHz clock to each A/D chip. At this point the motherboard's contribution to Snapshot control is over, Multibus will now come around and read the position data and the THAGL/ bits. Throughout this process the control lines INSEL/ and LPOS/ remain negated. 2.4 Flash Control - Whereas Snapshot control was in the hands of Multibus, the Flash data taking process is essentially controlled by the motherboard. The trigger pulse for a Flash Data frame appears at the Analog Box on a data line called FLAT/ (FLAsh Trigger). The leading edge of FLAT/ asserts both FIP and FIP/ (Flash In Progress). The assertion of these signal lines terminates the Snapshot process, both in Multibus and on the motherboard, and sets the motherboard up for Flash data taking. The trailing edge of FLAT/ triggers the generation of the ACLR/ and ARM/ pulses. The arming if the daughter cards in Flash mode is more involved though, than for Snapshots. A separate FLAG (FLAsh Gate) must be generated for each daughter card allowing for the delays in beam travel, and signal travel from the detectors to the BPM. This gate must be asserted on each card for the card to effectively be armed. The generation of these gates is the job of the box on the block diagram called Flash Timing. The assertion of FIP loads two sets of count down counters with the downloaded values of Flash Dalay and Flash Width. The 10MHz clock is immediately applied to the Flash Delay counter and when it has counted down a "common flash gate" called FLASH WIDTH/ is asserted. This gate remains active while the Flash Width counter counts down. FLASH WIDTH/ must be translated into individual FLAGs for the daughter cards, and this is accomplished on a separate plog-in card called the Flash Trigger Distribution Card. The FTD card receives FLASH WIDTH/, the 10MHz clock, and the PBAR FLASH WIDTH/ becomes the input to a set of 8-bit parallel-out serial shift registers clocked by the 10 MHz clock. The outputs are made available to a set of jumper wires so that a given detector may receive its Flash Gate from any output over a range of 1.5 microseconds. The PBAR line is used to control 2 to i data selectors so that different delays can be established to look at antiprotons. The outputs of the data selectors essentially become the FLAGs. The circuitry for generation of individual FLAGs was put on a separate card because the distribution is unique for different service buildings. Thus Analog Boxes can be changed and the proper distribution can be maintained by replacing the FTD card. Once the FTD card has negated the last FLAG, it asserts a signal line called ENDF/ (END of Flash) which notifies the motherboard that all Daughter Cards should now have valid data stored in their S/H circuits. A DISARM/ pulse is sent to all Daughter Cards, and a shift register, acting as a state processor is activated, clocked with a 1.6 microsecond clock. This processor steps through the following tasks at the times indicated, with respect to the assertion of ENDF/. - 0.0 us. Assert FTD/ (Flash Time Out) which lets Multibus know that A/D conversion is about to begin. - 1.5 us Generate a convert enable pulse. This will cause the control circuitry to send a START CONVERT pulse and the GATED 10MHz clock to the Daughter Cards to digitize the position data. - 3.2 us Generate both LPOS/ to latch the position data, and INSEL/ to place the intensity signal at the A/Ds input. - 8.0 us Generate a second convert enable pulse, this time digitizing the intensity signal. The extra time between these two states allows the intensity signal to settle. ## ED BPM ANALOG BOX: October 20, 1982 ### 9.5 us Negate INSEL/. At this point the motherboard has completed the control of the Flash data taking process. Mutibus must come around and read the positions, intensities and the THAG register. When it is finished it will assert TW1/ (sorry, no acronym) which negates FIP and resets any remaining control lines (LPOS/,FTO/) from the Flash data taking. Snapshot data taking will resume with the next SNEN/. ### 3.0 CIRCUIT DESCRIPTION The circuit description follows the same format as the block diagram description. # 3.1 Circuit Description For The Daughter Card The Analog Box duaghter card schematic diagram is Fermilab drawing number 1680.00-ED-158407. - 3.1.1 Daughter Card Arming The ARM/ pulse from the motherboard sets—the Flip Flop (FF) U3A to set Q.—U3A is reset either by the rising edge of the S/H gate which clocks—a 'O' through, or by DISARM/—which clears—U3A.—The Q output of U3A is ANDed in U1B with FLAG to form the 'composite arm' level for the daughter card. - 3.1.2 Daugnter Card Triggering And Gate Generation The Daughter Card is triggered by the negative going intensity signal. A NE529 comparator receives the intensity signal at one input, and a threshold level at the other input. The threshold level at the input to the comparator is reduced by a factor of 20.6 from the motherboard threshold level. The positive going output from the comparator is used to provide hysteresis into the threshold input. For control purposes the negative going output is controlled by CHEN. A TTL 'O' on CHEN disables this output. The arm level developed by USA appears as the J input to USA, a negative edge triggered J-K Flip Flop (75112). USA is clocked by the negative going edge of the comparator, so that the arm level appears at the G output, where it becomes the S/H gate. The length of this gate is determined by UIA, which generates a clear pulse for USA. The inputs to UIA, which acts as a negative logic OR gate, are the independent clears for Batch mode and Bunch mode. These two clear pulses are derived in the following manner. The negative going output of the comparator triggers USA, a 7LS123 one-shot. The pulse length of USA is set to ~200 nanoseconds which determines the gate length for Batch mode operation. The trailing edge of the Q/ output triggers USB, which delivers a short negative going pulse to U1A. This becomes the Batch mode clear pulse. The leading edge of the Q/ output from USA is delayed 40 nanoseconds by an RC network and then used to clock U2B. The J input to this FF is the BATCH/ signal line. If this signal line is set high, for Bunch mode operation the output the Q/ output will go low, clearing U2A in Bunch mode. If BATCH/ is asserted (TTL low) this clear pulse will not be generated. The Flip Flop U3B is used to generate the THAGL/ bit. The ACLR/ pulse from the motherboard clears U3B. The positive going output from the comparator appears as the D input to U3B. The Q/output from U2A is used to clock U3B. Thus, the trailing edge of the 5/H gate clocks the state of the positive going output of the comparator through as THAGL/. Valid beam is therfore defined as an intensity signal which exceeded the threshold, and is still greater than threshold at the end of the S/H gate. Note that the Thagl signal is enabled by CHEN in U1 and then inverted to become THAGL/. The motherboard is informed about the state of the comparator via signal line BIP/. BIP/ is the negative going output of the comparator stretched by U5. 3.1.3 Sample And Hold Amplifiers — U14 is a quad low "on" resistance FET switch. Its characteristics are such that if the gate voltage is maintained negative with respect to the source, it is "off" and if positive it is "on". The magnitude of the source to drain "on" resistance depends in part on how large the source to gate voltage is. To achieve fast sampling times it is necessary to have a small charging time constant for the 220 pf storage capacitors. The pulse transformer, besides providing a 20 volt turn on pulse, also allows keeping the gates quiescently at 5.0 volts (i.e. "off") by tieing the secondary center tap to 5.0 volts. The transformer also provides an opposite polarity gate pulse for cancelling capacitive feed thru to the intensity port (C1 trimmer), pedestal cancellation (C2 trimmer) at the storage capacitor, and BATCH/BUNCH convergence of the low intensity signal lavels. These compensations are only necessary for the Intensity channel. Q1 is used to get a low Z driving source for the transformer primary and also for current gain. Two sections of U8 are paralleled for increased current capabilty. The large primary pulse current is supplied by the 1 MFD capacitor and it is charged by a constant current source (Q2). Using a constant current source protects the pulse transformer primary if for some reason Q1 should become permanently latched on. Both the Intensity and Position inputs have 50 ohm terminations on the P.C. board. Also both inputs are driven by 50 ohm sources and therefore the total FET S/H charging Z is 25 ohms. The "on" resistance of the SD-5000 (U14) is typically 25 ohms. Therefore the charging time constant is 11 nanoseconds. U13 and U15 are FET input Op Amps connected as followers and therefore allow long hold times with negligible droop. Although the slew rates of U13 and U15 are typically only 9 volts / microsecond, A/D conversions are not done until the outputs have settled. 3.1.4 Signal Conditioning — Since the Position input signal ranges between $\pm/\pm 2.5$ volts and the A/D chip (U6) requires 0 to ± 0.5 volts, both a factor of ten attenuation and a level shift are needed before going to the A/D analog input. Both of these requirements are met with a passive resistive network at the output of U13. The U13 offset adjust pot. allows calibrating a 0.0 volt Position input signal to be equal to a hex 80 digital output. Since the Intensity signal is expected to cover a 2.5 to 3 decade range, and since the A/D conversion is limited to 8-bits, it was deemed necessary to use a logarithmic conversion between the intensity S/H and the A/D chip. This is accomplished by U9 and U12 Op Amps which have diode connected transistors (2N2O6O) as feedback elements. This generates an output from U12 that is typically 60 millivolts per decade change of input current. U9 is used as a reference log output and also cancels the large (typically -2.5 mv/deg C) forward temperature coefficient of the log feedback elements. The ourput of U10 is 2.5 times the difference between U9 and U12 outputs. The U15 offset adjustment pot allows calibrating the low intensity end (i.e. 10 mv) and the U10 offset adjustment pot allows calibrating the middle intensity range (i.e. 100 mv). 3.1.5 Daughter Card Digitizing — The conditioned position—signal is applied to the source input of switch U14C, and the conditioned intensity signal is applied to the source—input of U14D. The drain outputs of these switches are connected together and tied to the A/D input. The switches are controlled from signal line INSEL/, by gates U8D, U8E, and U8F so that only one switch can be on at a time. The bipolar levels—needed—by—these—switches—is provided by Q3 and Q4. The actual digitizing is done by U6, a TRW 1001 chip which is a fast, successive approximation 8-bit digitizer. U6 requires a reference voltage which is derived by taking one tenth of the Analog Box minus 5 volt line. The START CONVERT pulse, and the 10 MHz clock for digitization are provided from the motherboard as needed. 3.i.6 Data Readout - The 8 data lines from the A/D are bussed to the inputs of U4, a 'LS373 transparent latch, and to U7, an octal line driver. The output of U4 will follow the inputs as long as the Output Control pin is asserted, and the Enable G pin is held high. On the daughter card the Output Control is driven by POSITION STROBE/ from the motherboard and the Enable G pin is driven by LPOS/. When reading Snapshot data (position only) LPOS/ is kept high so that the outputs track the inputs, and the data is placed on the dataway when the POSITION STROBE/ pulse is decoded. When LPOS/ is asserted, U4 will latch the position data at the outputs. The outputs of U7 always track the inputs, but in practice the Gate Control pins, conected to INTENSITY STROBE/, are only asserted after intensity data has been digitized. ### 3.2 Motherboard Circuit Description The Analog Box motherboard schematic diagram is Fermilab drawing number 1480.00-ED-158400. 3.2.1 Read/Write Registers - The Read/Write registers physically are U4, U5 ,U7, U8, U20, U21, U22, U23, U24, U25, U26, and U27. Each register consists of a 'LS374 octal latch and a 'LS244 line driver. Data on the data bus is latched into the 'LS374 when its clock pin is strobed. The strobe pulses for the 'LS374s are generated by address decoding chip U19, a 'LS138 3-to-8 line decoder which is enabled by dataway signal WST/. The data to be written is coupled through to the Analog Box data bus by U46 and U47, 'LS243 bus tranceivers which are set to the 'write' direction by datway line WAD. The outputs of the latches are made available to the hardware that requires the data, and to the inputs of the 'LS244 line drivers. The line drivers place the data back on the data bus when their output control pins are asserted. The address decoding for read operations is done by U17, also a 'LS138 3-to-8 line decoder, which is enabled by an output from U18. The additional logic is needed since there are many more read registers in the Analog Box than write registers. More will be said about address decoding for reading data registers in the next section. The intensity threshold is converted to an analog signal by U28, an AD7533JN 10-bit DAC with the two least significant bit inputs grounded. Its current output is converted to a voltage output by Op Amp U13 which also includes a 2N3906 transistor in the feedback loop. This provides the drive capability necessary for servicing up to 12 Daughter Cards. The desired $\pm i$. O to ± 4 . O volt threshold range (divided on the Daughter Cards) is achieved by first getting a 0.0 to ± 5 . O volt range out of U28 (using a ± 5 volt reference) and then offsetting by 1 volt with an adjustable current into the Op Amp summing point. 3.2.2 Address Decoding For Data Registers — The decoding of the address lines to generate the INTENSITY STROBE/ and POSITION STROBE/ pulses needed by the Daughter Cards utilizes two levels of decoding chips. The first level is U18, the 'S139 dual 2-to-4 line decoder mentioned in the last section. One of these decoders uses address lines A2 and A3 to select one of four 3-to-8 line 'LS138 decoders. Of these four 3-to-8 line decoders, one, U17, is used to access the Read/Write registers. The other three U1, U4, and U11 decode address line A0, A1, and A4 to generate the strobes needed by the Daughter Cards. The selection of either U1, U4, or U11 is detected by U50A, a 'LS11 negative logic OR gate which turns on the Daughter Card bus driver (U43) and places the Read/Write register bus tranceivers in their isolated state. The THAG registers (parallel readout of THAGL/ lines) are read from U3 and U10, 'LS240 octal line drivers. The decoding for these is performed by the logic used to decode addresses for the Read/Write registers. The serial readout of THAGL/ lines is accomplished with U2 and U9, 'LS251 8-line data selectors with 3-state outputs. Both use address lines AO, A1, and A2 to select which THAGL/ line is selected. The appropriate selector is chosen by the second 2-to-4 line decoder of U18 which monitors address lines A3 and A4. 3 2.3 Snapshot Control - Each Daughter Card sends a signal called BIP/ to the motherboard which indicates that the daughter card currently senses seam passing its detector. All of the BIP/ lines are ORed in U12 a '8133 13 input negative logic OR gate to form BPOR/. (3POR/ is deglitched by U42B, a one shot which is triggered by the first BIP/.) BPOR/ will only be a TTL "high" level if NO BIP/s are asserted. The Snapshot data taking process begins when Multibus asserts SNEN/. The entire data taking process, both the multibus hardware and the motherboard, waits for the negation of BPOR/. (i.e. all detectors simultaneously reporting no beam.) BPOR/ is shipped to multibus and on the motherboard it is NANDed with SNEN so that the NAND of SNapshot ENable and NOT BPOR/ in U53 sets FF U40A. The Q output of U40A is SNARM (SNapshot ARM). SNARM goes to input 1B of U39, an 'LS157 2 to 1 line data selector. In this case U39 is used as a control selector with FIP/ being the select line. As long as FIP/ (Flash In Progress) is high (we will see that it always is during snapshots) the $^\prime B^\prime$ or snapshot control lines will be coupled through to the outputs. In the case of snapshots, SNARM clocks U31A which then clocks U30B, both $^\prime LS74$ FFs acting as 50 nanosecond one-shots. U31A produces ACLR/ which clears all of the THAGL lines, and U30B generates the ARM/ pulse which arms—the daughter cards. In the normal scenario beam will now pass one of the detectors, setting BPOR/. This has no direct effect on the motherboard, but when the multibus hardware detects the assertion of BPOR/, it will immediatly negate SNEN/ which (after a delay in U42A) resets U40A, the SNARM FF. U40A in turn generates a positive going disarm edge on its Q/ output which finds its way through the control selector, U39, to U30A again acting as a one-shot. The disarm pulse generated here is bussed to all the daughter cards. The next step in the snapshot data taking process is again initiated by multibus. Control line CVEN (ConVert ENable) is asserted, clocking a TTL high signal from U41, through the control selector to the D input of U38. U38 synchronizes the convert enable command to the iO MHz clock. The output of U38 is used to load U55, an 'L8i61 synchronous counter with the value '4'. U55 then counts up to 15 (driven by the iO MHz clock) and shuts off. During the time it is counting it couples 11 cycles of the iO MHz clock out to the ADCs on the daughter cards by gating on U57A. Note also that the presence of a '4' at the parallel outputs of U55 produces the START CONVERT pulse at the output of U57B. This pulse is also bussed to all the daughter cards. After waiting the appropriate length of timing—the multibus hardware—will—read—the twelve positions from the daughter cards utilizing motherboard address decoding described in Section 3.2.2. # 3.2.4 Circuit Description Of Flash Data Taking - The process of taking Flash data is a major disruption to the normal process of taking Snapshot data. When the multibus hardware detects a Flash clock event it stops generating any snapshot control signals ands sends a pulse, FLAT/ (FLAsh Trigger) to the Analog Box. The leading (falling) edge of FLAT/ is used to clock flip flop U40B whose outputs are FIP and FIP/ (Flash In Progress). These signal lines are only set by FLAT/, remaining unasserted duing the Snapshot data taking process. FIP/ is used in three ways; it notifies multibus that the Analog Box is in the process of taking Flash data, it clears SNARM, and it set the control selector, U37 to select Flash control signals. FIP is used to clear several control flip flops, and it begins the generation of the FLAGs (FLAsh Gates) which we will discuss shortly. Meanwhile, the trailing (rising) edge of FLAT/ becomes the control signal, coulped through U39, generating the ACLR/ and ARM/pulses in the same manner as SNARM. At this point the control circuits we've been considering are waiting for the assertion of ENDF/ (END Flash) in order to generate any further digitization commands. To see how ENDF/ is developed we have to look at the timing associated with the FLAGs. Recall that each daughter card receives an individual FLAG line which is used as part of its arming cicuitry. Immediately upon the assertion of FIP, all FLAGs are negated in U14, U15, and U16. This will effectively disarm all daughter cards until the FLAGs are asserted U33, U34, U35, and U36 are two sets of cascaded sychronous 4-bit counters ('LS193s). FIP is connected to the load input of these counters so the assertion of FIP will allow these counters to count as soon as a clock is provided. The 10 MHz clock is immediatly coupled to the U35. U36 pair which is the Flash Delay counter. Nothing happens to any FLAGs while this counter is couting down. Upon counting down, the borrow is set which couples the 10 MHz clock to the second set of counters, U33 and UB4, and shuts the first set off. While these Flash Width counters are counting down, signal line FLASH WIDTH/ is asserted. This operation can be summarized by saying that a signal line, FLASH WIDTH/, is asserted Flash Delay (in units of 1 microseconds) after FIP is asserted, and remains asserted Flash Width (again in units of 1 microseconds). This provides aggregate control over the FLAGs for each Analog Box. However it is desirable to have individual control for each daughter card of the FLAG delay. This is the function of the Flash Trigger Distribution Card, Fermilab Drawing 1680.00-EC-158414. The FLASH WIDTH/ line appears as the input to a pair of 'LSi64 parallel-out serial shift registers. These shift registers are clocked by the 10 MHz clock. The FLASH WIDTH/ gate appears at the parallel outputs in successive steps of 1 microsecond delay providing a maximum delay of 1.6 microseconds. Dumpers can be inserted on the card choosing the amount of delay needed for a particular channel. The FTD card also provides the capability of using different delays for circulating antiprotons. Three 'LSi57' data selectors are used to select either the set of 'proton' jumpered signal lines, or 'antiproton' jumpered signal lines. The outputs of the data selectors are NANDed with FIP in U14, U15, and U16 to produce the 12 FLAG signals. When the trailing (rising) edge of the FLASH WIDTH/ gate reaches the last shift register output it clocks a TTL high into the output of an 'LS74 FF. This in turn is synchronously clocked into a second 'LS74 FF whose Q/output becomes ENDF/. The generation of the ENDF/ signifies the end of the Flash data gathering process as far as the daughter card Sample and Hold circuits are concerned. It really doesn't matter whether any beam was detected or not. (In the Snapshot mode the detection of beam, BPOR/s assertion, signified to the hardware that digitization should commence.) The Flash data taking mode is not forgiving, if beam does not occur during the FLAG on a given daughter card no THAGE/ bit will be reported for that card. The ENDF/ pulse is returned to the motherboard where it provides several functions. It is routed through the control line selector, U39, to generate the disarm pulse for the daughter cards; it synchronizes a 10 MHz divide by 16 counter (U52), and it is used to provide a control input to U54, an 'L5164 shift register used as a state processor. U52 clocks this shift register at a 1.6 microsecond rate effecting the operations listed in Section 2.2.4 using primarily circuitry already described in the section on Snapshot control. Readout of the data is under multibus control, and when multibus is again ready to set the Analog Box into the snapshot mode it asserts TW1/ which clears U40B, negating FIP and FIP/. ### APPENDIX A # ANALOG BOX ADDRESS ASSIGNMENTS The following are the address assignments used by Multibus to access. Analog Box data registers. All addresses are specified in hex, and the two digit number represents the 5-bit address decoded by the Analog box. | 7D20 - 7D2B
00 - 0B | POSITION D | ATA Channe | ls 0 - 1i | READ ONLY | |------------------------|-------------------------|-------------------------------|-----------------------|------------------------| | 7D30 - 7D3B
10 - 1B | YTIEMBITM | DATA Channe | ls 0 - 11 | READ ONLY | | 7D2C
0C | THAGR | +++-
1 B: X: X: | 4 D3 D2 D1 D0
 | READ ONLY | | | | BITS 4-7
BITS 0-3 | | for channels indicated | | 7020
OD | THAGR | 1 71 61 51 | 4 D3 D2 D1 D0
-+++ | READ CNLY | | 7D2E
0E | DEAD
CHANNEL
MASK | ++++ | 4 D3 D2 D1 D0
-+++ | R/W | | | | BIT 7
BITS 4-6
BITS 0-3 | UNUSED | r channels indicated | | 7D2F
OF | DEAD
CHANNEL
MASK | D7 D6 D5 D4 D3 D2 D1 D0 ++++++ 7 6 5 4 3 2 1 0 F +++++++ -> CHANNELS | ₹/W | |------------|-------------------------|---|-----| | 7D3C
10 | INTENSITY | THRESHOLD 8-BIT DAC value F | ₹/₩ | | 7D3D
1D | MISC.
BITS | D7 D6 D5 D4 D3 D2 D1 D0 ++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ₹/W | | | | BIT 7 PBAR/ BITS 6-4 UNUSED BIT 3 FIP READ ONLY BIT 2 SNARM READ ONLY BIT 1 FTO/ READ ONLY BIT 0 BATCH/ | | | 7D3E
1E | FLASH DELA | Y S-BIT timer value R/ | W | | 7D3F
1F | FLASH WIDT | H 8-BIT timer value R/ | W | ### APPENDIX B # BACK PANAL OUTPUT FOR PBAR/P CONTROL This output on the back panel of the analog box is unused at the present time. It is intended to provide control of the stripline terminators when the reality of PBARs necessitate the ability to terminate the striplines at the (traditional) upstream end. This appendix lists the electrical specifications of this output. The output is a 75452 open collector driver with a high level output voltage of 30 volts and a maximum sink current capability of 500 milliamps. In the proton (P) mode the BNC output is in the HI Z state (i.e. off state). Note that if inverse logic is desired, a 75451 could be used. Note also that this BNC port acts only to control an externally powered device such as a relay or solenoid. If this device is inductive it should have its own snubbing diods to prevent high voltage transients. # ENERGY DOUBLER APRENDIX (| DRAWING Nº | | | DRAWING | 3 TITLE | · | DWN | DATE | |-------------------|-------|----------|---------|-----------------|---------------|-----|------| | 1680.00 EE 158400 | BPM | ANALOG | CRATE | MOTHER BD. | BD. SCHEMATIC | | | | > BE 158401 | 11 | , , , | 11 | | ARTERK | | | |) BE 158402 | | - | ~ | | DRILL DWG, | | | | SE 158403 | 1.7 | ~~ | - | | COMP, CAYOUT | | | |) BE 158464 | 11 | = | - | // | SOLDER MASK | | | | > BE 158405 | 7 | 2 | - | - | SILK SCREFN | | | | (BP 158406 | = | | | | PARTS LIST | | | | \ ED 158407 | BPM | ANALOG | CRATE | DAUGHTER BD | P. SCHEMATIC | | | | > BC 158408 | 1 | | - | | ARTWOR IC | | | | BC 158409 | 7. | ~ ~ | | | DRILL DWG, | | | | S BC 158410 | - | | = | | COMP. LAYOUT | | | | \ BC 584 | 1: | | | | SOLDER MASK | | | |) BC 158412 | 1. | , , | 11 | 11 | SILK SCREFN | | | | BP 158413 | 11 | 11 | 11 | 11 | PARTS LIST | | | |) EC 158414 | BPM 1 | ANALOG C | RATE | FLASH TRIG. BD. | SCHEMATIC | | | | BC 158415 | 2 | - | | | ARTWORK | | | | P.C 158416 | 11 | | 11 | 1.6 11 | DRILL DWG, | | | | 158417 | | | 11 | 1, 1, | COMP. LAYOUT | | | | > 158418 | ٦ | | - | 1. 11 | SOLDER MAIK | | | | 1680.00 158419 | 7 | | | | SILK SUPPTY. | | | # ENERGY DOUBLER APPENDIX C-2 | 1680.00 158439 | 158438 | \ | 158436 |) 158435 | 158434 | 158433 | 158432 | 158431 | 158430 | 158429 | MB 158428 | MC 156427 | Mc 158426 | MC 158425 | mc 158424 | MC 158423 | MC 158422 | > MC 158421 | 1680.00 BP 158420 8 | DRAWING NO | | |----------------|--------|---|--------|----------|--------|--------|--------|--------|--------|--------|-----------------------------------|---------------------------|-----------------|-------------------|--------------------|----------------|---------------|-----------------------|---------------------------------|---------------|--| | | | | | | | | | | | | 11 /1 | " | 11 '11 | | - | 11 ** | 11 | | BPM, ANALOG | | | | | | | | | | | | | | | " CHASSIS SLIDE END SUPPORT PLOCK | " CHASSIS SIPFS MACHINING | " ASSEMBLY DWG, | " " " SILK SCREEN | " REAR " MACHINING | " ASSEMBLY DWG | " SILK SCREEN | FRONT PANEL MACHINING | CRATE FLASH TRIG. BD. MRTS LIST | DRAWING TITLE | DWN | DATE F | | | | | | | 5 0 | (| |---|--|--|--|---|----------------------------------| | | Intensit | Threshold DAC | ettings | | | | | 75444444 | | 222222222222222222222222222222222222222 | 14679604669466946 | - 8 5 | | 064
065
066
067
071
071
072
073
074 | | 000000000000000000000000000000000000000 | 200000000000000000000000000000000000000 | 0044
0044
0044
0044
0044
0044
0044
004 | 2
2
3 | | | | 77 115
0 20
1 22
2 23
2 24
2 25
1 26
1 26
2 26
2 26 | | 11000000000000000000000000000000000000 | _ 3 | | ##DC0>987654 | | ₽ @ ~ \$\ U & U \ P \ O ~ [] | , | こうしょう のり 自 日 口 口 田 F り 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 | × | | HO0007504000H | | 117. | 222222222222222222222222222222222222222 | | Comp | | 566677 | 2. P-2 | | , | , | 1 E | | ix lo pp b | Approx beam in the still | | - | | _ | | | | | | | Ť., | | | مر سر مر مر سر سر سر سر سر سر | | | 20071777777777 | | | 1116
1119
1120
1220
1221
1222
1224
1224
1225 | 111111111111111111111111111111111111111 | 000000000000000000000000000000000000000 | | 4444444444444444 | 5 - | | 164
165
166
170
171
172
173
174 | 152
153
154
156
156
160
161 | 1144
1144
1144
1150 | | 102
103
104
105
107
1107
1110
1111
1113
1114
1115
1117
1117 | 28 | | 75
75
75
75
75
75
75
75
75 | 68 66 68 66 68 68 68 68 68 68 68 68 68 6 | 69 | ららいいらいらいらいらいらいらいらいまた。
日本ちょうのようを入りのに | 5510 | === | | 11111111111 | រ រ | 11111111111 | | 1; | 115 | | NHO0B-765-860 | 100876545555
55086655555555555555555555555555555 | 56773889900 | | 4 | . | | | | | • | | | | • | 180 | .a | · | | 1 | | · · · · · · · · · · · · · · · · · · · | | . | | | | | · · · · · · · · · · · · · · · · · · · | ٠ - الم | . | | · · · · · · · · · · · · · · · · · · · | | | 180
181
181
183
185
189
189
191 | | | 1555332
1555332
15765332 | 11111111111111111111111111111111111111 | 128
129 | | | 170
172
173
173
174
175
176
177 | 159
160
163
163
164
165
166
168 | 21002000000 | , , , , , , , , , , , , , , , , , , , | 9 8 | | 1 266
2 266
2 266
3 270
5 271
6 271
7 273
8 274
8 274
9 274
1 275 | 170 252
171 253
172 254
173 256
174 256
175 257
176 260
178 261
178 263 | 159
160
240
161
241
162
243
164
244
165
245
166
245
168
250
251 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22222222222222222222222222222222222222 | 8 200
9 201 | | 1 266
2 266
2 266
3 270
5 271
6 271
7 273
8 274
8 274
9 274
1 275 | 170 252
171 253
172 254
173 256
174 256
175 257
176 260
178 261
178 263 | 159
160
240
161
241
162
243
164
244
165
245
166
245
168
250
251 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 202 82
204 84
206 86
205 85
207 86
207 88
7 211 89
8 212 8A
9 213 8A
9 213 8A
9 213 8A
9 213 8A
9 214 8B
217 8B
217 8B | 8 200 80
9 201 81 | | 0 264 N4 -123 1 265 N5 -124 2 266 N6 -124 2 266 N6 -124 2 267 N7 -125 4 270 N6 -126 5 271 N9 -127 7 273 NA -129 6 274 NC -130 9 275 ND -131 0 276 NF -133 | 170 252 AA -113. 171 253 AB -114. 172 254 AC -115. 173 255 AD -116. 174 256 AE -117. 175 257 AF -118. 176 260 B0 -119. 178 262 B2 -121. 179 263 B3 -122. | 159 237 9F -103
160 240 A0 -104
161 241 A1 -105
162 242 A2 -105
163 243 A3 -106
164 244 A4 -107
165 245 A5 -108
166 246 A6 -109
167 247 A7 -110
169 251 A9 -111 | 7 223 93 -91. 8 224 94 -92. 9 225 95 -93. 0 226 96 -94. 1 227 97 -95. 2 231 99 -97. 2 232 9A -98. 5 233 9B -100. 6 236 9C -100. | 202 82 -75. 204 84 -77. 205 85 -78. 206 86 -79. 207 87 -80. 208 86 -79. 208 86 -81. 209 88 -81. 211 89 -82. 213 80 -83. 214 80 -83. 215 80 -83. 216 8E -86. 221 91 -89. | 8 200 80 -73.
9 201 81 -74. | | 0 264 D4 -123 1 265 B5 -124 2 266 B6 -125 2 271 B9 -127 7 272 BA -129 8 274 BC -130 9 275 BD -131 0 276 BE -133 | 170 252 AA -113. 171 253 AB -114. 172 254 AC -115. 173 255 AD -116. 174 256 AE -117. 175 257 AF -118. 176 260 B0 -119. 178 262 B2 -121. 179 263 B3 -122. | 159 237 9F -103.0
160 240 A0 -104.9-2
161 241 A1 -105.9
162 242 A2 -105.9
163 243 A3 -106.8
164 244 A4 -107.8
165 245 A5 -108.7
166 246 A6 -109.7
167 247 A7 -110.6
169 251 A9 -111.6 | 7 223 93 -91. 8 224 94 -92. 9 225 95 -93. 0 226 96 -94. 1 227 97 -95. 2 231 99 -97. 2 232 9A -98. 5 233 9B -100. 6 236 9C -100. | 202 82 -75 203 83 -76 204 84 -77 3 205 85 -78 6 210 88 -79 6 211 89 -81 7 211 89 -81 7 211 89 -81 7 211 89 -81 8 212 89 -81 8 213 88 -81 8 214 80 -81 8 215 80 -81 8 217 87 -81 8 217 87 -81 8 217 87 -81 | 8 200 80 -73.
9 201 81 -74. | | 0 264 N4 -123 1 265 N5 -124 2 266 N6 -124 2 266 N6 -124 2 267 N7 -125 4 270 N6 -126 5 271 N9 -127 7 273 NA -129 6 274 NC -130 9 275 ND -131 0 276 NF -133 | 170 252 AA -113. 171 253 AB -114. 172 254 AC -115. 173 255 AD -116. 174 256 AE -117. 175 257 AF -118. 176 260 B0 -119. 178 262 B2 -121. 179 263 B3 -122. | 159 237 9F -103.0
160 240 A0 -104.9
162 242 A2 -105.9
163 243 A3 -106.8
164 244 A4 -107.8
165 245 A5 -108.7
166 246 A6 -109.7
168 250 A8 -111.6
169 251 A9 -112.5 | 7 223 93 -91. 8 224 94 -92. 9 225 95 -93. 0 226 96 -94. 1 227 97 -95. 2 231 99 -97. 2 232 9A -98. 5 233 9B -100. 6 236 9C -100. | 202 82 -75. 204 84 -77. 205 85 -78. 206 86 -79. 207 87 -80. 208 86 -79. 208 86 -81. 209 88 -81. 211 89 -82. 213 80 -83. 214 80 -83. 215 80 -83. 216 8E -86. 221 91 -89. | 8 200 80 -73.
9 201 81 -74. | | 0 264 N4 -123 1 265 N5 -124 2 266 N6 -124 2 266 N6 -124 2 267 N7 -125 4 270 N6 -126 5 271 N9 -127 7 273 NA -129 6 274 NC -130 9 275 ND -131 0 276 NF -133 | 170 252 AA -113. 171 253 AB -114. 172 254 AC -115. 173 255 AD -116. 174 256 AE -117. 175 257 AF -118. 176 260 B0 -119. 178 262 B2 -121. 179 263 B3 -122. | 159 237 9F -103.0 160 240 A0 -104.0 -104.10 161 241 A1 -104.9 -2 ×10 pp 162 242 A2 -105.9 163 243 A3 -106.8 164 244 A4 -107.8 165 245 A5 -108.7 166 246 A6 -109.7 167 247 A7 -111.6 168 250 A8 -111.6 169 251 A9 -112.5 | 7 223 93 -91. 8 224 94 -92. 9 225 95 -93. 0 226 96 -94. 1 227 97 -95. 2 231 99 -97. 2 232 9A -98. 5 233 9B -100. 6 236 9C -100. | 202 82 -75. 204 84 -77. 205 85 -78. 206 86 -79. 207 87 -80. 208 86 -79. 208 86 -81. 209 88 -81. 211 89 -82. 213 80 -83. 214 80 -83. 215 80 -83. 216 8E -86. 221 91 -89. | 8 200 80 -73.
9 201 81 -74. | | 0 264 N4 -123.0
1 265 N5 -124.0
1 265 N5 -124.0
2 266 N6 -124.9
2 267 N7 -125.9
4 270 N8 -126.8
5 271 N9 -127.8
5 271 N9 -127.8
6 274 NC -130.7
9 275 ND -130.7
9 275 ND -131.6
0 276 NE -131.6
1 277 NF -133.5 | 170 252 AA -113.5
171 253 AB -114.5
172 254 AC -115.4
173 255 AD -116.4
174 256 AE -117.3
175 257 AF -118.3
176 260 BO -119.2
177 261 B1 -120.2
178 262 B2 -121.1
179 263 B3 -122.1 | 159 237 9F -103.0
160 240 A0 -104.0
161 241 A1 -104.9 - 2 × 10 γρ6
162 242 A2 -105.9
163 243 A3 -106.8
164 244 A4 -107.8
165 245 A5 -108.7
166 246 A6 -109.7
167 247 A7 -110.6
168 250 A8 -111.5
169 251 A9 -112.5 | 7 223 93 -91.6 8 224 94 -92.5 9 225 95 -93.5 0 226 96 -94.4 1 227 97 -95.4 1 221 99 -96.3 2 230 98 -96.3 5 233 98 -96.3 6 235 90 -100.2 7 36 9E -102.1 | 202 82 -75.4 204 84 -77.3 205 85 -78.2 206 86 -79.2 207 87 -80.1 5 207 89 -80.1 7 211 89 -82.1 7 211 89 -82.1 8 212 8A -83.0 9 213 8B -84.0 9 213 8B -84.0 9 214 8BC -86.8 217 8F -86.8 221 91 -89.7 5 222 92 -90.6 | 8 200 80 -73.5
9 201 81 -74.4 | | 0 264 N4 -123.0
1 265 N5 -124.0
1 265 N5 -124.0
2 266 N6 -124.9
2 267 N7 -125.9
4 270 N8 -126.8
5 271 N9 -127.8
5 271 N9 -127.8
6 274 NC -130.7
9 275 ND -130.7
9 275 ND -131.6
0 276 NE -131.6
1 277 NF -133.5 | 170 252 AA -113.5
171 253 AB -114.5
172 254 AC -115.4
173 255 AD -116.4
174 256 AE -117.3
175 257 AF -118.3
176 260 BO -119.2
177 261 B1 -120.2
178 262 B2 -121.1
179 263 B3 -122.1 | 159 237 9F -103.0
160 240 A0 -104.0
161 241 A1 -104.9 - 2 × 10 γρ6
162 242 A2 -105.9
163 243 A3 -106.8
164 244 A4 -107.8
165 245 A5 -108.7
166 246 A6 -109.7
167 247 A7 -110.6
168 250 A8 -111.5
169 251 A9 -112.5 | 7 223 93 -91.6 8 224 94 -92.5 9 225 95 -93.5 0 226 96 -94.4 1 227 97 -95.4 1 221 99 -96.3 2 230 98 -96.3 5 233 98 -96.3 6 235 90 -100.2 7 36 9E -102.1 | 202 82 -75. 204 84 -77. 205 85 -78. 206 86 -79. 207 87 -80. 208 86 -79. 208 86 -81. 209 88 -81. 211 89 -82. 213 80 -83. 214 80 -83. 215 80 -83. 216 8E -86. 221 91 -89. | 8 200 80 -73.5
9 201 81 -74.4 | 192 300 C0 -134.5 194 302 C2 -135.4 195 303 C3 -137.3 196 304 C4 -138.3 197 305 C5 -140.2 199 307 C7 -141.1 200 310 C8 -142.1 200 310 C8 -142.1 200 310 C8 -142.1 200 311 C9 -143.0 202 312 CA -144.9 204 314 CC -145.9 206 315 CD -147.8 207 317 CF -148.8 207 317 CF -148.8 207 321 D1 -150.7 211 323 D3 -152.6 212 324 D4 -153.5 213 325 D5 -154.5 214 326 D6 -155.4 227 337 D7 -156.4-3y/6 228 340 E0 -162.1 229 341 E1 -165.9 226 354 E6 -170.7 231 361 F1 -181.2 241 361 F1 -181.3 240 371 F9 -188.3 250 F6 -185.9 247 377 F7 -194.5 253 377 FF -194.5 254 376 FE -193.6 17. | 7. a 4 | signels marked with anderick (*) are americal by multibus | |----------|---| | | WWW WOOM TWI | | Mult | LPOS | | ibus R | | | eads Ict | OKARM [| | | FLAG . CILLIUI WILLIUM | | | FLASH RASH DELAY CAPPAGENT ON FLASH WIDTH SASH DELAY | | | ACLR | | | FLAT | | | Moralog Box Flash Timing |