HINS with 8 ILC-units at 45 mA : jitter studies (see also PAC 07, ``Start-to-End Simulations for the Proposed Fermilab High Intensity Proton Source'')

Jean-Paul Carneiro

FNAL Accelerator Physics Center

HINS meeting July 12th 2007

HINS ACCELERATING SECTION : LAYOUT

• **OPTION 1 : 28 cryo – 1 quads/cryo. – 8 cavities/cryo – -224 cavities – -28 quads**

• **OPTION 2 : 8 ILC-units : (9+8+9)×8 = 208 cavities – 8 quads**

Jean-Paul Carneiro

HINS Meeting, July 12th 07

HINS Transport Line to Main Injector (MI10) (D. Johnson, FNAL)

17 Cell SuperStructure Debuncher (I. Gonin, FNAL)

Ez field Long. Phase Space at Stripping Foil DEBUNCHER 8020 **DEBUNCHER OFF** 8015 8010 Normalized |Ez|² [MeV] 8005 Normalized Ez 8000 DEBUNCHER ON 7995 7990└ -30 ₋∟ 2 -20 -10 0 10 20 30 -1^L -2 -1 0 1 z [mm] Z [m]

Jean-Paul Carneiro

Jean-Paul Carneiro

Jean-Paul Carneiro

Jean-Paul Carneiro

Max envelope

Jean-Paul Carneiro

RMS Transverse Size

Jean-Paul Carneiro

RMS Transverse Emittance

Jean-Paul Carneiro

Parameters at the Stripping Foil (From PAC07 paper, 200kp)

Table 1: Beam parameters at the stripping foil for both options of the accelerator. Beam average current of 45 mA.

Beam parameters	Option 1	Option 2
W [MeV]	8026	8006
σ_E [keV]	401	320
$\sigma_Z [mm]$	2.33	2.34
ϵ_Z [keV-mm]	869	725
σ_X / σ_Y [mm]	1.15 / 1.21	1.14/1.25
ϵ_X / ϵ_Y [mm-mrad]	0.46 / 0.50 🔇	0.62/0.70

OPTION 2 (8 ILC Units) : Statistical Error Simulations

- Statistical Error Simulations performed on OPTION 2 (45 mA) with the 8 ILC-units at ANL (JAZZ) with TRACK
- **RF jitter (phase and fields)**
- 4 cases (24 seeds, 200kp, 45 mA, 3D SC in acc. section)
- \rightarrow 0.5% 0.5 deg (NO collimators)
- \rightarrow 1% 1 deg (NO collimators)
- → 1% 1 deg (WITH collimators : 2H 2V 6mm, 1H 1V 5.5mm)
 → 2% 2 deg (NO collimators)

→Gaussian Truncated at +/- 3 SIGMA

Statistical Error Simulations : Beam Spot at Stripping Foil

Statistical Error Simulations : Long. Phase Space at Stripping Foil

Statistical Error Simulations : Losses

Statistical Error Simulations : Beam Parameters at Stripping Foil

Parameters at the Stripping Foil (From PAC07 paper, 200kp)

Table 2: Beam parameters at the stripping foil for three sets of RF errors (magnetic field errors of $1 \cdot 10^{-3}$).

Beam param.	$0.5\% \ 0.5^{\circ}$	$1\% 1^{\circ}$	2% 2 ⁰
W [GeV]	8006±0.5	8006±0.8	8006±1.6
σ_E [keV]	342±36	378 ± 78	955±788
$\sigma_Z \text{ [mm]}$	2.5 ± 0.2	2.9±0.4	5.7±4.1
ϵ_Z [keV-mm]	827±81	998±182	5461 ± 8046
σ_X [mm]	1.1 ± 0.1	1.2±0.2	1.3 ± 0.3
$\sigma_Y [\text{mm}]$	1.3 ± 0.1	1.4±0.3	1.6 ± 0.5
ϵ_X [mm-mrad]	0.6 ± 0.1	0.6 ± 0.1	0.9±0.3
ϵ_Y [mm-mrad]	0.7 ± 0.1	$0.7{\pm}0.1$	$1.0 {\pm} 0.3$

Statistical Error Simulations : 1 % 1 deg with collimation

• 24 seeds, 45 mA, 200 kp

Jean-Paul Carneiro

- 1deg 1% RF jitters looks OK at 45 mA with 8 ILC RF Units
- How many phase shifters do we need in the 8 ILC units ?
- Beam loading ?
- Wakefields ?
- Losses from Stripping ?