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Outline
● RIA Facility

- Layout
- Technical features
- Production of secondary beams

● Driver linac 
- General design philosophy; 
- Acceleration of multiple-charge state beam;
- Front end

● ECR
● 2q-LEBT
● RFQ

- Isopath transport of multi-q beams;
- Stripping of heavy ions;
- Beam loss studies, concept of “beam-halo cleaning”;
- Tunes for different Ions;

● Beam Dynamics code TRACK;
● Post-Accelerator.
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What is RIA?
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Important Technical Features of RIA

● High power CW SC Linac Driver (1.4 GV, 400 kW)
- Advanced ECR Ion Source 
- Accelerate 2 charge states of U from ECR 
- All beams: protons-uranium 
- Superconducting linac over extended energy range: 0.25 – 1020 MeV/u 
- Multiple-charge-state acceleration after strippers 
- Multi-user facility: RF switching to multiple targets with independent beam 

intensity adjustment by means of fast chopper
● Large acceptance fragment separators

- 1) “Range Bunching” + Fast gas catcher 
- 2) High resolution and high purity for in-flight 

● High power density ISOL and fragmentation targets
- Liquid lithium as target for fragmentation and cooling for n-generator 

● Efficient post-acceleration from 1+ ion sources 
● Next-generation instrumentation for research with rare isotopes
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The Key Elements of the RIA Concept

• Fast Gas Catcher to combine 
advantages of fragmentation and 
stopped beams

• Superconducting driver linac 
and post-accelerator for all ions 
from hydrogen to uranium.

• Acceleration of ions in multiple 
charge states to increase 
performance (x 25).

• Realizable designs for efficient 
high power (>100 kW) targets. 

• Efficient reacceleration of 1+ 
charge states. 
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High Power Test of the Windowless Liquid Lithium Target

A 20 kW electron beam produces the 
same thermal load as a 200 kW U beam  
on the windowless liquid Li target.
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Li jet is confirmed stable in vacuum 
with a U beam equivalent thermal load.

20 kW beam on Target
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Heavy-Ion Linac

ECR LINAC Target
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How many strippers?
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Acceleration of multi-q heavy-ion beams
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Synchronous phase as a function of uranium ion charge state. The designed 
synchronous phase is  –30° for q0=75.
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Separatrix and small longitudinal oscillations
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Transverse beam dynamics

Solenoid SRF cavities
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Transverse beam dynamics

Twiss parameters

q α β γ
73 0.428 1.536 0.770
74 0.435 1.518 0.783
75 0.441 1.500 0.783
76 0.448 1.483 0.809
77 0.455 1.467 0.823

Effective emittance growth
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2
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Phase advance over the period µx and total phase 
advance Φx (modulo 360°) in the medium-beta 

section (12 MeV/u – 85 MeV/u)
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TRACK code (developed at ANL): 

● Lattice optimization and high-statistic end-to-end simulations.
● Integration of particle trajectories of multi-component ion beams 

in 6D phase space including space charge.
● Electrostatic, magnetostatic and electromagnetic fields of all RIA elements 

are obtained from 3-dimensional external codes.
● Misalignments and random errors are included. Automatic beam steering 

procedure in both longitudinal and transverse phase space is applied in the 
linac with static errors.

● Optimization of linac tunes for different ions, off-normal tunes to compensate 
missing resonator.

● Beam passage through stripping foils&films is included. SRIM data of 
particle distribution in 6D phase space is incorporated.

● Parallel computing on multiprocessor computer cluster JAZZ at ANL. 
Simulation of total 107 particles in 15 hours is demonstrated.

● Compared with many beam optics code for common elements 
(TRANSPORT, COSY, RAYTRACE, IMPACT…).

● More updates are coming: parallelization at 10K processors
● Concept of “Model-driven accelerator”: 
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Layout of the RIA injector 

RFQ LEBTMEBT

High Voltage platform 
+100 kV

RFQ

Wout=254 keV/u  Win=14.5 keV/u



18Pioneering
Science and
Technology FNAL Seminar, October 20, 2005

ECR+LEBT (prototype)

ECR ion source on 
100 kV high voltage 
platform

Accelerating tube

Solenoid

60 deg. bending magnet

60 deg. bending magnet

S
Q

Q
Q

S
Q

Q
Q

Q triplet

Solenoid

Solenoid

Solenoid

57 MHz RFQ

MHB

VE

Slits

S – electrostatic sextupole

Q – electrostatic quadrupole

MHB – Multi Harmonic Buncher

VE – Velocity Equalizer 

30 kV high voltage platform

Safety fence 
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Achromatic bending system

Exit of the achromatic system

+28238 U +216O+29238 U

After the collimating slit

+28238 U +29238 U

Before the collimating slit
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Multi Harmonic Buncher

+28238 U+29238 U

CW beam

After the MHB

Before the VE

Entrance of the RFQ
30 kV high 
voltage deck

Multi Harmonic Buncher:

•1st harmonic 28.75 MHz

•2nd harmonic 57.5 MHz

•3d harmonic 86.25 MHz

•4th harmonic 115 MHz

57.5 MHz RFQ

360o at 57.5 MHz
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ECR+LEBT (prototype)

Faraday cage  Isolation Transformer  

Bending magnet  

Safety Fence  

HV deck and isolators  

ECR Ion Source
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Radio Frequency Quadrupole Accelerator

~4 meters

φ 49.5 cm

f=57.5 MHz

P=48 kW

CW operation

q/A from 1/8 to 1.0
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RFQ resonant structure

One segment of the 
RFQ resonator

20 kW 57.5 MHz, CW
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Longitudinal emittance at the entrance of the SC linac
x

cm2.5=βλ
sec39.17 nT =

z

cm2.5=βλ cm2.5=βλ

cm2.5=βλ

200K 1M



26Pioneering
Science and
Technology FNAL Seminar, October 20, 2005

Intensity distribution in the longitudinal phase space

Beam halo studies
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RIA Driver Linac Structure With Multiple Charge 
State Capability

ECRs RFQ   Low-β Section 

Medium-β Section

400 MeV/u  238U Beam

12 keV/u in,  450 keV/u out 13.6 MeV/u

99 MeV/u

High-β Section
β G=0.63 β G=0.5

Strippers
q=34,35

q=74,75,76,77,78

q=87,88,89,90,91
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RIA driver – Some Beam Parameters

Species Input Strip Energy
Q MeV/A multi-Q single-Q

H 1 none 983 400 400
3He 2 none 733 400 400
D 1 none 591 400 400

40Ar 8 once 531 400 400
136Xe 18 twice 451 400 160
238U 28-29 twice 402 102 6

Assumes 400 kW RF power and present-day ion source limits

Output Power (kW)

1020

With expected advances in source performance, 400 kW of all beams.
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RIA Driver Linac Nb SC Cavity Array (total 302 cavities)
72213

345 MHz β=0.62

Triple-spoke

172.5 MHz
β=0.14 HWR

100

40

115 MHz β=0.15

Corrected QWR

57.5 MHz QWR-based 
structures .02< β <0.14

64

345 MHz β=0.5

Triple-spoke
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Beam envelopes (Uranium beam)
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88 MeV/u

Beam

Stripper

Quadrupole+Sextupole

High dispersion area

Beam losses:
(for 400 kW driver beam)

“main” collimator: 4.25 kW
“cleaning” collimators: ~85  W

18.2 m

Medium-β

High-β
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Passage through the stripper, SRIM results of elastic scattering

U-238 at 85 MeV/u

on

15 mg/cm2 carbon 
stripper

1M events 

(~ 1 week on 1.8 
GHz PC)

∆W= 3.29 MeV/u
σW = 17.6 keV/u
σT = 0.5 mrad
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Consequences:

Thickness fluctuation is an important parameter due to the large

~3.3 MeV/u energy loss.

Use lower frequency SC resonators. Triple Spoke in the high−β section:

larger longitudinal  acceptance.

Collimate beam in the transverse phase space: can be effectively

performed in the post-stripper transport line 

Nuclear reactions: <0.2% of ions, not included. Estimated losses are 

~10-6. Tracking of radioactive products are required.
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Beam dynamics optimization along the driver linac:
ECR-LEBT-RFQ-MEBT including space charge and multi-component 

ion beams;

Different accelerating-focusing lattice (QWR, HWR, TSR);

Higher-order optimization of the post-stripper sections. 

Minimize effective emittance growth of the multi-q beam.

Simulation in 3D focusing and accelerating fields.  

Include passage of ions through the strippers. 

Effective cleaning of beam halo by collimation in designated areas.

Simulate 200 seeds with errors and misalignments (automatic steering 

is applied for static misalignments).

Register controlled and uncontrolled beam losses.

Beam Loss Studies 
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Error Simulations: Parallel Computing,

● The study of error tolerances and beam losses requires:
- Simulation of different combinations of error amplitudes.
- For each combination: Simulate a large number of error sets 

(or accelerators), up to 500 (typically 200).
- For each error set: Simulate a large number of particles, up to 1.E+6 

(typically 2.E+5). 

● Computing time, a conservative guess:
- For 1 error set:: 2.E+5 takes about 7 hours on a single 2.4-GHz PC
- For 1 error amplitude combination (200 sets): 1400 hours
- For 1 linac option (10 combinations): 14000 hours = 1.6 year    

⇒ Parallel computing using the ANL-JAZZ cluster:
1.6 year   3 days
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Most Critical errors: RF errors and stripper 

● An earlier study including misalignments and RF errors as well as 
fluctuations in the stripper thickness showed that

- RF errors: amplitude and phase
- Stripper thickness fluctuations

are the most critical errors affecting the beam emittances and 
eventually inducing beam loss.

● Let’s focus on RF errors and stripper fluctuation 
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RF errors: Static & Dynamic (jitter)

● RF Field errors: Amplitude & Phase

● Static or Systematic errors:
- Measurements errors
- Difference between the computer model and actual machine
- Restoring an old tune
=> Usually, we can correct for these errors

● Dynamic or jitter errors:
- Fluctuation in time during the same tune
- Usually smaller than the static errors
=> can not be corrected for
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Typical Values

DistributionTypical valueDescription

Gaussian0.3-0.5 deg (r.m.s)Dynamic phase error

Gaussian0.3-0.5 %  (r.m.s.)Dynamic amplitude error

Uniform1-2 deg (max)Static phase error

Uniform1-2 % (max)   Static amplitude error

The code TRACK was recently updated to treat the RF static 
and dynamic errors separately.
A new procedure has been developed to correct for RF 
static errors using a limited number of correcting cavities.
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Two linac options

I. Old baseline design : Elliptical cell cavities in the high-β section.

II. Triple-spoke design (Baseline-2005): Triple-spoke cavities in 
the high-β section.
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New automatic tuning algorithm: obtain good time focus of the bunch 
at the stripper location

Original manual tune          Automatically obtained tune

Colors:
Individual charge
states.

……… :
Effective beam
ellipse of all
charge states.

A reduction of a factor of ~ 2 in the overall emittance
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Baseline design: Losses in Watts/m

Static /Dynamic err.

1.5 %    /  0.3 %
1.5 deg /  0.3 deg

2.0 %    / 0.3 %
2.0 deg / 0.3 deg

1.0 %    / 0.5 %
1.0 deg / 0.5 deg

1.5 %    / 0.5 %
1.5 deg / 0.5 deg

● Misalignment errors are 
kept at their typical 
values.

● Stripper thickness 
fluctuation: 10% FWHM.

● Transverse correction 
applied

● Correction for RF static 
error applied 

● Simulated: 50 seeds with 
2E+5 particles.

To keep the losses below 
the 1 W/m limit, the 
static errors should be 
about (1%, 1 deg) and 
the dynamic errors about 
(0.5 %, 0.5 deg).
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Triple-Spoke design: Losses in Watts/m

Static /Dynamic err.

3.0 %    /  0.3 %
3.0 deg /  0.3 deg

4.0 %    / 0.3 %
4.0 deg / 0.3 deg

3.0 %    / 0.5 %
3.0 deg / 0.5 deg

4.0 %    / 0.5 %
4.0 deg / 0.5 deg

● Same conditions as for 
the Baseline design 
except for RF static and 
dynamic err.

● Double the RF static & 
dynamic errors used for 
the Baseline design.

No losses observed at the 
typical error values of 
(2%, 2 deg) static and 
(0.5%, 0.5 deg) dynamic 
Up to static errors of 
(4%, 4 deg) and dynamic 
errors of (0.5%, 0.5 deg)  
the losses are still below 
the 1 W/m limit.
The Triple-Spoke design 
is more tolerant of errors 
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Beam data at the exit of linac, image of 32 million particles

Triple-spoke (baseline -2005) 
design

Design with elliptical 
cavities

Note: logarithmic levels of the density isolines
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Error analysis and beam loss studies for the two options:

- Identify most critical errors: RF errors & stripper thickness.
- The Triple-spoke design is more tolerant of errors than the design 

based on eleliptical cavities.
- Baseline: RF error limits are (1.0%, 1deg) and (0.3%, 0.3deg)
- Triple-Spoke: RF error limits are (4.0%, 4deg) and (0.5%, 0.5deg)
- Acceptable values: (2.0%, 2deg) and (0.5%, 0.5deg),
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Conclusion

● Basically, we are ready for CDR
● Meanwhile, pre-conceptual R&D is in progress

- End-to-end simulations, linac lattice optimization
- Tunes for different ions
- Design of strippers (beam sweeping, thermal analysis, stripper 

material)
- Switchyard design optimization
- Radioactive products and beam contamination
- Fragment separators
- Post-accelerator
- Many projects for prototyping (SC ECR, RIA driver front end, 

post-accelerator front end, cavities, gas cell, targets,…)
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