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1. Introduction 
Motivation 

 Simultaneous run of 2 experiments 
♦ Tevatron Run II 
♦ NUMI (started March 2005) 

 Thirsty for protons 
♦ Stress for Booster and MI 

 Good understanding and 
characterization of the accelerator 
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Problems aimed to be addressed 
 Beam lifetime through the cycle 

♦ Reduction of chromaticity ?? 
• Loss of transverse beam stability 
• Improvements of beam stability with transverse bunch-by-bunch 

damper 
o Previous attempt was unsuccessful 

• Impedance measurements and beam stability estimates 
 Study of possibility of fast chromaticity measurements 
 Transition crossing 

♦ Suppression of quadrupole oscillations 
• Quadrupole damper 
• Novel technique – RF voltage jump 
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Booster  
 Machine is more than 30 years old  
 Rapid cycling synchrotron - 15 Hz 
 Combined function dipoles 
 No formal vacuum chamber to avoid 

eddy currents 
 Laminated steel vacuum chamber 

causes increased impedance 

 

Booster parameters 
Energy 0.4 – 8 GeV 
Transition energy 5.1 GeV 
Tot. number of particles 4.5e12 
Circumference 474.2 m 
Harmonic number, q 84 
Betatron tunes, Qx, Qy  ~6.75/6.75 
RF voltage 0.7- 0.9 MV 
Injection H-, 10 turns 

 Naïve transv. impedance estimate 
♦ Magnetic permeability μ∝Z  

• factor of 20 relative to stainless 
steel (μ~2⋅103

, σst/ σss ~5) 
♦ Laminations  

slamination

2
d

aZZ smooth∝  
• another factor of ~30 relative to a 

smooth vacuum chamber (a~2.5 cm, 
dlaminations =0.63 mm) 

♦ Total: factor of about 600 rel. to SS 



Coherent Instabilities in Fermilab Booster, Valeri Lebedev, FNAL, June 2006 5 

2. Beam Parameters and Beam Instability at Injection 
Measurement technique 

 Hybrid for making sum and difference 
♦ 4 channels:  S and Δ for hor.&vert. BPMs 

 Digital scope  
♦ Sampling rate - 0.4 ns 
♦ 2 millions points in each channel: 1.6ms  
♦ Total turns 722 = 678 with beam + 44 

turns with no beam (pretriggering) 
 Data analysis 

♦ Mark boundaries of each bucket 
• Frequency changes are fast,  

 0.15% at 200 turns 
♦ Remove orbit offset from difference 

signal: offset depends on turn number 
♦ Integrate signals to get bunch density 

and dipole moment 
 Slow decoherence of 200 MHz structure 

of linac injected beam 
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Instability development 
 Both horizontal and vertical 

chromaticities were reduced to give the 
onset of instability 

 That caused development of very fast 
head-tail instability in both planes 

• X-plane – 12 turns 
• Y-plane –  16 turns 

♦ instability in X-plane starts later 
and develops faster 

♦ instability starts (becomes visible) 
after beam is completely bunched 
bunch (turn 70) 
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Longitudinal distribution  
 When bunching is complete (turn 69) the longitudinal distribution is close to 

a linear function of energy 
 That yields: εL100% = 0.06 eV·s  
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Betatron Tunes 
Injection process leaves small betatron  
oscillations which has been used for tune  
measurements: Qx=6.825, Qy=6.819 
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 Bunching is not perfectly adiabatic 
 It excites longitudinal quadrupole 

oscillations 
 Observed Qs is about 10% less 

than the small amplitude synch. 
motion  
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 Chromaticity estimate 
 Beam decoheres during turns 30 to 60  

♦ Presuming that damping time is set by chromaticity 
pp

decohn
/

1.
Δ

≈
σξ  

⇒ |ξx| ≥ 85,  |ξy| ≥ 70 
o where σΔp/p = 8⋅10-4 was calculated from long. dynamics 

♦ More accurate estimate using the dispersion equation for continuous 
beam and computed RW impedance yields slightly smaller value |ξx,y| ≥ 60 
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Structure of head-tail modes 
 Changes of dipole moment along the 

bunch with turn number show almost no 
signs of betatron motion 

 The shape of dipole moment distribution 
is the same for all bunches of given turn 
and changes little with turn number. The 
main change is the growth of amplitude 

 There is big asymmetry between head 
and tail for X-plane data  

⇒ Strong head tail effect 
 There is only moderate asymmetry for 

Y-plane data, but in distinguish from X-
plane the wave structure is slowly 
moving from head to tail  
♦ Similar behavior in X-plane for half 

intensity  
 Weak head-tail? Growth rates are much 

smaller than the synchrotron tune 
• λ ~ 0.07 turn-1 
• 2πQs ~ 0.3 turn-1 
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Measurement results for half of 
nominal beam intensity (Ntot=2.3⋅1012) 
Tunes, decoherence times and growth 
times for full and half beam intensity 
Nparticle 2.3⋅1012 4.5⋅1012 
Qx 6.830 6.825 
Qy 6.831 6.819 
Qs at turn 100 0.047 0.057 
ΔQx=7-Qx - 3Qs  0.029 0.004 
ΔQy=7-Qy - 3Qs 0.028 0.010 
X-plane decoh., turns 15 13 
Y-plane decoh., turns 18 16 
X inst. growth time, turns 18 12 
Y inst. growth time, turns 14 14 
 
Unperturbed tunes:  Qx=6.835 
      Qy=6.843 
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Betatron and Synchro-betatron Tunes  
 For weak head-tail the “air-bag” model predicts the following dependence of 

dipole moment along the bunch on turn number  
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where R
Lb

η
ξκ =  is the head-tail phase 

 To make betatron motion invisible the 
tune of corresponding synchro-
betatron mode needs to be close to 
integer ( ) 0≈−+ kmQQ sb Q 
♦ Q x + 3 Q s ~ 6.996 (Q s ~ 0.057) 
♦ Q y + 3 Q s ~ 6.990 

 For X-plane the distance from the 
resonance (2πΔQ x ~ 0.004) is smaller 
than the instability growth rate 
(0.083 turn-1) 
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Comparizon of observed head-
tail motion and simple model  

 Presume 
♦ all radial modes are phased 
♦ Transverse amplitude is 

proportional to long. action 
♦ Gaussian distribution.  

 => the dipole moment distribution is 
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 Comparison with measurements 
verify 
♦ values of detuning from 

resonance Δν 
♦ Chromaticities 
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Another Chromaticity estimate 
 Wave propagation inside the bunch gives independent measurement and 

additionally allows to determine the sign 
♦ For “air-bag” model 
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where  n is the turn number 
 ( )7,03.0~ =−−+≡Δ ppmQQQ sb    

⇒ the head-tail phases are positive and roughly are 
for X-plane turnper022.0~/ −Δ bLs => 8≈xκ  
for Y-plane turnper025.0~/ −Δ bLs => 7≈yκ  

⇒ chromaticities are negative  ⇒  ξx ≈ -85,  ξy ≈ -70 
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Tune dependence on intensity and estimate of Im(Z⊥) 
 Tune shift for 4.5e12 particles: 

♦ Δ Q x~0.010, Δ Q y~0.024 
 Tunes are affected by 

♦ Imaginary part of Z⊥  
♦ Combination of space charge incoherent tune shift and momentum spread 
♦ Detuning wake 

 Leaving only impedance contribution one can estimate imaginary part of the 
impedance from tunes measured at the cycle beginning (turns 30 - to 60) 

( ) ( ) ( )( )

( )nQ

ZiZ
Qemc

RIQ

n

nn

+=

+−=Δ

0

22
0 ,)(Re)(Im
/4

ωω
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♦ For frequency of 76 kHz ( ( ) 07 fQ− ) that yields:  
⇒ Im(Zx) ≈ 24 MΩ/m 
⇒ Im(Zy) ≈ 58 MΩ/m 

 Earlier measurements (Huang Xiaobiao) with beam was excitation by kicker 
and beam motion recorded by regular booster BPMs showed close results 
♦ Many modes are excited 

• frequency is not well determined 
♦ Only vertical tune shifts 
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Instability growth rate and estimate of Re(Z⊥) 
 For bunched beam the “Air-bag” model in the case of week head-tail yields 

the instability growth rate per turn: 
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  where  Lb – bunch length 
    Nb – number of bunches ( Nb = q ) 

 If we presume that the addend with smallest frequency makes major 
contribution one obtains 
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 That for κ = 4 that yields impedance estimate 
⇒ Re(Zx)≈42*5.4≈230 MΩ/m at 12 kHz 
⇒ Re(Zy)≈55*5.4≈300 MΩ/m at 12.5kHz 

♦ Data at 2.3⋅1012 is used where head-tail is weak 
♦ while real and imaginary parts of tune shifts are 

close the suppression due to head tail boosts real 
part of impedance by factor of 5 (J3(κ)-2 ≈ 5.4) 
• Note difference in frequency 
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3. Estimate of Transverse Booster Impedance 
Impedance of stainless steel round vacuum 
chamber with thin walls 
Impedance per unit length (ω > 0) is: 
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This is factor of 300 below the value  
determined from instability growth rate 
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Contribution to Booster impedance from 

stainless still vacuum chamber:  
L=200 m, a=4.3 cm, d=1.6 mm 
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Impedance of steel flat vacuum chamber 
Impedance per unit length (ω > 0) is: 
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Real part achieves maximum at freq. where 
                 and beam magnetic field is  
changed so that B|| at surface is decreased 

 Real part of impedance is still too small  
at frequencies of interest:  
f0 Δ Q  ~ 12 kHz, qf0 ~ 38 MHz 
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Contribution to Booster impedance from 
laminated (left curves) and non-laminated 

(right curves) dipoles (μ = 1000, q =Nb) 
and SS round vac.chamber 

(F dipoles) L=140 m, a=2.08 cm, 
+ (D dipoles) L=140 m, a=2.85 cm 

Effect of laminations 
 Laminations force the beam current to flow not only on 

the inner surface but also deep inside laminations (~a) 
 That greatly increases the impedance.  

♦ For high frequencies it was found by 
Burov and Danilov ( ) lamnolam ZdaZ ⊥⊥ = /2  
• dlam = 1.6 mm => amplification ~ 30 

♦ Laminations increase resistance and 
magnetic conductivity per unit length 
by ( )lamda /2  
• Recipe: ka /μ  ⇒ k dlam / 2μ 
• Coincides with B-D 
• Does not exceed the “Careless” 

limit (A. Chao) 
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 Exact knowledge of  Z⊥ below the first 
few harmonics of qf0 is not required  
♦ no resonant harmonics for f < qf0 
♦  small contribution for  f < (2-4) qf0 
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Main contributors to Booster impedance 
 F 

dipoles 
D 

dipoles 
Other vacuum 

chamber 
Geometry Flat Flat Round 
Total length, m 138.7 138.7 196.7 
Material Steel Steel Stainless steel 
Half-gap or radius, mm 20.8 28.5 42.8 
Thickness of laminations, mm 0.63  0.63 N/A 
Wall thickness, mm N/A  N/A 1.6 

 The following details are neglected in the model  
♦ All other imperfections  
♦ Angles of poles to horizontal plane (~5 deg) 

 Averaging over beta-functions has been taken into  
account in computing Z⊥ 

∫ ⊥⊥ = dsssZ
R
QZ Leff )(),()( βωω  

♦ It resulted the following correction factors 
• Focusing dipoles:   Kx=2.64,  Ky=0.65 
• Defocusing dipoles:   Kx=1.00,  Ky=1.62 
• Round vacuum chamber: Kx=0.64,  Ky=1.82 
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Estimate of instability growth rate 
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Estimate of tune shifts from Z⊥ (continuous beam, turns 30-60) 
 Flat vacuum chamber 

♦ Both normal wake and detuning wake need 
to be taken into account 

( )

( )∫
∫

+=′

−=′

L yy

L xx

syDsWyesdF

sxDsWxesdF

)()(

)()(

0
2

0
2

 

♦ For round vacuum chamber:      ( ) 0=sD  
♦ For flat vacuum chamber:   ( ) ( )sDsW xx =  

 Making transition from two particles to continuous beam we obtain  
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 For vert. plane eff. impedance that yields Im(Zyeff) = 85 MΩ/m at 86 kHz  
♦ Decent agreement with measured values of 58 MΩ/m  

 For horizontal plane:  
• Computations: 26 MΩ/m   -   Measurements: 24 MΩ/m  

 Good agreement for such simple model 
♦ No space charge, no momentum spread, no accurate model for laminated 

magnets, no partial bunching 

x0x
s
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Discussion 
 Tune shifts: Im( Z⊥) was measured at the lowest betatron sideband, 76 kHz 

♦ Computation yields: major contribution comes from Lasslett tune shift, 
effect of laminations on Im(Z⊥) is small 

♦ Computed Zx and Zy coincides comparatively well with measurements 
 Growth rates: Instability is driven by Re(Z⊥) at many frequencies 

♦ f = ~ 12 kHz, ±k·38 MHz 
♦ Weighting impedances over beta-function makes horizontal impedance 

larger than vertical one - the same as in the measurements 
♦ High frequency part of the impedance (80 – 300 MHz) makes major 

contribution to the instability development 
• Summing includes only  f < 500 MHz 

⇒ Plate-to-plate capacitance should reduces Z⊥ above 100-200 MHz  
♦ Estimated increments are about factor of 6 smaller than measured 

⇒ μ = 1000 is used.  
o It is OK for low frequencies 
o Questionable on high frequencies, δskin = 0.5 μm at 100 MHz, while 

domain size ~10 μm 
♦ Better understanding of laminated dipole impedance is required before 

we can make further conclusions 
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Could storing of electrons explain the instability?♣ 
 Time of space charge compensation is about 0.1 second for P=10-7 Torr 

♦ Multipactor production? 
 Maximum transverse impedance related to electrons is set by beam radius 

and is 10-20 times larger 
♦ At free space 
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 It is quite probable!!! 
♦ More experimental observations are needed to prove it 

Study proposal 
 Perform measurements at smaller chromaticities and larger range of 

intensities (1, 2,4 and 8 turn injection)  
♦ multipactor has a threshold above 1 turn injection 
♦ Smaller chromaticity should suppress 3-rd synchro-betatron mode  

                         
♣ Vadim Dudnikov 
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Backup transparencies 

♦ Problems aimed to be addressed 
 Beam lifetime through the cycle 

♦ Reduction of chromaticity 
• Loss of transverse beam stability – reason is still unknown 
• Improvements of beam stability with transverse bunch-by-bunch 

damper ??? (>200 MHz} 
o Previous attempt was unsuccessful 

• Impedance measurements and beam stability estimates – much 
better clarity 

 Study of possibility of fast chromaticity measurements – very difficult at 
full intensity because of strong head-tail; possible at small intensity 

 Transition crossing  - do not need before transverse beam stability is 
addressed 
♦ Suppression of quadrupole oscillations 

• Quadrupole damper 
• Novel technique – RF voltage jump 
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4. Transition crossing with RF jump technique  
Experimental observations 
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 After transition Coulomb repulsive force causes  
particle attraction 

♦ Signal is taken from 
15 cm BPM and is 
digitized by the 
scope at 5 
Gsamples/s 

♦ Beam current is 
proportional to the 
integral of BPM 
signal 
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Linear model  
 Both beam field and RF voltage are linearized 
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 Parabolic distribution of bunch charge 
 Exact solution of longitudinal bunch envelope equations  

♦ motion is non-adiabatic near transition 
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Nominal transition crossing 
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Suppression of the bunch self-focusing (actually overfocusing) 
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Numerical simulations 
RF manipulation  
or not 

charge at 
injection 

charge at 
extraction 

95% emittance at 
8GeV (eVs) 

rms deltaP 
(MeV) 

yes 5*1012 4.55*1012 0.07052 3.357
no 5*1012 4.42*1012 0.09315 3.608
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γt-jump 

Δγt = 0      
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γt-jump and RF voltage jump 
Δγt = -0.2 n
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Experimental results 
♦ The method was tested in Booster 

 Demonstrated suppression of the emittance growth with single voltage 
jump located before transition 

 3 shifts of real operation 
♦ Problems/concerns 

 Sensitive to loosing RF station (insufficient voltage) 
 Present low level RF hardware has insufficient time resolution preventing 
good tuning  

 Brings additional complications in operations 
♦ Quadrupole longitudinal damper is presently used as main remedy preventing 

longitudinal emittance growth after transition   
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Transverse impedance for round vacuum chamber with 
thin walls 
Impedance calculation for round vacuum chamber  

.3774

,
2

,1

0 Ω≈=

=
+

=

c
Z

cik

π
πσω

δ
δ

 

Solutions for the vector potential in different regions 

( ) θθ ω cos

2

,,

4

)(
3

)(
2

1
00

ti
arkark

III

II

I

z e

r
C

eCeC

rC
cr

xI

A
A
A

trA

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−−−  

Matching solutions at boundaries: 
 

00

;
++

==
rrrr dr

dA
dr
dA

d
dA

d
dA

θθ
  

yields four linear equations for  
coefficients Ci . The solution is: 

 

x

y
d

ab
θ

I
II

III

 
I0 – the beam current 

x0 – transv. beam motion amp.  
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Taking into account contribution from electric field of the beam we obtain an 
expression for the vacuum chamber transverse impedance (ω > 0): 
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There are following asymptotes for  
transverse impedance: 
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Contribution to Booster impedance from 

stainless still vacuum chamber:  
L=200 m, a=4.3 cm, d=1.6 mm 


