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An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent trans-
verse beam motion in a synchrotron. By observing this driven coherent motion, the linear optical parameters can
be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole
will generate a phase space ellipse which differs from that of free oscillations. If not properly accounted for, this
difference can lead to a misinterpretation of the actual optical parameters, typically, 6% or more in the cases of
the Tevatron, RHIC, or LHC. This paper shows that the effect of an AC dipole on the observed linear optics is
identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase
space ellipse, the motion produced by an AC dipole becomes easier to interpret. The introduction of this new
amplitude function also helps measurements of the normal Courant-Snyder parameters based on beam position
data taken under the influence of an AC dipole. This new parameterization of the driven motion is presented
and is used to interpret data taken in the FNAL Tevatron using an AC dipole.

PACS numbers: 41.85.-p, 29.27.-a

I. INTRODUCTION

A sinusoidally oscillating dipole magnetic field produced
by an AC dipole excites coherent transverse beam motion in a
synchrotron for machine diagnosis (Fig 1) [1]. Unlike a con-
ventional single turn kicker/pinger magnet, it drives the beam
close to the betatron frequency, typically, for several thou-
sands of revolutions. If the amplitude of its oscillating mag-
netic field is adiabatically ramped up and down, it can create
a large coherent oscillation without decoherence or emittance
growth [1]. This property makes it a useful diagnostic tool for
a synchrotron. AC dipoles have been employed in the BNL
AGS and RHIC [1–3], CERN SPS [4, 5], and FNAL Tevatron
[6–8]. There is an ongoing project to develop AC dipoles for
LHC as well [9].

When the beam is driven by an AC dipole, the beam mo-
tion is governed by two driving terms and the influence of the
lesser driving term makes driven oscillation response differ-
ent from that of free oscillations. Although this difference has
typically been ignored in previous analyses [3, 10], it could
affect the interpretation of the linear optics more than 12% in
the Tevatron and 6% in the RHIC and LHC.

This paper proceeds as follows. Section II discusses the
two driving terms produced by an AC dipole and presents a
new formulation of driven motion which is suited to simulta-
neously treat the influences of the two driving terms. Section
III discusses the difference between free and driven betatron
oscillations and the influence of this difference on measure-
ment of the linear optical parameters, based on an analogy be-
tween driven motion and motion under the influence of a thin
gradient error [13]. Section IV presents a few examples of
the difference between free and driven oscillations observed
in the Tevatron and explains how to measure the β -function
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FIG. 1: A diagram of incoherent free oscillations (gray) and excited
coherent oscillations (black) in the Tevatron. Since individual par-
ticles within the beam oscillate incoherently, coherent oscillations
must be excited to observe betatron motion and measure optical pa-
rameters. An AC dipole [1] is a tool to excite sustained coherent
oscillations.

corresponding to free oscillation by appropriate reduction of
driven oscillation data.

II. A MODEL OF DRIVEN OSCILLATIONS

A. Two Driving Terms of an Oscillating Dipole Field

The tune of an AC dipole νacd is defined as the ratio be-
tween the frequencies of the AC dipole facd and the beam
revolution frev: νacd ≡ facd/ frev. In the following, for any
tunes, only their fractional parts are considered. For instance,
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FIG. 2: The amplitude of the driven motion versus the machine tune.
A circulating beam is influenced by both (solid and dashed) of the
resonant amplitudes. In typical operations of an AC dipole, realizable
δd is limited by the tune spread of the beam (shaded area).

if facd/ frev is larger than one, νacd means the fractional part
of facd/ frev. Since the beam sees an AC dipole only once in
a revolution, the beam is driven by a pair of driving terms at
νacd and 1−νacd (cf. Nyquist sampling theorem). Obviously,
the driving term closer to the machine tune ν has a bigger ef-

fect on a particle. In the following, the driving term closer to
ν is called the primary and the other is called the secondary.
A symbol νd is used for the primary driving tune:

νd ≡
{

νacd when |νacd−ν |< |(1−νacd)−ν |
1−νacd when |(1−νacd)−ν |< |νacd−ν | . (1)

For example, the frequencies of the AC dipole and beam revo-
lution in the Tevatron are facd ' 20.5 kHz and frev ' 47.7 kHz
and hence the tune of the AC dipole is νacd = 20.5/47.7 '
0.43. Since the machine tune of the Tevatron is ν ' 0.58,
1−νacd ' 0.57 is the primary driving tune and νacd ' 0.43 is
secondary.

The difference between the primary driving term and the
machine tune δd ≡ νd − ν is an important parameter of the
driven betatron oscillation. As δd → 0, the influence of the
primary driving term becomes dominant and the secondary
driving term can be ignored. However, a finite tune spread of
the beam can cause beam losses if |δd | is too small (Fig 2). In
the Tevatron, without special tune-up, the limit of |δd | is about
0.01 to prevent beam losses.

When the amplitude of the AC dipole field is constant, the
position of the driven beam xd is given by [10, 11]

xd(nC +∆s)' θacd
√

βacd

4sin[π(νacd−ν)]

√
β (∆s)cos[2πνacdn+ψ(∆s)+π(νacd−ν)+ χacd]

+
θacd

√
βacd

4sin[π((1−νacd)−ν)]

√
β (∆s)cos[2π(1−νacd)n+ψ(∆s)+π((1−νacd)−ν)−χacd] , (2)

where n is an integer for the revolution number, C is the cir-
cumference of the ring, ∆s (0 ≤ ∆s < C) is the longitudinal
distance from the AC dipole, θacd is the maximum kick angle
of the AC dipole, βacd is the β -function at the location of the
AC dipole, ψ is the phase advance of the free oscillation from
the location of the AC dipole to the observation point, and χacd
is the initial phase of the AC dipole field. The two terms in Eq
2 are symmetric and represent the influences of the two driv-
ing terms [14]. To quantify the effect of the secondary driving
term, it is useful to define a parameter to describe the ratio
between the larger and smaller modes in Eq 2:

λd(δd)≡ sin[π(νd −ν)]
sin[π((1−νd)−ν)]

=
sin(πδd)

sin(2πν +πδd)
. (3)

This parameter λd depends on not only δd but also the ma-
chine tune ν . When |δd |= 0.01, |λd | ' 0.06 for the Tevatron
(ν ' 0.58) and about half as much for the RHIC and LHC
(ν ' 0.7 and 0.3).

B. A New Parametrization of the Driven Betatron Oscillation

We note that Eq 2 can be written in the following compact
form which includes the influences of the both driving terms:

xd(s;δd) = Ad(δd)
√

βd(s;δd)cos(ψd(s;δd)±χacd) . (4)

Here, s≡ nC+∆s is the longitudinal position, Ad is a constant
of motion with dimensions of (length)1/2:

Ad(δd)≡ θacd

4sin(πδd)

√
(1−λ 2

d )βacd , (5)

and the sign in front of χacd is positive when νd = νacd and
negative when νd = 1−νacd. The quantity βd is a newly de-
fined amplitude function of the driven oscillation:

βd(s;δd)≡
1+λ 2

d −2λd cos(2ψ−2πν)
1−λ 2

d
β (6)

and ψd is a newly defined phase advance of the driven oscil-
lation from the location of the AC dipole to the observation
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point:

ψd(s;δd)≡
∫ s

0

ds̄
βd(s̄;δd)

. (7)

The increment of ψd is 2πνd (mod 2π) in a single revolution.
In this way, the driven oscillation can be parametrized in the
same form as the free oscillation even when the influences of
the both driving terms are included. Differences between the
free and driven oscillations are characterized by the amplitude
function βd and phase advance ψd . In the limit of νd → ν , λd
becomes zero and βd and ψd converge to β and ψ . Fig 3
shows the numerical calculations of βd/β based on Eq 6.

If the lesser mode in Eq 2 is ignored, the oscillation phase
has an apparent jump by 2πδd at the location of the AC dipole.
However, if the influences of both driving terms are properly
included, the phase advance ψd is continuous at the location
of the AC dipole. A relation between ψ and ψd is given by

tan(ψd −πνd) =
1+λd

1−λd
tan(ψ−πν)

=
tan(πνd)
tan(πν)

tan(ψ−πν) . (8)
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FIG. 3: Ratio between the amplitude functions of the driven and
free oscillations, βd and β . Based on Eq 6, βd/β is calculated for
different tune separations δd = νd − ν and the phase advances ψ .
When ν = 0.58 like the Tevatron, compared to when ν = 0.30 like
RHIC and LHC, βd/β deviates larger from the unity and has stronger
nonlinearity because of the larger influence of the secondary driving
term.

III. DIFFERENCE BETWEEN FREE AND DRIVEN
BETATRON OSCILLATIONS

Measurement of the β -function using an AC dipole requires
careful understanding of the difference between the amplitude
functions of the free and driven oscillations, β and βd . For the
free betatron oscillation, the machine tune ν and amplitude
function β are correlated and a change of the tune induces a
change of the amplitude function and vice versa. The correla-
tion between the oscillation tune and amplitude function ap-
plies to the driven oscillation, too. When the beam is driven,
the oscillation tune νd is different from the machine tune ν and
the amplitude function βd also differs from β depending on
the oscillation tune νd . The relation between δd = νd −ν and
βd−β is formally the same as the tune shift and the change of
the β -function produced by a thin gradient error. This analogy
helps to interpret data of the driven motion.

A. Review of a Thin Gradient Error

If a synchrotron has a gradient error, its machine tune ν
and amplitude function β change to νq and βq [12]. A thin
gradient error with gradient B1 and length ` at ∆s = 0 results
in an equation of motion

x′′+K(s)x =−qerrx
∞

∑
n=−∞

δ (s−Cn) , (9)

where the prime denotes the derivative with the longitudi-
nal position s, K(s) is the effective focusing function, qerr =
B1`/(Bρ) is the effective strength of the gradient error, and δ
is the Dirac delta function.

By comparing the single turn transfer matrices with and
without the gradient error, νq and βq satisfy the following two
equations:

qerr = 2
cos(2πν)− cos(2πνq)

βerr sin(2πν)
(10)

βq(s;δq) =
sin(2πν)−qerrβerr sinψ sin(2πν−ψ)

sin(2πνq)
β , (11)

where βerr is the β -function at the location of the gradient er-
ror, δq ≡ νq−ν is the tune shift caused by the gradient error,
and ψ is the phase advance of the free oscillation from the lo-
cation of the gradient error. By substituting the first equation
into the second, βq is given by

βq =
1+λ 2

q −2λq cos(2ψ−2πν)
1−λ 2

q
β . (12)

Here, λq is defined as a parameter with a similar form to λd :

λq(δq)≡ sin(πδq)
sin(2πν +πδq)

. (13)

When λq is small, the new and original amplitude functions
satisfy

βq−β
β

'−2λq cos(2ψ−2πν) . (14)
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This quantity behaves like a standing wave in a synchrotron
and is called the β -beat (or sometimes β -wave). The ampli-
tude of the β -beat is 2|λq| at lowest order.

It may be seen from from Eqs 6 and 12 that the relation
between βd and δd for driven motion is the same as the relation
between βq and δq when there is a thin gradient error. Hence,
relative to β , we expect βd will beat with amplitude of 2|λd | .

B. Analogy between an AC Dipole and Gradient Error

This section explains why an oscillating dipole field
changes the observed phase space motion, much like a gra-
dient error. When driven by the AC dipole, the equation of
motion is given by

x′′+K(s)x =−θacd ∑
n

cos(2πνdn±χacd)δ (s−Cn) . (15)

The right-hand-side describes the kicks by the AC dipole lo-
cated at ∆s = 0. The summation runs over the time period
when the amplitude of the AC dipole field is constant and the
sign in front of the initial phase χacd follows the same conven-
tion as Eq 4. Eq 4 is the particular solution of this inhomo-
geneous Hill’s equation when the amplitude of the AC dipole
field is adiabatically ramped up to a constant amplitude. Since
the phase advance of the driven oscillation ψd increases by
2πνd in one revolution, the position of the driven oscillation
at the location of the AC dipole s = Cn is given by

xd(Cn;δd) = Ad(δd)
√

βd(0;δd)cos(2πνdn±χacd) . (16)

Here, the phases in Eqs 15 and 16 are the same. Hence, the
AC dipole field is in sync with the position of the driven oscil-
lation when the beam passes the AC dipole. The situation is
analogous to a quadrupole magnet whose field is proportional
to position x. The phases of the driven oscillation and the AC
dipole field are synchronized like this only when the ampli-
tude of the AC dipole field is constant after the adiabatic ramp
up. Since xd is the solution of Eq 15, it formally satisfies the
following equation

x′′d +K(s)xd =−qacdxd ∑
n

δ (s−Cn) . (17)

On the right-hand-side, Eq 16 is used to rewrite cos(2πνdn±
χacd) with xd . The parameter qacd is a constant given by

qacd =
θacd

Ad
√

βd(0;δd)
= 2

cos(2πν)− cos(2πνd)
βacd sin(2πν)

. (18)

Eq 17 has exactly the same form as the equation of motion
when there is a thin gradient error, Eq 9. By comparing Eqs
9, 10, 17, and 18, it is trivial that the relation between βd and
δd is the same as the relation between βq and δq.

C. Ring-wide Behavior of the Amplitude Function βd

When turn-by-turn beam positions at all BPMs are given for
the free oscillation, the relative β -function can be determined
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FIG. 4: The amplitude functions of the free and driven oscillations, β
(solid) and βd when δd =−0.01 (dashed), measured in the Tevatron.
As expected, βd shows 10-15% beating relative to β . From multiple
data sets of driven motion, the true β -function can be extrapolated.

by simply comparing the square of the oscillation amplitude
at each BPM. If the same analysis is applied to the turn-by-
turn data of the driven oscillation, what is calculated is βd
which is different from the real β at most by 2|λd | depending
on the BPM location. When |δd | is 0.01, 2|λd | is about 12%
for the Tevatron and 6% for the RHIC and LHC. Furthermore,
since the beating of βd relative to β cannot be distinguished
from the real β -beat caused by gradient errors, the real β -beat
cannot be measured in this way without relying on a machine
model. Fig 4 shows β and βd when δd = −0.01 measured in
the Tevatron.

As explained in the following section, by using multiple
data sets of the driven motion, the influences of the primary
and secondary driving terms can be separated and the linear
optical parameters can be measured without depending on a
machine model.

IV. EFFECT ON β -FUNCTION MEASUREMENT

A. Rotation of the Phase Space Ellipse

The previous section discussed the amplitude function of
the driven motion βd . Parameters corresponding to the other
Courant-Snyder parameters α and γ can be also defined as for
the free oscillation:

αd(s;δd)≡−1
2

dβd(s;δd)
ds

(19)

γd(s;δd)≡ 1+αd(s;δd)2

βd(s;δd)
. (20)

The explicit forms of these parameters are given by

αd =
1+λ 2

d −2λd cos(2ψ−2πν)
1−λ 2

d
α

− 2λd sin(2ψ−2πν)
1−λ 2

d
(21)



5

and

γd =
1+λ 2

d +2λd cos(2ψ−2πν +2arctanα)
1−λ 2

d
γ . (22)

When βd , αd , γd , and Ad are defined this way, they satisfy the
Courant-Snyder invariance:

A2
d = γdx2

d +2αdxdx′d +βdx′2d . (23)

Hence, the turn-by-turn position and angle of the driven os-
cillation also form an ellipse in phase space, like the free os-
cillation. Since not only Ad but also the Courant-Snyder-like
parameters βd , αd , and γd depend on δd , both the area and
shape of the phase space ellipse changes with δd for the driven
oscillation. Since βd , αd , and γd converge into β , α , and γ in
the limit of λd → 0, this change of the shape is due to the
secondary driving term.

In two collision straight sections of the Tevatron, B0 and
D0, there are pairs of BPMs with no magnetic element in-
between. The beam travels along straight lines between these
pairs and, hence, both position and angle can be directly mea-
sured at these locations. Fig 5 shows the phase space ellipses
of the driven oscillations measured by using a pair of such
BPMs. The location is the B0 interaction point. In these mea-
surements, δd was set to ±0.04 and ±0.02, while the kick
angle of the AC dipole θacd was kept the same. As expected,
the shape of the phase space ellipse changes with δd .

By fitting Eq (23) to an ellipse in Fig 5, its area πA2
d and the

parameters βd , αd , and γd can be determined. Fig 6 shows βd
determined from the fits to ellipses in Fig 5 (and three more).
The curve in the figure is the fit of Eq 6 to the data with pa-
rameters β and ψ . In the figure, the true β -function at this
location in the synchrotron is obtained by extrapolation of the
value of βd to the case of δd = 0. For the Tevatron, the β -
function at low-β locations, β ∗, can be directly measured this
way. The model of Eq 6 fits well to the data.
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FIG. 5: Phase space ellipses of the driven oscillations when δd =
±0.02 and ±0.04. The location is one of the low-β point (B0) in the
Tevatron where α is zero by design. Since the Courant-Snyder-like
parameters of the driven motion βd , αd , and γd depend on δd , not
only the areas but also the shapes of the ellipses are different.
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FIG. 6: Relation between βd and δd determined from the fits to the
phase space ellipses in Fig 5. The curve is fit of Eq 6 to the data
points. The true β -function of this location is the value of βd when
δd = 0.

B. Asymmetric Amplitude Response

When the influence of the secondary driving term is negli-
gible, by ignoring the smaller term of Eq 2 or taking the limit
of λd → 0 in Eqs 4, 5, and 6, the amplitude of the driven os-
cillation can be approximated by

a(0)
d (s;δd) =

|Ad |
√

β√
1−λ 2

d

=
θacd

√
βacdβ

4|sin(πδd)|
. (24)

In this case, the amplitude of the driven oscillation depends
on the primary driving tune νd only through |sin(πδd)| and is
symmetric around the machine tune ν . From Eqs 4, 5, and 6,
the amplitude including the influence of the secondary driving
term ad(s;δd) is given by

ad(s;δd) = a(0)
d

√
1+λ 2

d −2λd cos(2ψ−2πν) . (25)

Here, the amplitude ad depends on νd through the factor [1+
λ 2

d −2λd cos(2ψ−2πν)]1/2 as well. To the first order of δd ,

ad ' a(0)
d

[
1− π cos(2ψ−2πν)

sin(2πν)
δd

]
. (26)

Hence, the secondary driving term makes the νd dependence
of the amplitude asymmetric around the machine tune ν . The
magnitude of this asymmetry at each location is determined
by the factor cos(2ψ−2πν).

Fig 7 shows the relation between the amplitude of the
driven oscillation and νd at three BPM locations in the Teva-
tron. The dashed and solid lines represent the fits of Eq 24 and
Eq 25 to the data. The fit parameters are θacd(βacdβ )1/2 and ν
for Eq 24 and θacd(βacdβ )1/2, ν , and ψ for Eq 25. At two lo-
cations where |cos(2ψ−2πν)| is close to one, the asymmetry
around the machine tune (ν ' 0.5785) is large and the fits ig-
noring the secondary driving term effect based on Eq 24 is not
well matched. From the fit of Eq 25, the β -function at each
BPM location is determined up to a constant θacd(βacd)1/2.
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FIG. 7: Amplitude response of the driven motion to the primary driv-
ing tune νd measured at three BPM locations in the Tevatron. The
solid and dashed curves represent fits with and without the effect of
the secondary driving term. The asymmetry around the machine tune
ν ' 0.5785 depends on cos(2ψ−2πν).

This constant can be determined from the analysis in the pre-
vious section which uses a pair of BPMs in a collision straight
section. By combining these two types of analyses, the ring-
wide β -function can be directly measured from multiple data
sets of the driven motion with different νd .

Although the influence of the secondary driven term effect
is clear in Fig 7, there is even better evidence that Eq 25 fits
the data better than Eq 24. From the fits in Fig 7, the ma-
chine tune ν can be determined at each BPM location. Fig
8 shows machine tunes at all BPM locations determined this

way. The solid curve includes the influence of the secondary
driving term and the dashed curve does not. Since the machine
tune ν is a global parameter of a synchrotron, the variation of
the determined machine tune over BPMs shows the inaccu-
racy of the measurements and data analyses.
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FIG. 8: Machine tunes derived from the fits of the amplitude resposes
at each BPM locations. Inclusion of the secondary driving term in the
fit of each BPM gives a much consistent result for the machine tune
(global parameter).

V. CONCLUSION

Under the influence of a sinusoidally oscillating magnetic
field of an AC dipole, the beam is driven by two terms. As a
result the phase space trajectory of the driven motion is dif-
ferent from that of the free betatron motion. If this difference
is simply ignored, interpretation of the linear optics based on
the data of the driven motion can have error depending on the
driving and machine tunes. For instance, when the difference
between the primary driving tune and machine tune is 0.01,
the error is 12% for the Tevatron and 6% for the RHIC and
LHC. In this paper, we show that this influence on the phase
space is formally identical to the influence of a gradient error
at the same location as the AC dipole. Just as a gradient error
changes the amplitude function around the ring, the expres-
sion of the driven motion can be simplified by introducing a
new amplitude function for the driven motion.

This paper presents a few examples of the difference be-
tween the free and driven motions as observed in the Tevatron.
It also shows that the new parametrization of the driven mo-
tion clarifies the interpretation of turn-by-turn beam motion
data.

With this knowledge, very precise and direct measurements
of the true linear optical parameters in a synchrotron can be
obtained quickly without degradation of the beam quality, us-
ing a small number of data sets obtained at different frequen-
cies of the AC dipole. This technique will be especially useful
in the LHC, for example, to adjust the beam envelope at criti-
cal locations such as at beam collimation devices.
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