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Fully Implicit Particle-in-Cell Algorithm
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Motivation

O Explicit Method:

> It is simple and straightforward to implement, BUT is inappropriate for multiple
time scale problems since they must resolve the fastest time scale supported by
the model (<,up_€1/<,up_i1 = /Mme/Mm, wpe At < 1).

> Numerical stability constraint on the grid spacing, Ax < Ap,, to avoid the finite-
grid instability.

Low frequecy regime
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Motivation

O Semi-Implicit Method:

> Decouple Poisson equation from the equation of motion, but still implicit. —
no constraints as for explicit method (typically, Atimpiicit/ Atexplicit ~ 102,
A Timplicit/ ATexplicit ~ 107).

> Particle and field quantities are inconsistent at the each time step. — possibly
poor energy conservation.
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Motivation

O Explicit Method:

> It is simple and straightforward to implement, BUT is inappropriate for multiple
time scale problems since they must resolve the fastest time scale supported by
the model (<,up_€1/<,up_i1 = /Mme/Mm, wpe At < 1).
> Numerical stability constraint on the grid spacing, Ax < Ap,, to avoid the finite-
grid instability.
O Semi-Implicit Method:

> Decouple Poisson equation from the equation of motion, but still implicit. —
no constraints as for explicit method (typically, Atimpiicit/ Atexplicit ~ 102,
A Timplicit/ ATexplicit ~ 107).

> Particle and field quantities are inconsistent at the each time step. — possibly
poor energy conservation.

O Fully-Implicit Method:
> Achieve consistency between particle and field quantities at the each time step.
— improve energy conservation.

> To do this, both particle and Poisson equations are packed inside the nonlinear
solver such as Newton-Krylov solver.
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Fully Implicit Particle-in-Cell(FIPIC) Method

O

O

Electrostatic case is presented here. Extension to electromagnetic problem is
straightforward with some consideration.

The FIPIC method uses the nonlinear function (of Poisson equation) as a measure
of convergence of the coupled system.

The coupled system is packed inside the nonlinear solver such as Newton-Krylov.

The convergence of the nonlinear function F' guarantees that one get the self-
consistent solutions of particles’ equation of motion and Poisson equation, be-
cause the particle and the field equations are evaluated iteratively inside a non-
linear solver.

The nonlinear residual is given by

2
P1<wn+9$) ::vrﬁﬁﬁﬂ$ﬂ+ﬁ)<wn+9$) > Poisson Eq. Particle Mover
En+1 ) x;H,V;H
EZ;»L+1 _ én + A7_17‘?.’114—1/2 Eval."D+elnsity
p
—n+1 _ i 1/2 —n+1 2

time level n

where n the time step, k£ the kth Newton iteration, and 6 the time decentering.
Jacobian-free Newton-Krylov technique is employed for the nonlinear solver.
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Jacobian-free Newton-Krylov (JFNK) Methods

O

O

JFENK is a way to solve efficiently the nonlinear system F =0 using Newton and
Krylov methods.

Newton’s method is a generalized iterative process to find accurate roots of a non-
linear equation, F' (u) = 0.

Jhsak = —_F (ak) o owith @ = @F 4 sa”, (1)

8F
8u

The solution of Eg. (1) is constructed by spanning the Krylov subspace in the
following form

where J* is the Jacobian matrix of which the element (i, j) is J

[—1
57 = > ad'7, )
where [ is the linear iteration number, and 7 is the initial linear residual.
Jacobian-free implementation is done by

U
r = (3)
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JFNK Methods (continued)

O For efficiency, an inexact Newton method is usually employed
HJ’%@’“ + F (a*) H
|7 @)

Here, n is a forcing term whose selection determines the order of convergence
of the inexact Newton method.

O In Jacobian-free application, right preconditioning is often employed so that one
solves

< Ng- (4)

ghp—1 (Péﬁk> — _F (a’“) , (5)
where P is the preconditioner.
O The matrix-vector product for right preconditioning is

o (a’f + eP_lf) _F (a”f)

I = , (6)
€
and the preconditioned linear system, Eq. (5), is solved in two steps: solve
(J*P~1) w" = —F (a") for ", and then solve §%* = P~ '5",
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Preconditioner of Electrostatic System

O Efficient preconditioner reduces the number of Krylov iterations considerably.

O Differential form of preconditioner is derived from approximating the Jacobian
(JF = V2 4 9p /01" for the nonlinear Poisson equation.

O ap/aw can be rewritten by the shape function and the chain rule:

Op

o .
9 |k~ %;J%qis (£-4)

O Antisymmetry of shape function and temporal discretization of equation of motion
give

%

wk} 0 j€0

dp 3 20 0 G0 k=
i ) OAL)” — . — 49 kR .
ol DX (€8 53| =t o ke
O Further, we obtain
o) _pan2 2. [y a0 k2
%wk_(eAt) oF [G — 0085]-

O Finally, preconditioner for electrostatic system is given by

(1 +(0A)° > %pa> vgl : (7)

P=Vg
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Fully Implicit Particle-in-Cell Algorithm

1 Z7 and u; are given
2 i — | (50) |

3 while HF (w%’f“) H > T -+ Tape dO

e s (50| < (50 o
5; solve nonlinear Newton’s equations:

6: ﬁ?“’“ - —*;Lk + AtmET.LH/“

7. g—*;hul,k - é;nk 4 Atﬂ?—i—l/Zk

8 prtt — 3, > jeo 45 (g— 5;L+9’k>

o Frtok g2tk g, (pntok

10: minimize Jk(s?,EnJre’k 4+ F (qﬂ”@’k) H to obtain 5&n+9,k

11:  end while

12: &m-e k1 - Jn—i—@k + 5Jn+0,k
13 evaluate F (w"+9 LA

14: end while

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Hyung Jln Kim’ thImz@UIUC.edu



Numerical Test(1): Electron Two Stream Instability

O Equilibrium: uniform density (n; = n. = ng), E = 0, and unmagnetized.
O Immobile ions and two cold electron beams with vo = £55% V3 wpe/k.
O 1D domain of 32 grids, 10° simulation particles, and wpeAt = 0.1 time step.
O Perturb. electron density: dn/n. = e cos (ko&) with kg = 27 and e = 1075,
O Linear growth rate vineoretical = 0.354, Ysimulation = 0.341.
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Numerical Test(2): Electron Landau Damping

O Equilibrium: uniform density (n; = n. = ng), E = 0, and unmagnetized.

O Immobile ions and thermal electrons with Maxwellian distribution.

O 1D domain of 32 grids, 10° simulation particles, and wpe.At = 0.1 time step.

O Perturbation of electron density: én/n. = ecos (ko§) with kg = 27 and € =
5 x 1072,

O Linear damping rateé ~ieoretical = —0.153, Ysimulation = —0.146.
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Numerical Test(3): lon Acoustic Wave

Equilibrium: uniform density (n; = n. = no), E = 0, and unmagnetized.
Thermal ions and electrons with temperatures 7. /7; = 100 and kA p. = 0.1.
1D domain of 64 grids, 10° simulation particles, and wpi At = 0.1 time step.

Perturbation of ion and electron densities: dn/ng = € cos (ko&) with kg = 27 and
e = 0.1.
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Efficiency of Preconditioner

The preconditioner is applied to the Kylov method (GMRES), and its efficiency is

demonstrated.
_v.. 2N 4o ;
P =V <1+(«9At) za:mapg> VJ .

preconditioning no preconditioning

# of iterations # of iterations

(nonlinear/linear) (nonlinear/linear)

Two Stream 2/4 6/42

Landau Damping 2/4 6/46
lon Acoustic Wave 3/6 6/60
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Grid and Time Step Convergence

O Grid convergence study with At = 10Atexpicit and 40 time steps for the lon Acous-
tic Wave simulation with a mass ratio m./m; = 1/100.

Newton/At GMRES/At CPU(s) CPU

4 8 15.4 1.9
5 9 31.6 3.5
5 10 75.1 7.5
6 11 183.4 16.7

(CﬁD\U is the CPU time normalized to GMRES/At)

O Time step convergence study with 128 grids for the lon Acoustic Wave simulation
with a mass ratio m./m; = 1/100.

Newton/At GMRES/At CPU (s) CPUeXpnCit/CPU At/Atexp”Cit

4 6 110.1 1.3 5

5 10 75.1 1.8 10

6 14 54.8 2.5 20

V4 23 63.0 2.2 30
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Stability Study on Spherical Inertial Electrostatic Confinement
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Inertial Electrostatic Confinement

O 1930-1950: Inventions regarding electron focusing in cylindrical and spherical vac-
uum tubes.

O 1950-1960: Consideration of concentric spherical grids for production of nuclear
fusion reactions by

> Laverentev, Kharkov
> Farnsworth, ITT
> Elmore, Tuck, and Watson, Los Alamos

O 1960-1980: Further study of electrostatic plasma confinement at ITT, Kharkov, llli-
nois, Wisconsin and Penn State.
> significantly developed experimentally by Hirsh.

O 1980-2000: Further study the theoretical issues.

> Study the concepts combined with magnetic confinement (Pollywell” | PEX-1).

> Study the new applications such as neutron generator.
> Further study the theoretical issues such as virtual potential well and instability.
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lon-injected IEC (Background)

O High-voltage is applied between spherical
transparent grid (cathode) and spherical
vacuum chamber (anode).

O lons accelerate towards the cathode grid,
focus in the center, causing a central virtual
anode with high ion density.

O Electrons focus in the center of the virtual
anode creating a virtual cathode.

O lons near the center fuse with each other.

cathode Anode
spherical
grid

=2 =

Dense plasma
core

Virtual electrodes

potential
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lon-injected IEC (Properties)

O Highly non-neutral (space charge effects).
O Collisionless.
O Non-thermal equilibrium.

> between a Maxwellian velocity distribu-
tion and a two beam velocity distribution
(Counter-streaming shifted Maxwellian).

O Need the analysis of two-stream-like insta-
bility on the base of the kinetic model.
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Motivation/goal

O Two-stream-like instability is the most probable instability of SIEC system. Particles
in SIEC have drift velocities and are spherically converged/diverged.

O Analyses on two-stream instabilities of spherically converging or diverging charged
particle beams are poorly-established.

O For IEC system, itis increasingly important to develop understanding of instabilities
using a kinetic model based on the nonlinear Vlasov-Poisson equations.

> Space charge effects and collective instabilities (two-stream).
> Mode structures, growth rates, and thresholds.
> Damping mechanism and wave-particle interaction.

O GOAL.: to clarify detailed characteristics of beam instabilities excited in a spherical
inertial electrostatic confinement system.

> A kinetic model based on Vlasov-Poisson equations.

> Two-stream instability of spherically converging counter-streaming particle
beams.

> Stability limits for various operation parameters.

> ¢ f particle simulation method.
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Normal mode analysis in spherical geometry

O

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Applying a local theory (for uniform system) is “straightforward”:
JUST DO FOURIER/LAPLACE TRANSFORM — DISPERSION RELATION

Appying a nonlocal theory (for nonuniform system) is “HARD” (because Fourier
transform cannot be applied): need a new approach.
Consider the following equilibrium system:

V:(w)=0— r’nv = const,

. 9
no T
nio,+ (1) = 773, vi0,+ = Tv0, Neo (1) =240 (1), veo =0, ¢o(r) = const.

Introduce a perturbation in terms of 0'" spherical Bessel (Gegenbauer’s integral
representation):

Sp(r,t) —ZCUO(le)e_Z it Z / ilkyrn =ty
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Stability boundary in spherical IEC

O Cold ion beams and hot electron background

Vo g
V0 1 —— local
C < > (local theory), - - - nonlocal
2
s 1R, /
20 1 sable -7
= < (nonlocal theory). P
$ \/1 + K (kADe’TC)Q -7 unstable
_ >
0
o\ 1/2 Cs
where k < 1, Cs = \/Te/m;, and Apg . = (Te/47rffzoe ) .
O Hot ion beams and hot electron background y
v |
T / V thi - I a.l
‘ReZ 0 > 1 (local theory), oc
2T 2V¢p; - - - nonlocal
) nonlocal theory).
not applicable (nonlocal theory) sable
>
0 T./T,
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o0 f Particle-in-Cell method

O The governing equations which we solve in the electrostatic ¢ f-PIC model consists
of the particle weight equations, the trajectory equations, and Poisson’s equation
for the electric field.

d o1 1 0 o
Woi _ _ (1 — woi) —5E Joo (8a)
dt mey fO'O 8V
dxai
— Vi 8b
o =V (8b)
dvai do
= —F (x5 (1t , 8c
= 2R (i (1) (8°)
No
V26q5 = —47 Z 9o Z WyiS (X — Xgi) (8d)
o 1=1

where w, = § f,/ f» is the the weight function and S (x — x,;) is the shape func-
tion.
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Equilibrium of SIEC

O by setting 9/0t = 0 and looking for stationary solutions fo, (x, v) and ¢¢ (x) that
satisfy the equations

0 0
{v 8_+_ ¢ - }faO(X v) =0, V2¢:—4W2qa/dvfo.0(x,v).
o

O Equilibrium distributions f;o and f., are assumed to be

_ 2 - 2 ~2
. 7 _my (vr — ’Ub) _my (vr + vb) _mivJ_
f’LO (Ta Ur, UJ_) - f’LO [exp ( 2T|| ) + exp ( 2T|| exp 2TJ_ ’

Me (v% + vi) — 26¢>

feo (T7 ”7">UJ_) = feO exp <_ 2Te

C

O Equilibrium ¢g can be determined self-consistently by the P0|sson equation

2 .2
WhEI‘Ez‘;?EU%—F(1—r—2>vi+%n—q¢:%(5—L/2mrg) and o2 = 2 w2
T

Tt o (r) = —dme (n; (r) — e (1),

where n; (r) = [ dv fio (r,v) and ne (r) = [ dv feo (7, v).
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Properties of ion distribution function

O Drifted Maxwellian at cathode grid.

O As approaching to centre, deviated from the drifted Maxwellian (v increases).
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Equilibrium profiles

O Newton-Krylov nonlinear solver and Monte-Carlo method (VEGAS algorithm).
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Random variate generation

O

Quality of random variate is very important because initial particle loading may
affect the later behaviour of the sysem.

lon distribution function f;q is a multivariate function, i.e., r, v, and v .

For random multivariate generation, mutlidimensional kernel density estimate
method is applied.
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Computational issues

0 Geometric effect near at the spherical center may generate the unwanted noise if spherical coordi-
nates system is applied. grid volume ratio: V; / V) = 3N? + 3N + 1.

[0 Remedies: (1) increase the number of simulation particles, (2) use non-uniform grid, or (3) apply
cylindrical coordinates system.

[0 Poisson solver
> Embedded Boundary Method (EBM)

L+ ] R

[ \ l r
0

L 0 —L z

Two-dimensional computational domain in cylindrical geometry. The system boundary is depicted inside the

rectangular domain with uniform grid cells and represents the sphere.

[> Even for cylindrical system, grid volume ratio is V;/ V) = 2N + 1. Non-uniform grid is used.

O Transform variables (between spherical and cylindrical): (7,0, ¢) < (p, ¢, 2), (vr, v, vp) <
(vp, vy, v2)
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Embedded boundary method

o Ax Axr Ax apAx
To T I T2 T TN-2 TN-1 TR TN
Yo YL P (05 (0 YN _2 YN-1 YR YN
L (Vi1 =% ¥i Vic1
Ax Ax Ax v
1 (g —1 Y1 — YL, B A= 0 0 () N
Ax ( Ax (1—aL) Ax L i 0 A O_|_ %_ = p_|_
0 0o A P P
1 (YR-¥N—-1 ¥N-1—-Y¥N—2 _,
Ax (1—aR) Ax Ax N-1
2.0 1.0
O o (z) = 22 sin (rx) on —0.626 < 15 | 260120
x < 0.626 with Dirichlet boundary 10k 05
condition _
% 05 F > 00 F 1.76x10:::
O o (z,y) = 22 + y2 on a circular 00 b
domain with radius » = 0.713 with 05 F 05 f
Dirichlet boundary condition -1.0 . L L
-1.0 -0.5 0.0 0.5 1.0 -1.0 B e
N -1.0 -0.5 0.0 0.5 1.0
X
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0 f simulation:

O

B

Equilibrium: spherically smmetric solution (n; (r), n. (r), and¢ (r)) from self-
consistent Poisson equation, and unmagnetized.

2D cylindrical domain of 32 x 64 grids, 10° simulation particles, w,;At = 10~°
time step, and mass ratio m;/m. = 100.

Initial perturbation of weight: 6 f/ fo = e sin (k&) sin (k0), € = 1075,

Distribution function parameters: « = 1072, 8 = 107! ¢ = 10° and
v//2|ede] /m = 0.5. = v,/Cs ~ 0.7.

Growth rate v /wy; r. = 2.5 X 10~ for symmetric perturbation.
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0 f simulation: evolution of distribution function

O lon and electron distribution functions

1.2 1.2 1.2 1.2
10} time (,") 1.0 time (,") 10k time (,")
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0 f simulation: growth-rate of two-stream instability

O Growth-rate is obtained for various parameters such as «, 3, k.
> ¢ = —1.0kV, a = T}/ |ep.|, B = T/ |ep.|, and kK = 0 ~ 2 (angular

perturbation).

O Given parameters, the growth rate is decreased for small angular momentum

Spread.

O Symmetric perturbation gives high growth rate.

10°
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~0.2F K
5
= 0.1} K
__.--©
0.0 F ©
_0.1 | L | L | L | Ll
10™ 107 107 10"
B
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Summary and conclusion

O A fully implicit particle-in-cell scheme has been developed and implemented using
a Jacobian-free Newton-Krylov technique.

> An efficient preconditioner is derived from the nonlinear Poisson equation and
particle description relations.

> The simulation experience presented here demonstrates the energy conserva-
tion property of the systems and the efficacy of nonlinear solver. This technique
facilitates simulations of kinetic ion and electron plasma with multiple time scale.

O Nonlocal theory in spherical IEC has been developed and applied for seeking sta-
bility boundary for cold ion beams.

> gives complete dispersion relation.
> is applicable for spherically converging beams.

O Perturbative (0 f) Particle-in-Cell method has been developed for spherical IEC.

> Combined with EBM: reduced geometric constraint.

> Multivariate random generation with KDE.

> Obtained growth rates for various distribution function parameters and angular
perurbations.
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