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Work that has been done In laser room:
single shot aut-correlator and long pulse train

Future laser work for SMTF
EO sampling

Laser system for polarized electron sources
at ILC



Schematic top view of single shot
auto-correlator
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The time window is determined by the maximum delay of the two beams,
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where AT is in ps, x and D mm. Usually 6 is a small angle ~ 5°, implying a
time window of 2 ps or so. It is not enough for our pulse length of 5 ps.



Single shot auto-correlator with tilted wavefront
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A grating can be used to tilt the wavefront so that
AT ime window = 2—: o Le[sin(@)+sin(0')] = % e De[tan(d) +sin(0')/cos(0)]

If it is tilted by 45°. The time window becomes 12 ps about enough for the 5
pPS pulse.



Setup of single shot auto-correlator
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1, 50% beam splitter; 2 and 3, mirrors coated for IR beams; 4, the angle
between two beams. 5, grating to tilt the wavefront of the laser beam.

From technical report of Minioptic Technology Inc.



Result of Single Shot AC
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The FWHM was determined to be ~6.2 ps, which corresponds to 4.4 ps for
single pulse. This is a little shorter than 5.4 ps UV pulse measured by streak
camera. The discrepancy may be caused by the non-uniform transverse profile
of the input beam.



Long pulse train |
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Laser requirements of SMTF
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Parameters A0 SMTF
Beam pulse length ~0.8 ms 1 ms
Bunch charge >4 nC 3.2nC
Charge stability 5% 5%
Micro bunch distance 1000 ns 337 ns
Number of bunches ~800 up to 2820
Pulse rep-rate 1 Hz up to 5 Hz

We need to increase the duty cycle and the number of bunches in each
pulse train and reduce the distance between bunches.




Long pulse train with high rep-rate
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Increase
pulse length
from 800 ps
to 1 ms.

Decrease the
bunch spacing
from 1 us to
337 ns.

Make it happen five times per second (Nd:YLF has Make the long train flat (pre-
five times larger thermal conductivity than Nd:glass). | | shaping and Optical Limiting).




Optical limiting effect can be used to reduce
the intra-train pulse fluctuation
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From Quan Gan et al., Optics Express, Vol. 13, No. 14, 5424(2005)



New schematic design for future upgrade of
the laser system
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Trigged at 3 MHz with 1 ms gate.
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What could we do now?
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Get at least one set of Nd:YLF laser head and
diode pump laser as atest line (=% 31k).

Try the 3 MHz spacing, prolong the time gate to 1
ms and increase rep-rate to 5 Hz in the test line.

Try to construct flattop long train with both pre-
shaping and optical limiting (if needed) In the test
line.

After these are done, we should be able to
deliver mini-version laser beam for SMTF.



Principle of EO sampling
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Single shot EO sampling with temporal
decoding
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From G. Berden, et al., Phys. Rev. Lett., Vol. 93, No. 11, 114802(2004)



Difficulties of conducting EO sampling now

Space issue. Do we have enough room for both
stretcher and compressor and single shot cross-
correlator?

Transport issue. How to transport IR pulse to
cave? Fiber? How much energy?

Delay issue. If fiber is used, how could IR pulse
catch up UV pulse?

Resolution issue. We will be limited by the pulse
duration, ~ 5 ps.

All of these can be solved after we move to
SMTF and get a Ti:Sa femtosecond laser.



Laser acceleration simulation with single
electron
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Parameters:

2a=1mm;
a>Ala;
Elements #: 50
L=2mm;
A=1054 nm;
E...=20 mJ;

laser

Pulse length=2ps;
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Done by Ph. Piot



Difficulties at AO and future improvement
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The stablility of seed laser caused the poor repeatability
of TEM,,” mode.

The new seed laser could solve it (hopefully).

The electron energy is only 15 MeV, too low for
significant acceleration.

At SMTF, the electron energy will exceed 200 MeV.

Laser intensity Is not yet 20 mJ/pulse.
Another amplifier after re-gen is needed.

Laser beam can not be compressed and sent to cave.

At SMTF, another IR transport line should be installed
so that the laser pulse is transported and compressed
and then the TEM,," is produced.




Laser parameters recommended for ILC
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Laser parameter Value Unit
Micro-pulse energy at ~3 (1.5) ud
photocathode

Micro-pulse length ~2 ns

# micro-pulse per train 2820 (5640) Number
Intensity jitter 2 % (rms)
Micro-Pulse spacing 337 (169) ns
Repetition rate 5 Hz
Wavelength 750-850 nm

From WG3a ILC Electron Source Recommendation



Drive laser for polarized e~ photocathode
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Wy,
. » rep-rate are needed.
Optical paramelter amplifiers
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Our current system can be
used as the pumping laser.

Longer train and more
wavelength range are needed.

From I. Will, et al., Status Sep. 2004




Summary
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e Near future

— Get a set of diode pumped amplifier as a test
line to deliver mini-version long train for SMTF
(~ $ 31K).
— Strong support is needed for conducting EO
sampling experiment.
e Far future
— Laser acceleration becomes doable at SMTF.

— R&D on drive laser for polarized electron
source at ILC.



Large gain for Nd:YLF diode pump laser
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Fig. 3. (a) Experimental arrangement for the diode-pump

amplifier system. (b) The four-pass amplifier geometry. Fig. 8. Calculated and measured gain for amplifier

under strong saturation.

With diode pump and Nd:YLF crytal, amplification of up to 6,000 was achieved
after a 4-pass amplifier.

From lan Ross et al., Applied Optics, Vol. 42, No. 6, 1040(2002)



A plano-aspheric lens pair to convert a
Gaussian to a flattop beam
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From Paul Bolton’s talk at ANL, Feb. 18 2005.
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n Shaper
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Gaussian input with 6 mm
diameter (1/e?)

nShaper

Flat top output with intensity
fluctuation within +2%

Operating wavelength: 355 — 1200 nm; fixed input; no good for long transport.

From http://www.mt-berlin.com/frames_home/shaper_descr.htm



Single shot EO sampling with spectral
decoding
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From I. Wilke et al., Phys. Rev. Lett., Vol. 88, No. 12, 124801(2002)



Limitations of spectral decoding
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Fig 1. Vanation of detected pulse length versus input pulse length for strong signals.

From J. R. Fletcher, Optics Experess, Vol. 10, No. 24, 1425(2002)



EO sampling with spatial decoding
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From A. L. Cavalieri, et al., Phys. Rev. Lett., Vol. 94, 114801(2005)



BPM with sub-picosecond time resolution
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Eigenmode of open iris-loaded structure
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R. Pantell (NIM A 393, 1(1995) )
M. Xie (LBNL-40558 and PAC 97)
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The fields associated with TE,, eige:n mbde are given by,
E.(r,z,t)=EJ,(k, r)exp(i(k.z—wt))
k.~
E (r,z,t)=2Z,, qu=—f?J’f]l(kr riexp(i(k z—wt))

The phase velocity of the wave is,
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Where A is the wavelength, J(p,,)=0, n refractive index and c speed of light.
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Generation of TEM,,” donuts mode
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Diagram of laser acceleration
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The chamber is filled with gas to compensate the speed.

From Ph. Piot, ACC workshop, Stony Brook (2004)



Simulation with electron bunch
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Evolution of the energy spectrum for electron bunch with various beam size
propagating in the laser field.



Energy diagrams of bulky and strained

GaAs
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Negative electron affinity (NEA) In GaAs
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Most recent results on polarization and
guantum efficiency
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Polarization 85 - 90%
QE O * 5 - 1 cy'n From Takashi Maruyama, KEK ILC workshop (2004).



