________________________________________________________________________


Gustavo Cancelo

CEPA/ESE-CD

Nov. 29th 2004

The phase shift problem in the Tevatron BPM signals
The BPM position measurement is computed from two signals A and B that are individually transmitted and processed by hardware that can introduce phase errors. For instance, the cable length from the BPM pickups to the BPM analog filtering boards can be up to 600ft long. A propagation delay mismatch between A and B in the cables will traduce in an A to B relative phase shift. 1.5cm of cable length mismatch introduces ~1º of phase shift. A mismatch in the phase characteristic of the analog “ringing” filters to process A and B will also generate an A to B relative phase shift. This section analyzes how the A to B relative phase error affects the calculation of position.

For the sake of simplicity we can use the single bunch signal model of equation (15). The extension to multiple bunches is straightforward. Let the individual signals A and B be represented by equations (20) and (21) below
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Where Δt can be positive or negative. After the ringing filter the signals become:
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According to equation (18) the Fourier transforms of ua(t) and ub(t) are:
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where U0A and U0B are given by equation (13) and are independent of ω. Note that the time shift introduced in b(t) shows up only as a phase rotation in the Fourier transform.

Clearly, if we calculate position using the unfiltered signals ua(t) and ub(t), we’ll have an error that is a function of the phase mismatch between A and B. Now, the question is how that error propagates to the output of a filter.

The Graychip has three levels of digital filtering and is able to achieve narrowband filters that are very close to an ideal lowpass filter. For the current analysis we can assume that A and B signals go through an ideal lowpass filter with a cutoff frequency ω0. This assumption does not modify the validity of the result as long as the filters applied to A and B signals are identical, which is the case in digital filtering. The Fourier transforms of A and B at the output of the ideal lowpass filter become:
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To be able to compute the position error due to A to B phase shift we must inverse transform equations (26) and (27) first. This is not an easy task because the limits of the integral in the inverse transform are ±ω0 and not ±∞.
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However, we can take a simpler approach. The spectrums of the BPM signals UA and UB only have lines with amplitude different from zero at DC and at multiples of 144KHz. Since the digital filters are narrowband, they only let few spectrum lines pass. For instance the cutoff frequency of the “envelope” filter is 300KHz. The only meaningful frequency components at the output of the filter are at DC, 144KHz and 288KHz. We can compare the amplitude of the spectrums lines of UA and UB for those three lines. 

Before filtering, the Graychip down-converts A and B signals generating the in-phase and quadrature components IA, QA, IB, and QB. To simplify the notation, instead of working with I’s and Q’s we can work with equations (24) and (25) and assume that the 300 KHz filter is located around ±
[image: image11.wmf]w

~

c

.
We can do the analysis of spectrums UA(ω) and UB(ω) in the positive range of frequencies. The other half is identical.
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We observe form (28) and (29) that the DC component of UA(ω) and UB(ω is independent of the phase shift. Letting ω= ωc, 
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If the amplitude of the signals is the same, then U0A(ω) = U0B(ω) what implies that U0A(0) = U0B(0).
Let’s now see how the phases behave at a frequency ω1.
Phase tern in UA(ω) 
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Phase tern in UB(ω) 
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To better appreciate the phase delay effect we can use the equivalence: 
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Then, the 1st summand in the phase tern of UA(ω)is:
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and the 2nd summand of UA(ω)is:
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where we have assumed that Δω=ω1-ωc, and Φ=0 because it does not have any relevance in the phase shift error. Similarly, the 1st summand in the phase tern of UB(ω)is:
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 and the 2nd summand of UA(ω)is:
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Now, let’s define the error as the amplitude of the complex number defined by the difference between the phases of UA(ω) - UB(ω).
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.  The error caused by relative phase shift is proportional to the time shift between the A and B signals and increases linearly with frequency. In other words the phase shift error is proportional to the filter’s bandwidth.

We have simulated the BPM problem using the following numbers: 

ωc=53.1MHz, σ=33ns and σs=4ns, t0=120ns, ts=10ns, Δω=300KHz, Δt=0.1ns

So, the phase shift error should be 
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. This number represents the “error gain” of the system at a specific frequency. An input signal of, say, ¼ of the maximum dynamic range (i.e. 26mm) will produce a phase shift error of ¼*0.6*10-4*26mm=0.39μ.

Phase shift error simulations

The simulation computes the error in position calculation as a function of the phase shift. A and B signals are generated using the models described in the previous sections of this document. (i.e Equations (2), (4), and (17)). To better visualize the effect of the ringing filters and some Fourier transforms, A and B signals are created using a high sampling rate 100 times faster than the 74.3MHz sampling frequency used by the Echotek card.
The phase of B is advanced with respect to the phase of A in steps of 2.57º (degrees) in the interval [0º,36º]. Figure 1a and Figure 1b show the A and B signals. The blue trace represents the A signal at the output of the ringing filter. The red traces represent 15 phase shifted versions of the B signal. It is hard to see all the 15 B traces in Figure 6a, so Figure 6b zooms into a detail of the same signal plot. 

Figure 2a and 2b show A and B traces after the signals have been resampled at 74.3MHz. Figure 2a shows the A signal in blue and 15 phase shifted versions of the B signal in red. A detail of the same plot is zoomed in Figure 2b.

We can consider that the simulation runs 15 times, one for each increment in B’s phase shift. The A and B signals used as inputs of each simulation run are about 320 accelerator laps long. The simulator processes the signals through the Graychip down-converters and filters. The simulator also calculates position using Equation 30 and (31). The A and B signal generator uses A and B equal in size and about ¼ of maximum dynamic range. So, position p should be equal to 0 for every measurement.
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Figure 1a: Phase shift of B with respect to A
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Figure 1b: Phase shift of B with respect to A
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Figure 2a: Phase shift of B with respect to A

[image: image33]
Figure 2b: Phase shift of B with respect to A
The simulation uses the “envelope” filter which has a bandwidth of 300KHz. A position point is calculated averaging samples in 3 envelopes (i.e. a position measurement per lap). Figure 3 shows the position simulation error for the 15 runs. The mean error increases in absolute value until about 25 degrees and then starts decreasing. This is consistent with our model for small phase shifts. The expected values of position error for each phase shift are, also, in agreement with the ones obtained by modeling. As the phase shift increases, the sigma in the distribution of position error increases. I have looked at the data and this seems to be caused by the sampling phase of the signals A and B.
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Figure 3: Position error caused by the phase shift
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