PORTABLE SDA (SEQUENCED DATA ACQUISITION) WITH A NATIVE
XML DATABASE*

T. B. Bolshakov, E. McCrory, FNAL, Batavia, IL 60510, U.S.A.

Abstract

SDA is a general logging system for a repeated,
complex process. It has been used as one of the main
logging facility for the Tevatron Collider during Run II. Tt
creates a time abstraction in terms understood by everyone
and allows for common time tick across different
subsystems. In this article we discuss a plan to re-
implement this highly successful FNAL system in a more
general way so it can be used elsewhere. Latest
technologies, namely a native XML database and AJAX,
are used in the project and discussed in the article.

SDA IN FERMILAB

SDA is an acronym with dual meaning. Originally it
was introduced in the Controls department as “Sequenced
Data Acquisition” [1]. The Integration department uses it
as “Shot Data Analysis” and this reading of the term
became more popular. The word “Sequenced” in SDA
signifies that historically most of the events come from
Sequencer [5]. SDA proved to be extremely useful during
tuning Fermilab accelerators chain in Collider Run II [2],
[4], [5]. It allows for coordinating of effort of different
groups across the Laboratory. Main disadvantage of
Fermilab SDA is deep integration into Fermilab Control
System (ACNET). Now we are trying to implement the
portable SDA system, based on experience, collected in
Fermilab.

GENERAL VIEW

Sequenced Data Acquisition is a logging system for
description of starting, developing, and finishing of
complex multistage process. On every stage of the process
different set of properties and conditions are collected.
Start and stop time of every stage define common time
tick across the system. The difference between SDA and
“usual” logging is like difference between CSV (Comma
Separated Values) and XML text files.

Shot Data Analysis is a set of libraries, routines and
reports that use data from Sequenced Data Acquisition.
Shot Data Analysis study the behavior of some particular
subsystem across several stages or cooperation of different
subsystems during some particular stage. As an example
we can refer to article [2].

From this perspective SDA become an important tool
for studies of repeatable multistage processes in complex
systems like accelerators, thermonuclear facilities, space
rockets, hurricane research etc.

Terminology

SDA is based on rules. Significant terms of those rules
are atom, event, collection, shot, case, and set.

Atoms have name, data type, and request, defining how
to collect data. Atoms can be different in different SDA
systems.

Events define time or condition for data collection.
Different control systems may have different events.

Collection is a set of atomic values collected on

specified events. Events are described in the
configuration. One particular atom can be present in the
collection only once. Collection describes the stage of the
multistage process. It also has type and name. For
example collection type 4 has name “Inject Protons” in
shot named “Collider Shot”.

Shot contains certain types of collections and rules to
start and stop data acquisition for those collections. It also
has name and type — shot type 1 in Fermilab has name
“Collider Shot”. Shot describe a whole process. An
instance of shot (data for particular processes) has “shot
alias” and “shot index”. Shot index is unique across the
whole SDA system and is acquired automatically. Shot
alias is specified by the operator in the beginning of the
shot. So, there may be several shot with the same alias
(for example if some of them where unsuccessful).

Collections in one particular shot with the same type
are called Case. If collection is repeated several times the
Case may have Sets — several instances of the same
collection.

Shots, Cases and Sets define time tick for the whole

process.

IMPLEMENTATION

To implement the system we should define how
structure and data are stored, describe data acquisition
process, design basic tools for editing structure, viewing
and Java selected as an

accessing data. was

*by Universities Research Association, Inc., under Contract No. DE-
AC02-76CH03000 with the US Department of Energy.

implementation language for its
Oriented Design, and rich APIs.

portability, Object

Data Storage

Structure of SDA is hierarchical: Shot contain Cases,
Case contains Sets (Collections), Set contains Atoms.
Obvious representation of such structure is XML. That is
true for both structure (configuration) and data. XML
Schema’s was created to describe XML for configuration
(structure) and data. In both Schema's details of atoms and
events were not specified, because they may change from
system to system. In configuration Schema ‘“atom data
request”’, “atom type” and “event” are specified as a
string. In data Schema atom content is leaved unspecified.

Shot structure (configuration) is an XML document.
Shot instance (data collected for shot) is also an XML
document.

XML documents may be stored differently — as a plain
file, mapped into Relational database, or in an XML
database.

We decided to utilize native XML database for storing
the structure and the data. Berkley XML DB was selected
as such a database.

Berkeley DB XML is an embedded XML database with
XQuery-based access to documents stored in containers
and indexed based on their content [3]. Berkeley DB
XML is built on top of Berkeley DB and inherits its rich
features and attributes. Like Berkeley DB, Berkeley DB
XML is a library, not a server, exposes a programmatic
API for developers, and runs in process with the
application. Berkeley DB XML supports flexible indexing
of XML nodes, elements, attributes and meta-data to
enable the fastest, most efficient retrieval of data.

;"rDa?:“a/
% Acquisition
¢ System
{_ (ACNET, LHC,
" EPICS)

e

AAX-based | /2
_web clients

oneinbyuod

¢ Sda Data .
~KF & Beanshe™,
- sandbox

Native XML DB
(Berkley)

WBeansheII
program

SDA Framework

Figure 1: Portable SDA Block Diagram.
Because actual storage mechanism in the code is
defined by Java interface, native XML database in the
future can be substituted by relational database, despite

we consider usage of XML database as a success — it does
greatly simplify the development and proved to be fast and
reliable.

Basic Tools.

Basic SDA tools by our opinion include SDA Editor
and SDA Viewer. SDA Editor allows for creating and
editing configuration and SDA Viewer is used to browse
Both of those tools should allow for
plugins, because Atom data requests and Events should be

collected data.

different for different control systems. Portable SDA
Editor and SDA Viewer were implemented as web
applications, heavily based on AJAX (Asynchronous
Javascript and XML) - a Web development technique for
creating interactive web applications.

Plugins for creating and editing of Atom Data Requests
and Events were implemented as JSP (Java Server Pages).
Basic SDA Editor represents them as string and cannot
verify validity. Atom data renderer for SDA Viewer was
implemented as Java Interface and can be additionally
tuned by providing Javascript editor on client side. Web
application and AJAX was selected over Java Web-
Startable program because it imposes less limitation on
the client computer and, simultaneously, provides more
flexibility on the server side. Complete working SDA

Viewer and SDA Editor for Fermilab was created.

0]

Fermilab - AD - Conrols - SDAIl
= Editor: kerberos login
@ Structure Editor. _xerberos login |
history 1d: 0/8 Name: [Before Ramp Alias: 8 =
_reload tree | Mult-Collections: Mult-Sets: ™~
Download: 7896 ms, Events: Aml: [s.V:CLDRST,8,0,= Am2: Joull
processing: 26252 ms Disarm]: 5,V:CLDRST,8,0,!= Disarm2: |null
sda structure Setl: ful Sezi ful
SColliderShot owner #0 Endl: [null End2: |null
©Proton Injection porch
case alias 1
refresh
SProton Injection tune up IEES] | |
case alias 2
Eject Protons case alias 3 Please enter the name and the type of new atom. You would be able 1o edit
Cinject Protons ase alas | || Neu atoms " Preperties later in the ‘edit atom’ page. Combination of name and
ew atom:
4 type is unique for any given case, so name and type of the atom cannot be
©Pbar Injection porch changed, I
CEEDElE & Name: | Type: |
cinject Pbars case alias 6 |
©:Cogging case alias 7
SBefore Ramp case alias 8
Ddevice T:FWFRSH
" reate new atom on base of old one: roperties of old atom will be copied into
Odevice TFWHPSG Creat t base of old one: All properties of old 1l be copied i
Odevice TFWVPSG new one, only name will/may be changed.
Odevice T:FWHPCE & Use atom]
- i C | old ol]
Ten _ % 05305 | B | Adblock

D=0

@] (@ AKCbased 0 sircars Edr DA W o

Figure 2: SDA Configuration Editor.

Recently AJAX becomes even more attractive because
SVG (Scalable Vector Graphics) is natively implemented
in Firefox 1.5. Using SVG makes possible to represent on
the Web page any rich graphical information.

Despite the decision to use AJAX there is still room for
web-startable Java programs, because data comes as XML
over HTTP.

Accessing Data.

OSDA (Open SDA) API is used for Shot Data Analysis
in Fermilab. This API is simple and easy to learn, but
powerful enough to write analysis programs. It was
originally based on XML over HTTP and because of that
was easy to integrate into new system. Using OSDA it is
possible to write Java programs that access SDA data over

G
Fermilab - AD - Controls - SDAIl Results: Layout Bl
optimized for Firefox 1.5
run| save | [example.bsh load | time taken for data reading is 15362 ms
user: tholsh Device:C:BOILUM Case: 'HEP' Store: 4666

Request took 27656 ms.

set/idx Sum AverageDeviation 1 2 3 4 5 6

1 176.5624.904 0.839 4.5885.3285.4065.0735.9034.7125
2 17003 4723 0777 4.47852565.1015.0735.5274.5424 |
3 163.6494.546 0776 4.3695.04 5.4244.7755.2794.5794
4 150.9184.442 0758 4.0824.9215.1294.7435.2954.238 4,
5 153.5684.266 074 4.0884.7334.9454.5035.2954.1674
6 142.1233.948 0682 3.8974.4364.4444.0434.5974.0183

making the table 1160 ms

Device:C:DOILUM Case: 'HEP' Store: 4666

iddset 1 2 3 4 5 6

sum 139.176 134.95 130.708 126.998 123.723 116.763

average 3.866 3.749 3.631 3528 3.437 3.243

deviation0.65 0.636 0.617 0.6 0588 0.568
1 3763 3.669 3.554 3466 3.364 3.308

4126 4.009 3.883 3.769 3.71 3513

4252 4.113 3.972 3.909 3.799 3.615

3656 3.558 3.438 3.368 3.267 3.085

4912 4795 4625 4515 4.387 4.244

4282 4.134 4003 3.863 3.818 3.639

4.069 3977 3844 3746 3618 3.358
2

N o o s wNn

HE
s | @ | Advlock

0.470;
DONE=C

oore
e

Figure 3: Beanshell sandbox.

In addition an OSDA-like API was developed that
access data on the server. Because Berkley XML DB is a
library rather then server this API utilize direct calls to
Berkley DB and is significantly faster then OSDA. To run
user programs on the server Beanshell sandbox was
implemented. Using Beanshell different types of reports
can be generated without compromising security.

Data Acquisition

Data Acquisition part of portable SDA depends on
Control System. Interfaces for Data Acquisition were
designed for portable SDA. The intension was to make it
lightweight, flexible, extensible and scriptable (using
Beanshell). Usage of SCF (Secure Controls Framework)
for Fermilab implementation will provide support for
ACNET and EPICS.

Testing the System.

In order to test SDA applications, performance of native
XML database, convenience of AJAX and Beanshell
sandbox all Fermilab SDA configuration data and all SDA
data collected in Fermilab Collider Run II for shots with
type “Collider Shot” was imported into new system. You
can look at results at http://www-bd.fnal. gov/SDAII .

Fermilab implementation of Data Acquisition supposes
to be tested this summer to determine its weak and strong
sides.

CONCLUSIONS

e Portable SDA implements a general and powerful
paradigm for describing multistage processes in
complex systems. The approach is proved by
Fermilab Collider Run II experience.

e Native XML database simplified significantly SDA

XML s

representation of configuration and data for such a

development, because natural
system.

e AJAX implementation provides portability and
flexibility for User Interface.

e Critical implementation decisions (usage of native
XML DB and AJAX) can be reversed to more
standard solutions (relational DB and Java Web
Startable applications) because of the modular
structure of the system.

* XML DB provides sufficient performance for such
an application.

e Beta versions of portable SDA tools are available
on http://www-bd.fnal.gov/SDAII

REFERENCES

[1] T.B. Bolshakov, P. S.Panacek, V.
Papadimitriou, J. Slaugher, A. Xiao (Fermilab),

Lebrun,

“SDA-based diagnostic and analysis tools for
Collider Run II,” PAC’05, Knoxville, USA, May
2005.
[2] A. Xiao, T. Bolshakov, P. Lebrun, E. McCrory, V.
Al
lifetimes at injection using the Shot Data Analysis
system,” PAC’05, Knoxville, USA, May 2005.
[3] http://www.sleepycat.com/products/bdbxml.html
Berkley XML DB Documentation.
[4] T. Bolshakov, K. Genser, K. Gounder, E. S. McCrory,
P. L. G. Lebrun, S. Panacek, V. Papadimitriou and
J. Slaughter, “Data acquisition and analysis for the
Fermilab Collider Runll”, ICAP'04, St Petersburg
Russia, July 2004.
[5] The Fermilab Runll Handbook, at
http://www-ad.fnal.gov/runll/index.html

Papadimitriou, Slaughter, “Tevatron beam

http://www-bd.fnal.gov/SDAII
http://www.sleepycat.com/products/bdbxml.html

	Portable SDA (Sequenced Data Acquisition) with a Native XML Database*
	SDA in fermilab
	General View
	Terminology

	implementation
	Data Storage
	Basic Tools.
	Accessing Data.
	Data Acquisition
	Testing the System.

	Conclusions
	References

