	[image: image1.wmf][image: image2.png]PURIFIER BROWN RED ORANGE ~ YELLOW

MESON LN2 COMP " COMP COMP COMP COMP |\ (o
ADSORBER

CURRENT TIME:
04/18/07 12:23:48 PM

FADS:
29 g/s

T6s1:
89.6 K

MV605A

MV62TH

FINAL FILTER

TO COMP
DISCHARGE

PNAD: _g

MV630H 19 PSIG

TADB: TADA:
019K 943K

LHC Project Document No.

	LHC-AB-CO-xxxx rev 0.2

	CERN Div./Group or Supplier/Contractor Document No.

	AB-CO

	EDMS Document No.

	yyyyyy

	

	

	Date: 24-Aug-07

	LHC Project Document No.

	LHC-AB-CO-xxxx rev 0.1

	Page 2 of 11

	LHC-CT-ES-0004 rev 0.1 AB-OP 780566 2006-10-02

	

	Functional Requirements
	

	The Drag and Drop DiSplay and Builder REquirements

	

	Abstract

The required elements for the Drag and Drop Display and Builder are listed, described and explained here.
	

	Prepared by :

T. Bolshakov, Fermilab

E. McCrory, Fermilab

A. Petrov, Fermilab

E. Roux, AB/CO/OP

J. Wozniak, AB/CO

	Checked by :

D. McGinnis, Fermilab

J. Patrick, Fermilab

S. Gysin, Fermilab

V. Baggiolini, AB/CO
M. Lamont, AB/OP

J. Wenninger, AB/OP

E. Hatziangeli, AB/CO
	Approved by:

H. Schmickler, AB/CO

E. Hatziangeli, AB/CO
	

	
	

	History of Changes	

	Rev. No.
	Date
	Pages
	Description of Changes
	

	0.1

0.2

0.3

0.4

0.5
0.6
	13-April-2007

17-April-2007

18-April-2007

23-April-2007

7-May-2007

24-Aug-07
	9

8

8

9

10

11
	First draft

After comments from E. McCrory

General changes.

Additional requirements for components library after discussion with Euginia Hatziangeli.

Changes after Eric Roux Comments. Added “implementation notes”. “Colored comments” should be removed from final version of the documentation.

Editing by E. McCrory

Table of Contents
41.
About this document

2.
Introduction and Overview
4
2.1
Objectives
4
2.2
Roles and Responsibilities
4
2.3
PROPOSED Architecture
6
2.4
DnD tools
7
3.
Functional Requirements
7
3.1
DnD Builder Requirements
7
3.2
DnD RUNTIME Requirements
8
3.3
DnD Repository Requirements
8
3.4
DND DISPLAY Requirements
8
3.5
Scope, Performance and Concurrency
9
4.
Imlementation Notes
9
4.1
Important implementation notes
9
4.2
Initial SET OF COMPONENTS
10
4.3
Performance Issues
10
5.
References
11

1. About this document

It is anticipated that the Drag and Drop Display and Builder will be a set of Java applications used by AB/OP and others at the CERN Control Centre and elsewhere during the commissioning and the operation of the LHC at CERN. This tool kit will allow an operator to create quickly a simple, or a complex, visually rich application to monitor and manipulate instruments in the LHC. The components from which the application is made are either general components stored in a component repository or components that the operator has created.
First, we present an overview of this suite; the objectives, the roles and the responsibilities. Then we discuss proposed architecture and present the formal requirements.

The priorities of the requirements are listed as either “Critical”, “Expected.” The former means that the application absolutely must have this feature. The latter means that the application should have it, but it will not be necessary in the initial version(s) of the application.

In the requirements, we use the abbreviation DnD for “Drag and Drop Display and Builder.”

2. Introduction and Overview

2.1 Objectives

CERN operators will need to monitor and control a multitude of hardware devices during the startup, commissioning and operation of the Large Hadron Collider (LHC). It is very likely that s/he will need to adapt the available control software frequently and to create new accesses to the devices “on the fly.” Thus, a general application that allows the operator to view and to manipulate these devices is proposed. In order to follow modern, graphical expectations, the tool proposed here uses visual tools intensely. These visual tools will make the learning period shorter, and the visual nature of the application should help to document the processes being controlled.

Here, we define “Visual Tools” to mean be lightweight and user friendly components that can be tied together in logical and meaningful ways on a graphical palette. Most readers will agree that “Drag and Drop” is a big part of saying that a graphical tool is “User Friendly”. In this application, we will define a set of pre-designed graphical building blocks, which he can be visually placed on the pallette. With just a few mouse operations, a complete application can be constructed in minutes. This application is assumed to be monitored and run from the World Wide Web.

Drag and Drop Display and Builder (DnD) is a set of interactive and extendible component-driven tools that provide visual representation of real-time processes. A number of similar systems are in use in Fermilab, CERN and other laboratories. This application is aimed to be used in the Large Hadron Collider (LHC).

2.2 Roles and Responsibilities

There several intersecting roles in the usage of DnD:

1. General public – anybody in the World. Should be able to watch the Web displays (with some restrictions – the number of possible applications and the traffic may be limited).

2. Operator – shall be able to DnD applications in the DnD Builder (after proper authentication) and to save the application locally and/or in the applications repository (after proper authorization). The operator can make settings (after proper authentication and authorization using standard CERN procedure - RBAC).

3. Component Developer – develops new components and places them into components repository.

4. DnD administrator – grants permissions for Component Developers, manages the repositories and the DnD Web site.

2.3 PROPOSED Architecture

The proposed architecture of DnD is based on a similar Fermilab system [1] with consideration of CERN software system and expertise, collected in CERN for the [3].

This set of tools should allow for building a graphical application (as shown in an example from Fermilab, Figure 1) at CERN, using LSA and JAPC interfaces, in about 0.5 – 3 hours. This application, designed within DnD, should present current device information (reading, setting, status, etc.) to the user, with update rate around 1 to 3 seconds. It is anticipated that the resulting application will be able to be run in a web browser and/or as standalone Java application. It will be possible to start this application as a standard CERN Java application with settings enabled or disabled. (Settings may be enabled only if the application is started as a Java program.) Configuration files produced by the Builder also may be used by other non-Java applications. The settings enabling policy will be in accordance with CERN security model [8].

Figure 1. Example of graphical application, built by DnD.

This graphical application will be built from blocks, or components, possibly connected to each other. Each component should implement a simple, common interface. The set of components is extendible, what means that everyone may develop his or her own components. We will develop an extensive set of components, from which individuals can create their own applications, or that will allow them to create their own specialized components. Each component will have a Java implementation (that is, a Java class that implements the interface) and a formal XML-based description.

The standard set of components will be stored in centralized repository. Applications, designed with DnD, will be saved in the same (or a similar) repository. The access to this repository will be through the Web. All the tools also can be stored as Java Web Startable Programs.

2.4 DnD tools

It is anticipated that there will be several components to DnD. We express these pieces as a specific set of tools, listed here:
1. DnD Builder – allows for visually building applications. This will be implemented in Java.
2. DnD Runtime – allows for running an application as Java Program.

3. DnD Repository – the component application repository(ies).

4. DnD Display – allows viewing the application as the web page.

5. DnD Components Library – implements all the required functionality for reading devices and presenting results.

3. Functional Requirements

The functionality and the scope, performance and concurrency of the DnD are discussed and presented in this section.

3.1 DnD Builder Requirements
The builder is a Java application. Here are the basic requirements for the Builder.
	Num
	Title
	Description
	Priority
	Source

	1.1
	Common
	The DnD Builder shall be written using standard Java.
	Critical
	

	1.2
	RBAC
	The DnD Builder shall use RBAC to authenticate users and to authorize actions.
	Critical
	

	1.3
	
	The DnD Builder shall allow the user to build applications.
	Critical
	

	1.4
	Components
	A user shall use the DnD Builder to construct applications from the components in the DnD Repository.
	Critical
	

	1.5
	Web Run
	The applications built by the DnD Builder shall be runnable as a web application.
	Critical
	

	1.6
	Standalone
	The applications built by the DnD Builder shall run as standalone java applications also.
	Critical
	

	1.7
	Web Limited
	A DnD application started from the web shall only provide read operations
	Critical
	

	1.8
	Save
	The user shall save DnD-constructed applications either locally or in the DnD Repository.
	Critical
	

	1.9
	Start
	Start Runtime – if authorized.
	Desired
	

3.2 DnD RUNTIME Requirements
Runtime is a Java application. It should be able to:

	Num
	Title
	Description
	Priority
	Source

	2.1
	Standard
	An application built by DnD Builder shall be a standard Java application.
	Critical
	

	2.2
	RBAC 2
	An application built by DnD Builder shall use RBAC to authenticate users and to authorize actions.
	Critical
	

	2.3
	Run Source
	An application built by DnD Builder shall be startable either from a local repository or from the central repository.
	Critical
	

	2.4
	Zoomable
	An application built by DnD Builder shall be zoomable.
	Critical
	

3.3 DnD Repository Requirements
	Num
	Title
	Description
	Priority
	Source

	3.1
	Accesibility
	The DnD Repository shall store DnD components in a way that allows the DnD Builder to access these components directly
	Critical
	

	3.2
	Grouping
	The DnD Repository shall provide a way to group similar components and applications
	Critical
	

	3.3
	Description
	The DnD Repository shall provide a description of each component and application
	Critical
	

	3.4
	Saving
	The DnD Repository shall allow a user to save components and applications
	Critical
	

	3.5
	RBAC 3
	The DnD Repository shall use RBAC to authenticate users and to authorize their actions with the repository.
	Critical
	

	3.6
	Versions
	The DnD Repository shall maintain versions of all components and applications.
	Expected
	

3.4 DND DISPLAY Requirements
The DnD Display shall run within a web browser. Here are the requirements for the DnD Display.
	Num
	Title
	Description
	Priority
	Source

	4.1
	Standard Browser
	The DnD Display shall display an application created by DnD Builder in a standard web browser (Internet Explorer 7 and Firefox 2)
	Critical
	

	4.2
	No Settings
	The DnD Display shall not allow any settings to the devices
	Critical
	

	4.2
	No Changes
	The DnD Display shall not allow any changes to the application
	Critical
	

	4.4
	Low Traffic
	The peak traffic from the DnD Display shall be limited to 5 kb/sec.
	Critical
	

	4.5
	Bandwidth Arbitration
	The DnD Display shall arbitrate bandwidth among the users, giving preference to users in the CCC, then to users at CERN.
	Critical
	

	4.6
	Zoomable 2
	The presentation of applications within DnD Display shall be zoomable.
	Expected
	

3.5 Scope, Performance and Concurrency

The scope of DnD is limited to those LHC control elements that can be represented within DnD. While it is possible to imagine control elements outside of LHC (for example, the electrical infrastructure), it is not covered by DnD at this time.

It is further imagined that every component cannot (or should not) be represented on a world-readable web page. These limits must be established by the author(s) of each component.

4. Imlementation Notes
4.1 Important implementation notes

· In order to support data coherency, the Component libraries may be separated into several “component palettes” and be provided by several repositories. That is needed to provide the user with a clear understanding that all data on the page are provided with in same DnD Context in terms of timing – cycle – supercycle. As a suggestion, datasources from AscBeans should not be mixed with JAPS/LSA datasources or such a mixing should have definite and clear visual distinction.

· The concept of DnD Repository allows us to separate the general-purpose DnD Builder and the DnD Runtime from the implementation of how and where the actual application configuration is stored.

· Zoom is a desired feature; it may be supported only partially – for example only on some of the components, or only in the Web version.

· All the Java applications are to be written according to existing CERN standards. This statement needs some further elaboration.

4.2 Initial SET OF COMPONENTS

Designing the set of components is crucial to the development of the DnD application. Each component that is used by DnD is to be a Java class that implements a simple interface. Each component will also have an XML file, and the properties of this file are described elsewhere.
Individual components may be connected to other components; these connections are called pipes.

Components functionality should be either “data driven” (depends on the data that the component receives) or “presentation driven” (depends on the user interface requirements). This general defeinition allows ancillary components, like RBAC interfacing and saving, to be implemented as components. These functions can be implemented in DnD Runtime.

The principle we are suggesting here is simple: let make each component be as simple as possible and provide only one function. This allows us to divide components into several standard groups, as following:

	Num
	Comp. Type
	Description

	5.1
	JAPC / LSA
	Reads data from the hardware. It is expected that these components will send their data by the pipes for processing, display or saving to other components. It is possible that these components will be invisible on the final application display.

	5.2
	AscBeans
	All CERN AscBeans from 'old synoptic' [6] should be supported as components library.

	5.3
	Visualization
	Visualizations of the data: text fields, tables, scopes, histograms, data viewers, thermometers, barrels with floating level, etc. May serve as pipes.

	5.4
	Processing Pipes
	Reads data from input pipes, transforms that data in some defined way, and send transformed data to output pipes. it is likely that these components will also be invisible. Examples: fft, arbitrary expression, averaging, integrating, etc.

	5.5
	User Input
	For example, text fields, knobs, sliders etc.

	5.6
	Static Graphics
	Special symbols of different kinds.

	5.7
	I/O
	For example, with files and databases,

There may be more types of components – for example in Fermilab there is are special cryogenic components.

4.3 Performance Issues

We discuss several performance related issues here.
· To minimize network traffic, DnD Display should usually transmit only differences in the visual state, not the visual state itself.

· To minimize server load, DnD Display should start one project and share its visual state between web users.

· To minimize server load, DnD Display should stop an application on the server side after several minutes without any requests.

· To minimize network traffic for users with Internet Explorer, Adobe Display should send SVG in zipped format.

Performance of DnD Runtime is defined by the Component Developers as well.
5. References

1. “Synoptic display – a client-server system for Graphical Data Representation”, proceedings of ICALEPCS'03,

http://synoptic.fnal.gov

2. Lexidata application, Brian Hendricks, FNAL

http://www-bdnew.fnal.gov/operations/fxtar/lexhow2.html

3. “Old Synoptic”

http://ab-dep-co-ap.web.cern.ch/ab-dep-co-ap/dev
http://oraweb.cern.ch/pls/abc/w3cons.applics

4. “XML Knob”

5. MEDM:
http://www.aps.anl.gov/epics/extensions/medm/index.php

6. APACS+:
http://www2.sea.siemens.com/Products/Process-Automation/Product/APACS/APACS

7. PVSS:

http://itcobe.web.cern.ch/itcobe/Services/Pvss/welcome.html

8. RBAC documentation: Requirements, Specifications, Reports.
