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Abstract

In order to have a better understanding of the FermiLab Booster beam
loss at the injection, emittance growth at the transition crossing, and
momentum spread reduction at the extraction, we need a 3-D model
which includes the longitudinal and transverse space charge effect
and the longitudinal impedance effect. After we've successfully bench
marked the longitudinal motion model against the experiment (see the
accelerator physics and technology seminar at 09/02/06), it has been
added to the particle tracking code STRUCT. Also, a simplified
transverse space charge model has been added to STRUCT.

Based upon our simulation, the momentum reduction at the extraction is
optimized operationally to reduce the beam loss during Slip Stacking in
the Main Injector.

We obtained a good agreement between experiment and simulation at
injection and extraction.

We’'re ready to include the longitudinal impedance module and nonlinear
chromatic effect at the transition in STRUCT.



Outline

* Injection — space charge effect; RF voltage ramp optimization for
Improving the charge transmission and reducing the beam emittance

+ Transition —how the vy, jump system, the speed and amount of
phase jump at the transition influence the loss and beam stability;
varying nonlinear compaction factors via changing sextupole
current, etc.

« Extraction — optimizing the momentum spread reduction at the
extraction in Booster for a better match to the stable bucket area at
the slip stacking in Main Injector --- reduce the beam loss in M.



Booster parameters used in the simulation

Kinetic Kinetic Repetition Batch size & y(10) dP at D, B,

energy at | energy at | rate (number of | (mm'mrad) | injection (m) (m)

injection | extraction | (Hz) proton at (AP),,

(GeV) (GeV) extraction) (MeV)

0.4 8 15 4.6x1012 0.01278 0.1 1.85- 6.12-
3.2 33.69

0.4 8 15 4.6x1012 1.278 0.1 1.85- 6.12-
3.2 33.69




|. At the injection

We assume that the injected beam has a uniform distribution along the
RF phase.

However, we’ll do multi-turn micro-bunch injection simulations in the
future.

Also we’ll numerically investigate how injection errors influence the
capture process.

Example, 3 turn micro-bunch injection --- 1t turn, 2" turn, and 3 turn.

200 MHz micro-bunches from Linac are injected to Booster with the RF

frequency of 37.8 MHz. separatrix

at injection
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Transverse space charge

x y? < 1 « The beam is assumed to have a uniform
ot o= e density within the elliptical cross section

defined by eq. 1. Here, a=30,, b=30,.

F _e*xNx % « Transverse space charge forces are

) gy xmxy*xax(a+b) shown as eq. 2 when x<=30, and y<=30,;
Fo_€xNxy they are shown as eq. 3 when

Yo A X X y° xbx (a +b) . (x2/aZ)+ (y2[b2)>1

eq.2  « The angle kick due to the transverse

F —e’xNxx space charge force at a path length of L
X goxﬂxyzxzx,ﬂ is shown in eq. 4.

F:foNXy
Y EgXTTXY X217

A
Y

eq.3

0 _FxL
x PxPxc

g _Fny eq.4 0, >
v PxPxc 7




Longitudinal space charge

= z, is shown as eq. 5

nh
W =nxhxw,

g=1+2xIn(b/a)

Z, - IXZ,Xg Longitudinal space charge impedance
2% fxy’)

Here, z,=377Q) is the free-space
impedance, h=84 is the harmonic
number, b and a are transverse radius
of the beam pipe and the beam.

eq.(5)
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Radial feedback
Desired

Beam
. - Beam
Measured f/ -\ of Waveform\/
position

Gain

N

Radial feedback (FB) signal before transition

Ao, (1) = ~AR()xr, (1) = ~R, ()< (AE/,) (6)

Radial feedback (FB) signal after transition
Mg (0)= R0, ()= R, (x(E7) ()

The momentum deviation (AP) causes a radial position offset due to the
nonzero dispersion. The radial FB picks up such an offset (AR), multiplies
it by the FB gain (rg), and sends it to shift the phase of the beam relative to
the rf accelerating waveform (A¢s). Since ¢s is in the range of 0° to 90 °
before transition and in the range of 90 ° to 180 ° after transition; in order to
get more accelerating voltage, before and after transition, the sign of Ags
should be changed, as shown in eq. 6 and eq. 7.



Understanding longitudinal and transverse space charge effects at injection
---- NO space charge effects
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P, GeV

GeV
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---- only the transverse space charge effect
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---- only the longitudinal space charge effect
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The ratio of the effective voltage and the rf voltage vs. turn number is shown in the rf voltage ramp
of 0.05-0.4MV in the 1st 200 turns.
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Comparing without (red) and with (green) space charge effect, charge and
momentum spread in sigma are shown at the top and bottom.

Due to the longitudinal space charge effect, there is a factor of two more charge
loss and ~20% larger momentum spread.
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RF woltage, MV

dPcin sigma, MeV
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Hor. beam size in sigma, mm

'] 1 1
5 10 15 20

25 30 35 40
Tum number
T T T T T T
low votage  +
at the Booster short straight section high votage

5 10 15 20
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Two RF voltage ramps are
shown as the red and green
curves (top).

The momentum spread
(middle) and the horizontal
beam size (bottom) are
shown. The higher the initial
voltage is, the faster and
higher dP grows right after
the injection. Fast growth in
the momentum spread and
horizontal beam size till
reaching their 1st maximums
in 14 turns are caused by
the first 2 synchrotron
oscillation after the beam is
injected (see Fig. at p12).
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In the transverse plane,
the injected beam with
two different
emittances.

Beam size in Booster
at different turns after
injection for small
transverse emittance
(0.0127mm*mrad, left)
and normal emittance
(1.27mm*mrad, right).

In small emittance
case, transverse space
charge effect creates a
small amount of halo
particles, in normal
emittance case, which
is close to the

operational condition,
: transverse space
| charge effect makes no
{ difference.
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L} L}
small emitancs ————
i rrmres! BrTiitenine 3

ommal trRrevese emitanca n 1 sigma & 1.27mm " mrad
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]
1

Horizontal beam size in sigma, mm

—r

0

B0 100 160 200 260 a0 260 400
Tum number

Beam size in 10 is 0.64 mm at the small emittance case and 6.4 mm at the normal emittance
case.

First ¥4 synchrotron oscillation causes more than 0.5 MeV increase of AP which is ~0.1% AP/P,
and it contributes to the beam size via dispersion. It’s the same for both normal and small
emittance cases, and it’s about 3 mm.

In the small emittance case, sqrt(0.62+32)=3 mm, -- a big increase in horizontal beam size

In the normal emittance case, sqrt(62+32)<6.7 mm, -- a small increase in horizontal beam
size

17



Summary-|

The influence of the transverse space charge effect
is very small without considering field errors.

The longitudinal space charge effect causes the

beam loss and emittance growth at the injection.
Since there isn’t any beam pipe in Booster main magnets, the
geometric factor shown in eq. 5 is not known precisely. It’s adjusted
in the simulation to make the simulation match the experiment.

RF voltage ramp at the injection has a great
influence on the charge transmission and the

emittance of the beam. -- It’s an important parameter to be
adjusted to get a higher transmission and a smaller emittance
of the beam!!!
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Longitudinal phase plane at the injection

0.4MV |
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0.2 MV
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turn number

100 200 300

RF voltage at mjection.
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*Injection
parameters from
the blue line of
table 1 — small
emittance.

*In the left,
charge reduction
due to particles
moving out of the
bucket, charge
calculated in the
range of [-mr, ]
with respect to
synchronous
phase (left); in
the right, particle
loss at
accelerator
aperture.
Comparing four
different RF
voltage ramps,
losses can be
largely removed
by ramping up
the RF voltage
faster, as shown
in the left column
from top to
bottom.
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 Transverse phase plane at Turn 300 for RF voltage ramps of 0.05-0.1MV, 0.05-0.2MV,
0.05-0.3MV, and 0.05-0.4MV in 200 turns (top to bottom and left to right).
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Injection parameters from the blue line of table 1 ---

small emittance.

Three RF ramps with different initial values and
they’re linearly ramped up to 0.4MV at Turn 200.

Once the RF voltage at the injection is ramped up
fast enough, the capture efficiency can be as high as
95% to 97%. However, higher the initial RF voltage,
bigger the transverse beam size and longitudinal

ano emittance of the beam are.
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26

At Turn 300,
three RF
voltage ramps
of 0.1-0.4MV
(red), 0.05-
0.4MV (green),
and 0.033-
0.4MV (blue)
in 200 turns,
there are
differences in
the transverse
beam size, the
momentum
spread, and
the bunch
length.

The RF ramp
of 0.033-
0.4MV in 200
turns has the
smallest
transverse
beam size.
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Il. Transition crossing

v Jump system 1is designed to make the transition crossing faster by changing the
lattice function vy, in lunit within 0.1 ms, for the purpose of preventing beam losses
from the momentum spread growth and the beam instability from the bunch length
shortening.

6.8 , _
GT jump 0.1
ol GT jump 0.2 ——- :
62 r GTjump 0.4 -
GTjump 8 ———-
°T gamma m
5.8 |- : _
g EE | L Tumul.::hu [ B0 BAD B |
€ 54F \1
S 52+ 1
3T \
a8 - _
46 - _
4.4 1 1 L . .
8000 8500 a0a0 9500 10000 10500 11000

Turn number

vt vs. turn number is plotted for Ay=-0.1 (red), -0.2 (green), -0.4 (blue), and -0.6
(magenta), and also relativistic y of the beam vs. turn number is plotted as the light

blue curve. y, jump is done by v, quads excitation. 24
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y = 0.4/ ms at transition
I, = 0.25ms — — — characteristic non - adiabatic time

when the synchrotron motion is nearly freezing. ~ 150turns
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AP is plotted at the top for Ay, =-0.1 (red), -0.2 (green), -0.4 (blue), and -0.6 (magenta) during transition.
Bunch length in 60 vs. turn number is plotted at the bottom.

Larger y, jump produce longer bunch with smaller momentum spread. The advantage of having a
longer bunch length is -- high frequency components of the beam current get smaller such that high
frequency coupled bunch modes are excited in smaller amplitudes.
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@s vs. turn number is plotted for taking 6 turns (red), 10 turns (green), and 20 turns (blue) to
complete transition phase jump at the top left. Their corresponding energy error AE at the
top right, AP in rms at the bottom left, bunch length in 6o at the bottom right.

It's clear that faster the transition crossing is, smaller the energy error AE is; so makingy
transition crossing faster may help in reducing losses of high intensity beams. Of course,
the highest speed limit of transition crossing is set by Booster RF systems.



@s (rad)
AE (MeV)

e & b e M LA s M ow

B4I0 500 L kil G710 Ba00 BB00 1000 0400 G0 Ba00 10000 1010 10400
Turn number in a cycle Turn number in a cycle

u,-ﬁ_ l l l l l

@s vSs. turn number is plotted at left for 20 turns of 180°-2¢ jump (red) and 20 turns
of 2x(180°-2¢) jump (green). Energy error AE is plotted at the right.

Operationally, high intensity beams sometime prefer the phase jump in the green
case, or there aren’t any differences between the green case and the red case.

In order to understand this, the impedance effect and the nonlinear momentum
compaction factors should be added in our 3-D model in the future!
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lll. At the extraction

10 L Beam area at s e—
the Booster . .
extraction (red). In the slip stacking cycle:
| stable bucket I Problem --- there is a bucket
area at the sli mismatch between Booster
° | stacking I and Main Injector.
injection in Soluti t
_s L Main Injector i olu 'on_"' m_omen um
(green). reduction via RF
manipulation.
10 -
” = 2 S o ; 2 3 a

RF phese (radEny

Bunch rotation via RF voltage reduction was applied to reduce the momentum
spread of the 8 GeV Booster beam below 8 MeV (95%) to reduce the slip stacking
beam loss in Main Injector.

However, the fast RF voltage reduction often causes beam loading issues to Booster
RF stations, and reliabilities of extracted beams becomes a problem.

An alternative solution has been numerically investigated and is now being used in
the Booster operation. Modulating the RF voltage at twice the synchrotron
frequency introduces bunch length oscillation at the end of a cycle, and the 8 GeV
beam is extracted at the time when the bunch length reaches the maximum and the
momentum spread becomes the minimum.
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With the initial RF voltage
of 0.4MV, four different
amplitude modulations,
15% (red), 25% (green),
35% (blue) and 45%
(magenta), are used in our
simulation. RF voltage,
synchronous phase, and
95% momentum spread vs.
turn number are plotted
from top to bottom.

Beam is extracted at 2"d or
39 minimum of the
momentum spread
(bottom).
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Slip stacking in the Main Injector
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RF frequency of reference, first and second stations
during slip-stacking injection at simulations
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dE  MeV

+
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RF phase (radian)

Longitudinal phase plane
for the 1t beam during
300 turns after the
injection. First 3
particles of beam 1 with

dE>+8MeV

are lost from the
separatrix.
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With the RF
voltage at
extraction of
0.2MV, two
different amplitude
modulations, 25%
(left) and 35%
(right), are
simulated.
Longitudinal
phase plane at the
initial, 1st, 2"9, and
3rd dP minimums
are plotted from
top to bottom.

RF voltage and
95% momentum
spread vs. turn
number are
plotted for 25%
(red) and 35%
(green)
modulations at the
bottom left aﬁd
right.
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Initial RF voltage 0.2MV, 35% modulation in Booster. Longitudinal phase plane at
extraction to Main Injector without Pc correction (left) and with Pc correction to
Pc=8.88889 GeV ( right).

Longitudinal distribution (left) and momentum distribution (right) of the bunch
before momentum reduction, at 1st and 2"d minima. 35
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Summary

We now have a single detailed modeling tool for the Booster in both
longitudinal and transverse motions throughout the entire
acceleration cycle.

The influence of the transverse space charge effect is very small
without considering field errors; the longitudinal space charge effect
causes the intensity dependent beam loss and emittance growth,
etc.

It's important to inject the beam at a small RF voltage in order to
reduce the beam size and the longitudinal emittance, etc., and ramp
up the RF voltage quickly to capture more beam.

At the transition crossing, 3-D simulation which includes the
longitudinal impedance and nonlinear compaction factors should be
done in order to have a better understanding of experimental
observations.

At the extraction, modulating the RF voltage with twice the
synchrotron frequency and extracting the 8-GeV beam at the dP
minimum have been investigated via varying the initial RF voltage
and modulation depth, and how extracted beams in different
conditions affect the slip-stacking beam loss have been numerically
investigated.
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with v quadiupoles current 1000 A (top), with qgfat short 02, 06, 10, 14, 15, and
22: qed at short 04, Q= 12, 16, 20, and 24, Sext] arrangement is two at upstream
of long 4, two at upstream of long 8, two near the middle of long 18, and one at
the upstream of long 20.
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