

Improvements in Antiproton Cooling and Stacking

Valeri Lebedev

for Antiproton source department, R. Pasquinelli and D. Sun

Contents

- 1. Introduction
- 2. Stacktail model
- 3. Stacktail upgrade
- 4. Transverse heating and its mitigation
- 5. Longitudinal heating and its mitigation
- 6. Conclusions and Further plans

Accelerator physics seminar FNAL January 24, 2008

Introduction

Performance Expectations at September of 2006

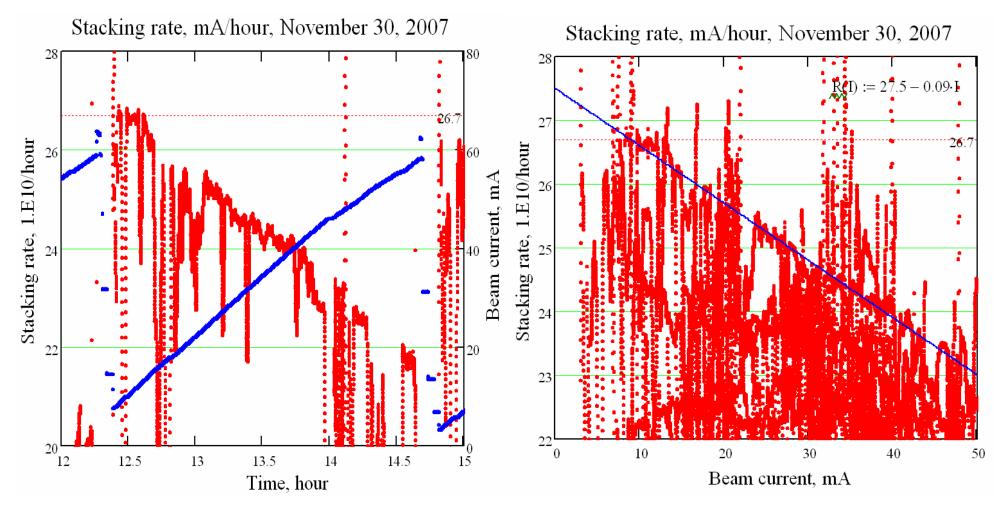
- By summer 2007
 - Zero stacking rate ~30 mA/hour
 - $\Rightarrow~$ 27.5 achieved at Nov. 30, 2007

<u>Plan of actions as it was at September of 2006</u>

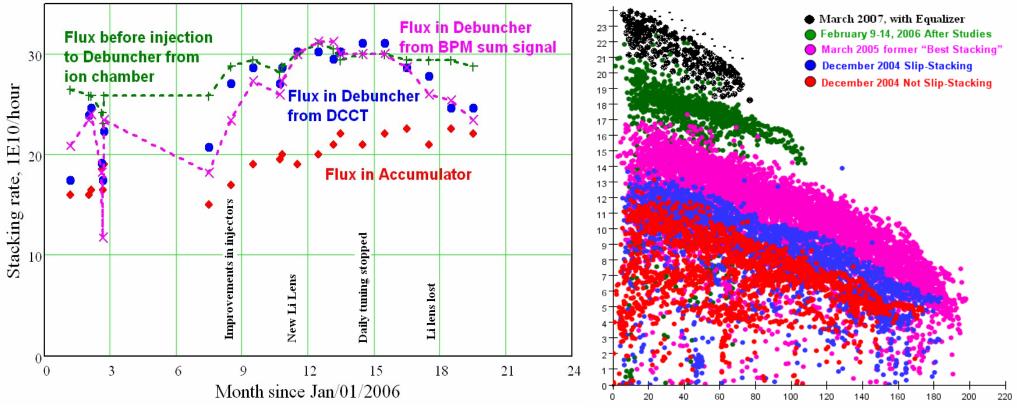
- Introducing equalizers (done)
 - **♦** ...

...

...


- we can gain factor of ~1.5 in stacking rate
 - 20 mA/hour -> 30 mA/hour
- Upgrading stack-tail to 2-6 GHz band should yield further improvement by ~1.5 times resulting the stacking rate above 45 mA/hour
 - Decision to cancel it was taken shortly after. OK in today's judgment

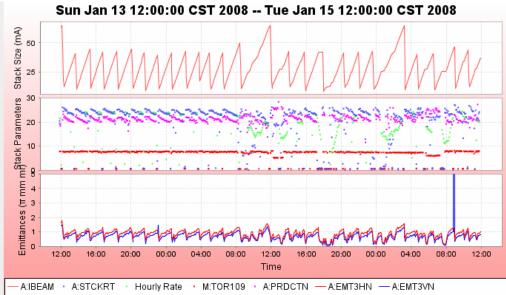
Present vision of 2006 expectation


- Large underestimate of what actually has to be done
 - 1.5 years later we are still not there

Stacking Definitions and Stacking Results

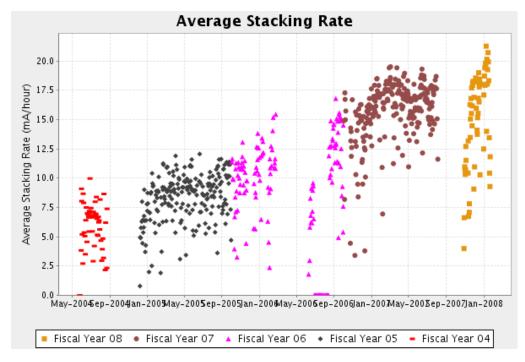
- Zero stack stacking rate 27.5 mA/hour (Nov. 30, 2007)
- Peak stacking rate 26.7 mA/hour (Nov. 30, 2007)
- Maximum in 1 hour 24.7 mA/hour (Jan.9, 2008)
 - Expected 25.5 mA/hour with 10 mA initial stack size

FY'07 stacking improvements and upgrades


- Dec'05-Deb. optics and steering
- Feb'06 Larger gain for 4-8 long. core cooling; 18->20 mA/hour
- July-Aug/06 Tuning injector chain pre-shutdown parameters restored
- Oct. 1 Stacktail polarity flip \Rightarrow peak stacking rate: 20 \Rightarrow 22 mA/hour
- Dec. New Li-lens
- March: Equalizer prototype for stacktail: $22 \Rightarrow 24 \text{ mA/hour}$
- May: Accumulator optics change (increased slip factor, reduced IBS)
- June: Final Equalizer for stacktail
- July Notch filter #3: BAW (Bulk Acoustic Wave) \Rightarrow SC (superconducting)

Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008

FY'08 stacking improvements

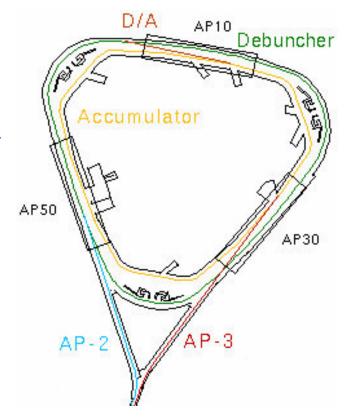

and upgrades

- Summer 2007 shutdown
 - ♦ Li-lens repair
 - Equalizer for longitudinal core cooling
- Shortening core cooling cycle from 2.4 to 2.2 s
 - It compensated ~15% loss of p-on-target
 - $8.7E12 \rightarrow 7.5 E12$
 - For 8E10 p-on-target the flux in Debuncher is
 ~33 mA/hour
- Reduction of Acc.-to-MI transfer time allowed reduction of maximum stack size to 40 mA

Ave Time between \$81's

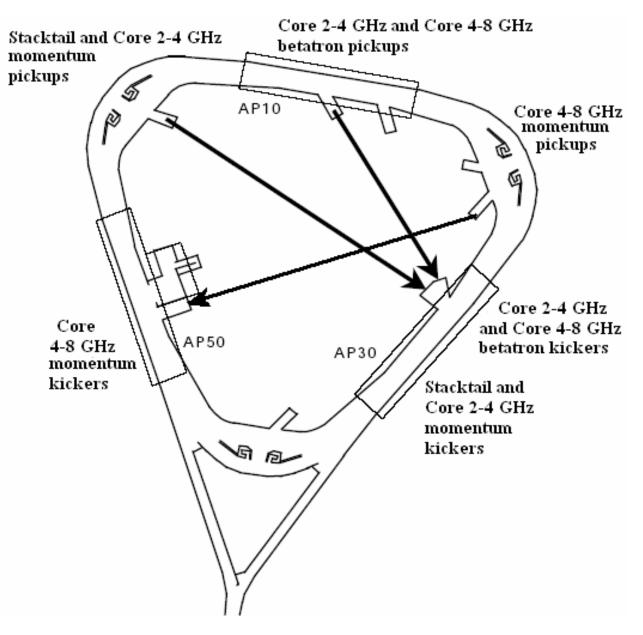
48 hours of good stacking, 2 day average - 18.8 mA/hour

Simplified Review of Operations


- Every 2.2 s ~8·10¹² protons at 120 GeV from MI sent to the target
- LI lens located at ~30 cm from target (centerto-center) reduces initially large angular spread
- 8 GeV (±2.5%) antiprotons and other secondaries (μ⁻, π⁻, ...) are transported to Debuncher, N_{pbar}~2·10⁸,

acceptance $\mathcal{E} \approx 35$ mm mrad (not normalized)

After 6D stochastic cooling in Debuncher antiprotons are sent to Accumulator



- After storing ~40·10¹⁰ antiprotons in Accumulator (~1.5 hour)
 ~30·10¹⁰ are sent to Recycler
 - 4 stochastic cooling systems (stacking, long. core, H and V) are used to stack and cool antiprotons
- ~430·10¹⁰ antiprotons are stored in Recycler (~24 hour) and then sent to Tevatron (18.8 mA/hour, 95% transfer efficiency)

<u>Cooling and Stacking in Accumulator</u>

- 5 cooling systems
 - Core cooling
 - H & V 4-8 GHz
 - Longitudinal: 2-4 GHz and 4-8 GHz
 - Stacktail 2-4 GHz
 Stacktail system moves injected antiprotons to the core

Problems and actions

- It has been known for long time that there are three problems determining the stacking rate
 - Stacking rate limitation due to stacktail itself (inverse flux)
 - Transverse core emittance blowup
 - Longitudinal core emittance blowup
- In Sep. 2006 it was clear that the first problem has to be addressed
 - The work carried out proved that the two other are problems are the same important
- The following actions were done
 - Stacktail bandwidth increase with equalizer increased the maximum stacktail flux
 - Accumulator optics change reduced the transverse core emittance blowup and increased maximum stacktail flux
 - SC notch filter improved longitudinal coherent stability of the stack
 - Equalizer in the longitudinal core system increased its damping and, consequently, reduced the longitudinal core emittance blowup

Stacktail Model

Fokker-Planck equation for longitudinal motion

$$\frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x} \left(F(x)\psi \right) = \frac{1}{2} \frac{\partial}{\partial x} \left(D(x) \frac{\partial \psi}{\partial x} \right)$$

$$T_{2} \eta_{2}$$

$$Kicker - f_{1}(x,t)$$

$$Kicker - f_{1}(x,t)$$

$$Kicker - f_{1}(x,t)$$

$$K(\omega) - U_{ext} - f_{1}(x,t)$$

$$T_{1} \eta_{1}$$

$$F(x) = f_0 \sum_{n=-\infty}^{\infty} \frac{G_1(x, \omega_n)}{\varepsilon(\omega_n)} \left(1 - A(\omega_n) e^{-i\omega_n T_0} \right) e^{i\omega_n T_2 \eta_2 x}$$

$$D(x) = \sum_{n=-\infty}^{\infty} \frac{1}{\left|\varepsilon(\omega_{n})^{2}\right|} \left[\frac{2\pi e^{2} P_{Unoise}(\omega_{n})}{T_{0}^{2} (\gamma \beta^{2} m c^{2})^{2}} \left| \frac{Z_{k}(\omega_{n})}{Z_{ampl}} \right|^{2} + f_{0} \left| G_{1}(x,\omega_{n}) (1 - A(\omega_{n}) e^{-i\omega_{n}T_{0}})^{2} \frac{\psi(x)}{|n\eta|} \right]$$

$$\varepsilon(\omega) = 1 + \left(1 - A(\omega)e^{-i\omega T_0}\right) \int_{\delta \to 0_+} \frac{d\psi(x)}{dx} \frac{G_1(x,\omega)e^{i\omega T_2\eta_2 x}}{e^{i\omega T_0(1+\eta x)} - (1-\delta)} dx ,$$

Here: $\int \psi(x) dx = N$, $\omega_n = n \omega_0 (1 - \eta x)$, $\frac{\Delta p}{p} \equiv x$ term $(1 - A(\omega_n) e^{-i\omega_n T_0})$ describes notch filter (three notch filters are used in the stacktail making Eqs. even more complicated)

Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008

Van der Meer solution

- To get to the Van der Meer solution
 - We factorize cooling force and diffusion $G(x,\omega)(1-A(\omega)e^{-i\omega T_0}) = G_x(x)G_\omega(\omega)$
 - We neglect pickup-to-kicker delay
 - We neglect particle screening
 - We neglect thermal noise
 - Replace sum by integral
 - Then, we arrive to

$$F(x) = 2G_x(x)\int_0^\infty \operatorname{Re}(G_\omega(2\pi f))df$$
$$D(x) = \frac{2N\psi(x)G_x(x)^2}{T_0|\eta|}\int_0^\infty |G_\omega(2\pi f)|^2 \frac{df}{f}$$

Rectangular gain function

$$G_{\omega}(2\pi f) = \begin{cases} G_0, & f \in [f_{\min}, f_{\max}] \\ 0, & otherwise \end{cases}$$
$$W = \frac{f_{\max} - f_{\min}}{\sqrt{\ln(f_{\max} / f_{\min})}}$$

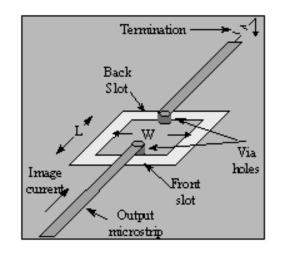
Linearly growing gain $G_{\omega}(2\pi f) = \begin{cases} G_0 f / f_{\min}, & f \in [f_{\min}, f_{\max}] \\ 0, & otherwise \end{cases}$ $W = \sqrt{\frac{f_{\max}^2 - f_{\min}^2}{2}}$

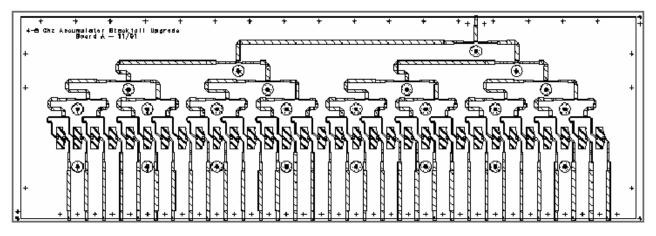
For one octave band, $f_{\rm max}/f_{\rm min}=2$, that results in 4% larger bandwidth

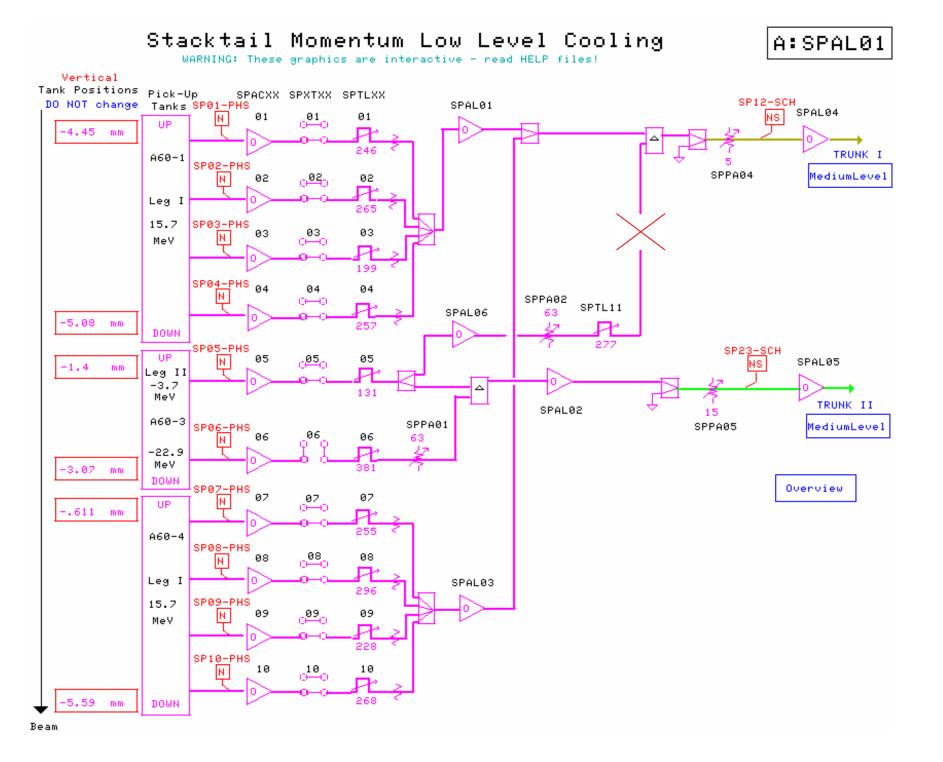
Assuming that $G_x(x) = G_0 \exp(-x/x_d)$ one can solve the Fokker-Planck equation. That results in the maximum flux:

$$J_{\max} = |\eta| x_d T_0 W^2 \text{ , where } \qquad W = \sqrt{\frac{\left(\int_{0}^{\infty} \operatorname{Re}(G_{\omega}(2\pi f)) df\right)^2}{\int_{0}^{\infty} |G_{\omega}(2\pi f)|^2 \frac{df}{f}}}$$

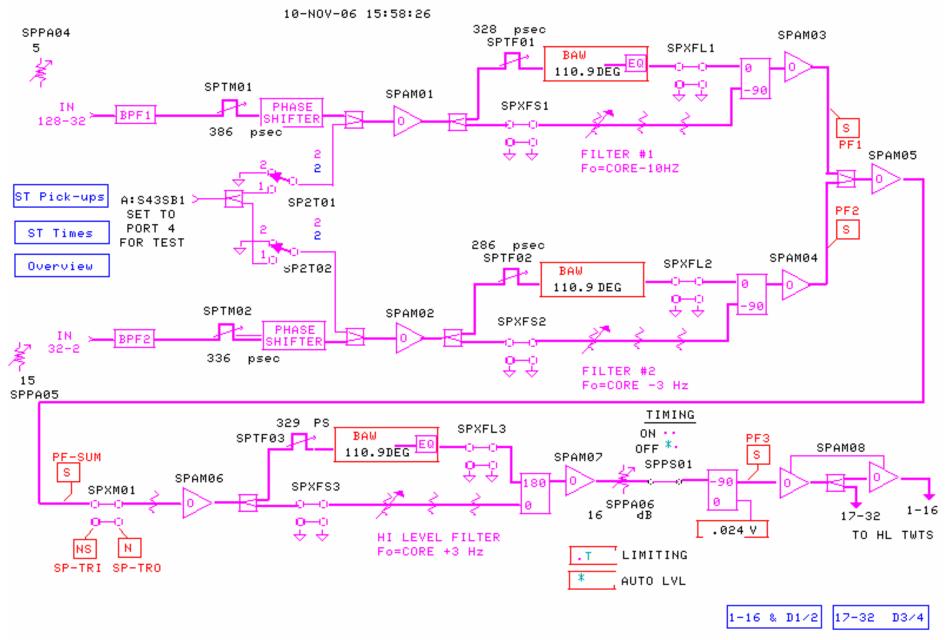
Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008


<u>Stacktail hardware</u>

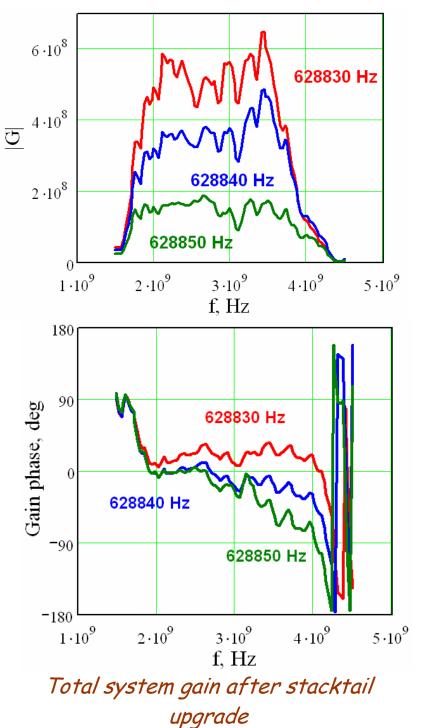

- Pickups are located at large dispersion (~9.1 m) while kickers are at zero dispersion (Palmer cooling)
- Stacktail has 3 pickups located at different radial positions to make desired dependence of gain on the momentum
- Pickups and kickers are built on the same technology
 - Planar loops
 - Printed circuit board technology
 - Works good at small frequencies (f \leq 4 GHz)
- Outside of pickup aperture its sensitivity drops exponentially. That allows one to form desired


gain profile on particle position with small number of pickups

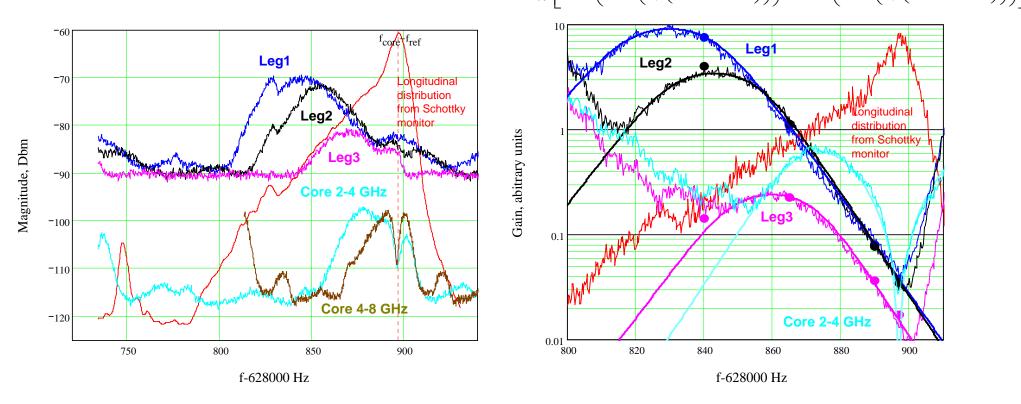
 Notch filters perform additional suppression of the gain on the core (~40 Db dynamic range)



STOCHASTIC COOLING STACKTAIL MOMENTUM MEDIUM LEVEL/FILTERS [


A:SPTF02

	S				vel 1-	-16 + <u>18</u> 8. 2				Sta	WARNING: These	graphics ar		e - read HELP file!	4	Hor & Ver Tank Pos
A:SPAHD1				F-Power	SPPRXX R-Power	SPHVXX Helix Volt					••••••	_{XX} F-Power	R-Power SPPRXX	Helix Volt SPHVXX	Kickers	In mm
D1	SPAHD1		D1	0 0	.972	-3196	MAIN ACC			17	158 17	31.2	.757	-4298 17	∑2 —In	-2.6 H
	- F >	541			.972		FLOW(GPM)=			18	18	30.1	7.01	-4302 18	△1 —0ut ∑2 — In	87 V
T DS	-	541	D2	0	.372	-3196 D2 22	KICKER	Hor & Ver Tank Pos		гТ.		24.3	1 10	-4302 19	△1 Out	
	SPAHD2 01	_R_	01	625	.972	-4196 01	TANKS	In mm -5.4 H		4,19	172 19	> 24.0	1.19	-4382 13	$\sum_{n \neq 0} \sum_{n \neq 0} \sum_{n$	A30-7
		216		034	.972	-4196 02	Out	2.3 V		50	Pt 20	33	3.56	-4296 20	Σe_In	1.45 FLOW
	02	171	02			4150 02	∑2 — In △1 — Out		HL 1-16	21	158	31.2	1.62	-4300 21	△1 Out	(GPM)
	-L 03	R	03	32.2	.972	-4302 03	<u>Σ</u> ² In	A30-1			190	51.0	1.00	-4300 21	∑2 Up △1 Low	-1.9 H
		184	04	31.8	.757	-4312 84	1 — 0ut	1.39	×.	22	<u>_</u> Pt_ 22	33	1.19	-4296 22	Σe Up	-1.3 V
	04	180					∑2 — In △1 — Out	FLOW (GPM)	18 dB SPPA06	23	95.6	31.8	.541	-4302 23	△1 Low	A30-8
	05	_₽_	05 0	37	1.4	-4292 05	Σ2Up	-2 H	SPPH06	7	360			4002 20	∑ 2	1.32
FROM ST ML	96	207	06	31.2	.757	-4290 06	Low	-2 V		24	_Ft_ 24	32.8	3.56	-4296 24	∑2∩b	FLOW (GPM)
		215					∑2 Up △1 Low			F 25	167 25	25.5	.326	-4304 25	△1	(di in /
	407	_R_	07 0	32.4	.541	-4294 07	2p	A30-2	SPAH12		206				∑2 — In △1 — Out	-1.5 H
	08	261	08	633	.541	-4296 08	△1 — Low	1.23 FLOW		26	26	24.9	2,91	-4310 26	Σe In	6 V
	վ ొ	289	>				∑2 Up _1 Low	(GPM)		1 4 27	239	32.4	2.27	-4298 27		A30-9
L L	<u>م</u> ا	_₽_	09	47.7	.541	-4300 09	<u>Σ2</u> In	-1.1 H		7	323				∑2 In △1 Out	1.33
	10	374	10	23.1	1.19	-4302 10	△1 — Out	.4 V	·	28	_ <u>Ft</u> 28	27.2	.541	-4302 28	Σ2 In Dut	FLOW
ž		195					$\sum_{\Delta 1}^{2}$ In $\int_{\Delta 1}^{1}$		FROM ST ML	29	225	23.7	2.05	-4300 29		(GPM)
イ 16 dB	74 11	_ <u>R</u> _	11	42.6	3.13	-4310 <u>11</u>	<u>Σ</u> 2 – In	A30-3			355	•			∑ 2 Up △ 1 Low	-з н
SPPA06	12	183	12	46.5	1.83	-4298 12	<u>_1</u> — 0ut	FLOW		30	199	0	1.62	-4196 30	 Σ20	-1.9 V
	<u> </u>	199	-0>			FROM 2-4 CORE MO	$ \frac{\sum^{2} \text{ In }}{\triangle^{1} \text{ Out }} $	(GPM)		Ц _{Дз1}	199 II 31	1.23	.541	-4196 31	△1 Low	A30-10
Pick-Ups	13					2-4GHz CP	Σ2-Up				390 ×	~			∑ 2	1.29
	14	, P	14	43.7	.541	-4296 14	△1 — Low	52 н -1.2 у		32	404	20.8	.757	-4312 32		FLOW
OVERVIEW		199	-0>				∑2 Up △1 — Low			SPAНДЗ ДЗ <mark> </mark> ∕∕	404 D3	0	.757	-3196 03 1		(GPM)
HL 17-32	15	 224	15	48.2	1.62	-4304 15	Σ2Up	A30-6			541 X	·		-3196 D3 2 2	MAIN ACC _	Beam 12 3
	16		16	44.1	.972	-4302 16	△1 Low	FLOW		D4	_ Pt _ D4	0	4.42	-3704 D4 ∑2	FLOW(GPM)=	10.0
Sum Power = 1276 Wa	tt	194					∑2 — Up △1 — Low	(GPM)	Sum Power = 487 W	att SPAHD4	541 V			<u>△</u> 1		


Numerical model

- Numerical model is based on the open loop BTF measurements
 - It took a while to determine Pencil beam intensity and Level of beam excitation
- Dependence of gain on frequency was measured on the revolution frequency harmonics in 1.5 - 5 GHz range with notch filters off
 - Notch filters were measured separately

Numerical model (continue)

- Pickup coordinate response
 - The response is obtained from a ratio of single band Schottky noise of each subsystem to the longitudinal Schottky monitor signal ($D_x=0$)
 - Results are close to the test-stand measurements
 - $\eta(x)$ variation (~15%) is accounted
 - Measurements are fitted to: $F(x) = \frac{1}{\pi} \left[\operatorname{atan} \left(\sinh \left(\frac{\pi}{h} \left(x x_0 + \frac{w}{2} \right) \right) \right) \operatorname{atan} \left(\sinh \left(\frac{\pi}{h} \left(x x_0 \frac{w}{2} \right) \right) \right) \right]$

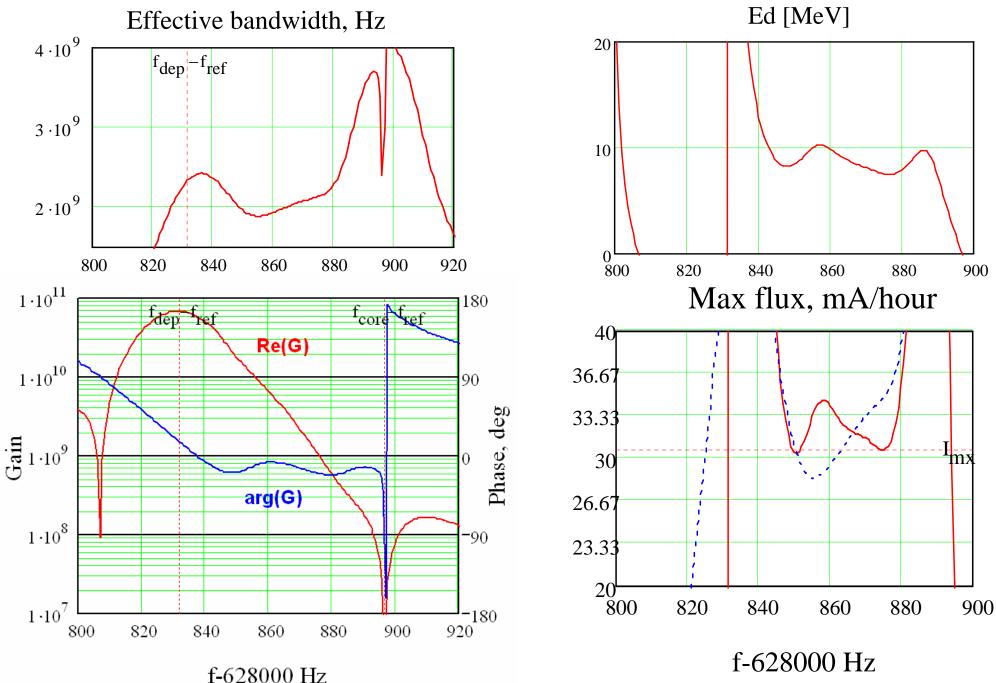
Numerical model (continue)

Stacktail Pickup Coordinate Response

Pickup coordinate response coincides well with following formula $F(x) = \frac{1}{4} \left[\operatorname{atan} \left(\sinh \left(\frac{\pi}{2} \left(x - x_0 + \frac{w}{2} \right) \right) - \operatorname{atan} \left(\sinh \left(\frac{\pi}{2} \left(x - x_0 - \frac{w}{2} \right) \right) \right) \right]$

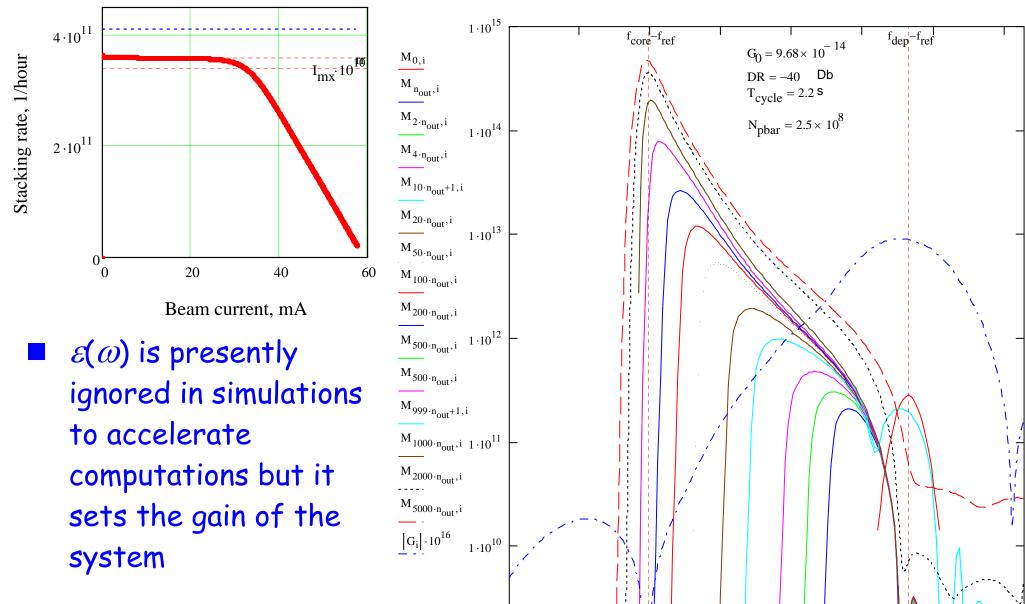
$$F(x) = \frac{1}{\pi} \left[\operatorname{atan} \left(\sinh \left(\frac{\pi}{h} \left(x - x_0 + \frac{w}{2} \right) \right) \right) - \operatorname{atan} \left(\sinh \left(\frac{\pi}{h} \left(x - x_0 - \frac{w}{2} \right) \right) \right) \right]$$

Parameters used in the fitting are


	<i>x</i> ₀ [cm]	<i>h</i> [cm]	<i>w</i> [cm]
Leg1	1.07	3.2	3.2
Leg2	-0.77	3.1	
Leg3	-2.4	3.1	
Core 2 - 4 outer	-3.5	3	2
Core 2 - 4 inner	-8.5		
Core 4 - 8 outer	-4.88	3.3	1
Core 4 - 8 inner	-7.08		

Dispersion at pickup is 910 cm (nonlinearity of dispersion on momentum is neglected

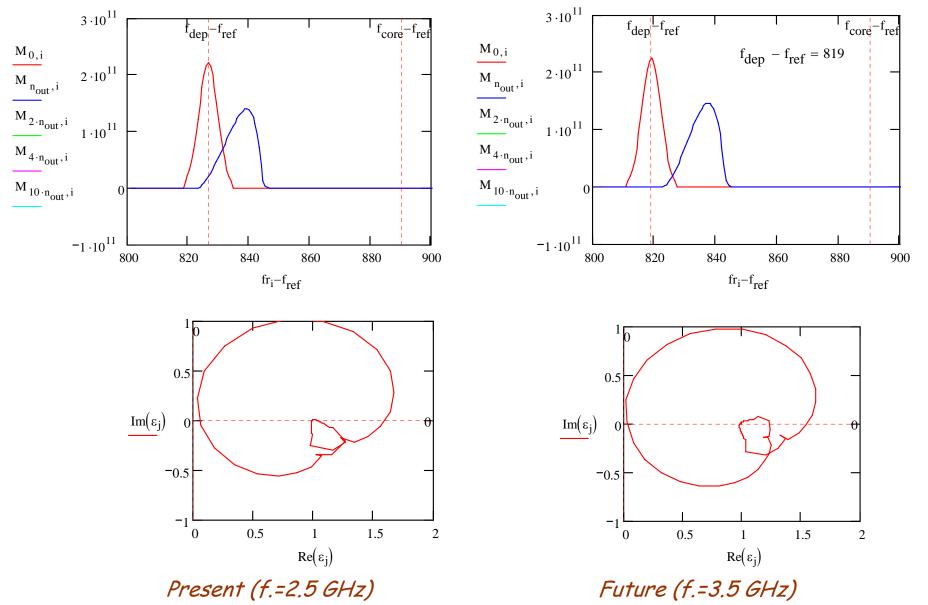
Numerical model (continue)


- Wiring all pieces together (including two core cooling systems) one obtains $G(x, \omega)$
- Static flux model computes
 - cooling force: G(x)
 - Inverse rate of cooling force change: $E_d \equiv p x_d$
 - Effective bandwidth
 - Van der Meer flux

Results of Static Model (for stacktail system after all upgrades)

Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008

Dynamic Stacktail model predictions

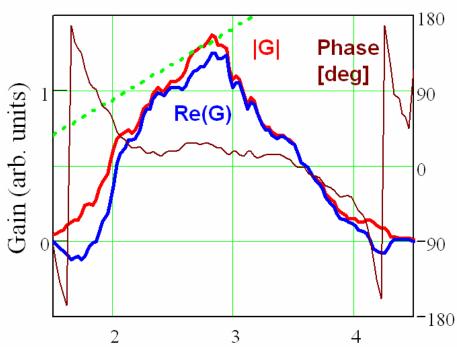

 $1 \cdot 10^{9}$

fr_i-f_{ref}

Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008

Dynamic Stacktail model predictions (continue)

Deposition orbit clearing is limited by the instability excited by stack-tail

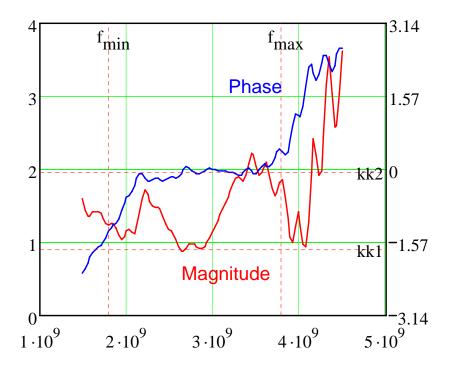

Dielectric functions just after injection of the first antiproton pulse at fr. of maximum response

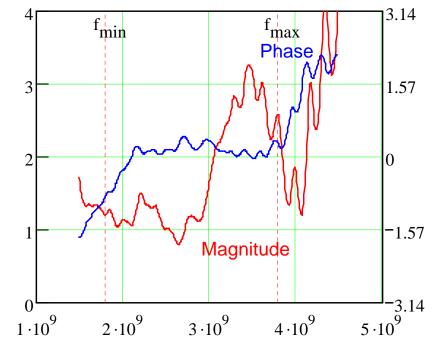
<u>Stacktail Upgrade</u>

$$J_{\rm max} = T_0 |\eta| W^2 x_d$$

Bandwidth increase, W

- Gain is peaked in the band center
- Large phase varations at band edges
- 20 Db signal-to-noise ratio
- ◆ 10 Db gain correction ⇒ increase of effective bandwidth by ~20%
 ⇒ 40% increase of stacking rate.
- Increase of x_d would require more power which we have not had

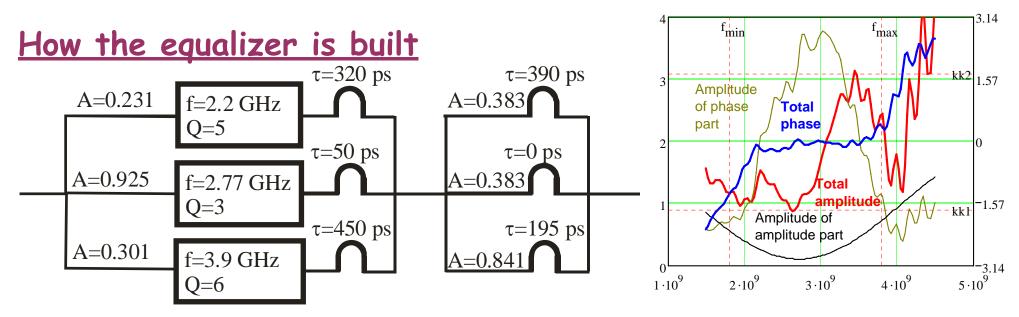



- Increase of the slip factor, η , by ~20% looked attractive
 - Further increase is limited by the band overlap at high frequencies
 - It required optics change in Accumulator
- Feb.'06 stacking rate (before equalizer) coincided with the model predictions
 - At the end of 2006 it looked very probable that 30.10¹⁰/hour will be achieved by summer of 2007
 - Nevertheless, other complications were coming soon

Deposition orbit, f_{rev} =628830 Hz

What Equalizer does?

It corrects phase and magnitude of the gain so that to achieve maximum bandwidth



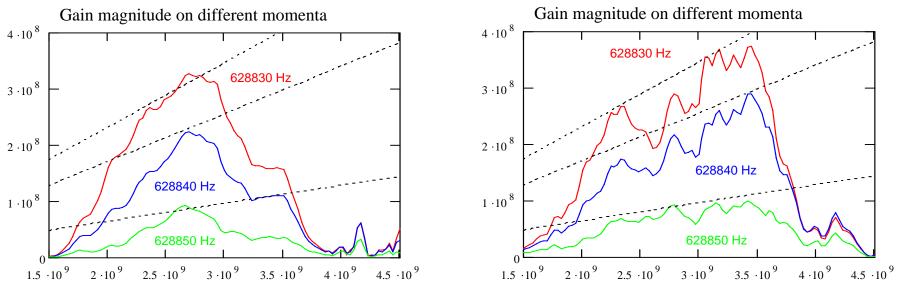
frequency [Hz]

Equalizer with reduced gain at high frequency (equalizer prototype). It was tested first.

Is causality violated?

frequency [Hz] *Present equalizer*

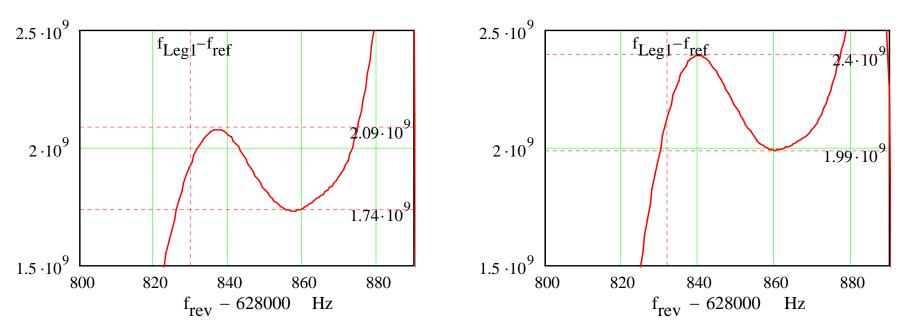
Prototype Equalizer specifications


- Phase part corrects phase
- Amplitude part corrects amplitude so that to get the total amplitude as desired

$$K_{i}(\omega) = \frac{A_{i}}{1 + iQ_{i}} \frac{\omega^{2} - \omega_{i}^{2}}{\omega\omega_{i}}, \quad i = 1, 2, 3$$
$$K_{A}(\omega) = 1 + 0.91\cos(\omega\tau), \quad \tau = 195 \ ps$$

 $K_{tot}(\omega) = K_A(\omega) (K_1(\omega) + K_2(\omega) + K_3(\omega))$ Final equalizer has 5 resonators and

two-stage amplitude correction


frequency [GHz]

frequency [Hz]

frequency [Hz]

Dependence of effective bandwidth before and after installation of the equalizer (~15% growth)

What did we achieved after equalizer installation?

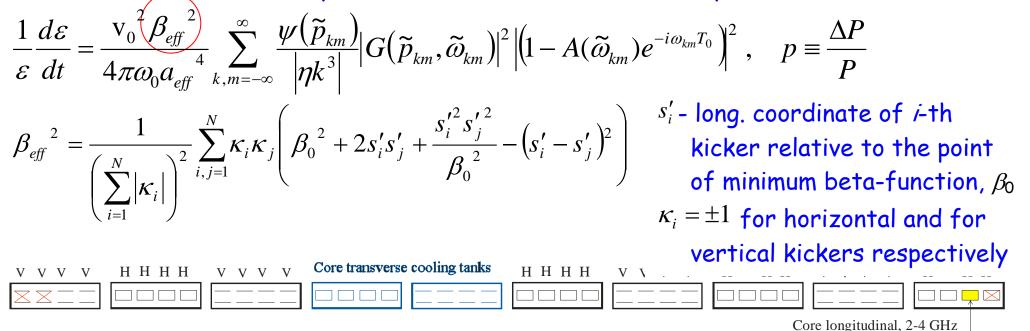
- With equalizer fully commissioned we found that we cannot run system with sufficiently high gain because of ⊥ heating
 - Basically the same stacking rate but 2 times smaller power

 \Rightarrow 1.6 kW \rightarrow 0.8 kW

• Optics change in Accumulator addressed this problems

Transverse Heating and its Mitigation

Transverse emittance growth is excited by the stacktail because of non-uniformity of longitudinal kick across the aperture


$$U(x, y) = U_0 \left(1 \pm \frac{x^2 - y^2}{2a_{eff}^2} \right) \implies \begin{cases} E_x \propto \frac{dU(x, y)}{dx} = U_0 \frac{x}{a_{eff}^2} \\ E_y \propto \frac{dU(x, y)}{dx} = -U_0 \frac{y}{a_{eff}^2} \end{cases}$$

 $a_{eff} \approx 1.87 \text{ cm}$

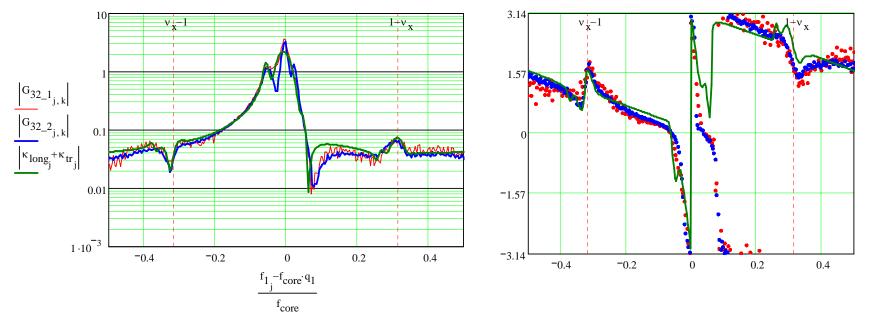
- Kicker offset
 - Average offsets are kept sufficiently small
 - But, electrical center position varies with frequency
- Parametric heating
 - Excited by noise at sidebands of doubled betatron tune, $2v_x+n$
- Non-zero dispersion at kicker location

Emittance growth due to parametric heating

Transverse emittance growth can be expressed through stack-tail parameters, beta-functions at kicker positions and effective kicker aperture

- Kicker rearrangement to reduce parametric heating
 - Core 2-4 GHz kicker is moved to the end
 - Two kickers at each end are off
- Effective β -function is reduced from 2.3 m to 0.6 m
 - 15 times reduction resulted negligible effect from parametric heating
- If we would go with 2-6 GHz system transverse heating would be a problem due to smaller a_{eff}

Emittance growth due to offset of kickers

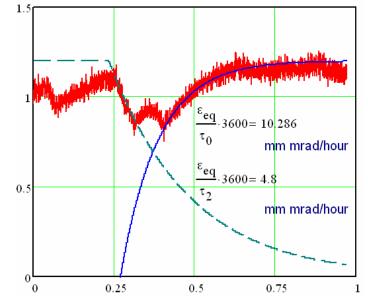

$$\frac{d\varepsilon(p)}{dt} = \frac{\omega_0 \beta_{kick}}{4\pi} \sum_{k,m=-\infty}^{\infty} \frac{\psi(p_{km})}{|\eta k|} |G(p_{km}, \omega_{km})|^2 |D_{eff}(\omega_{km})|^2 (1 - A(\omega_{km})e^{-i\omega_{km}T_0})^2,$$

$$D_{eff}(\omega) = \frac{v_0 X(\omega)}{\omega a_{eff}^2} + \frac{D'_{kick} \beta_{kick} + \alpha_{kick} D_{kick} - iD_{kick}^2}{\beta_{kick}}.$$

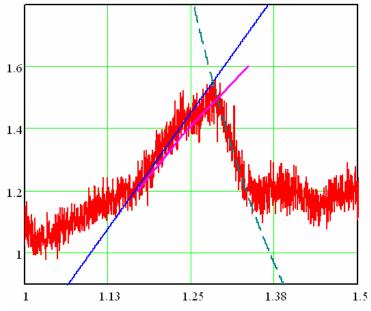
$$X(\omega) - \mu_{eff}(\omega) = \frac{V_0 X(\omega)}{\omega a_{eff}^2} + \frac{D'_{kick} \beta_{kick} + \alpha_{kick} D_{kick} - iD_{kick}^2}{\beta_{kick}}.$$

Open loop stacktail measurements exhibited that the kicker electrical center depends on frequency ω) - position of kicker electrical center relative to the beam center

- Resonance at 3.25 GHz, $x_0=2 \text{ mm}$, Q=27,
- It results in emittance growth. It cannot be suppressed by kicker centering
 - \bullet Δ -kickers with correct amplitude and phase response will be used if required


Narrow band open loop measurements of stacktail at 3.2 GHz (Apr. 10/2007) Improvements in Antiproton Cooling and Stacking, Valeri Lebedev, Acc. Phys. Seminar, FNAL, Jan 24, 2008

Directly Measured Heating Terms

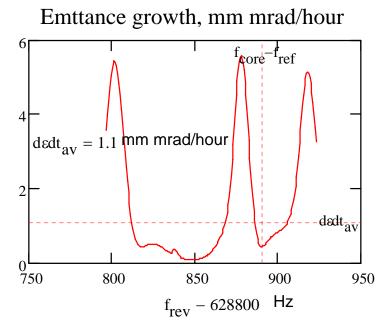

before Accumulator optics correction

- Analysis of H. emittance changes during stacking interruption and switching off all cooling systems results in
 - Core cooling time is 7 min
 - Direct measurements of heating terms before Accumulator optics correction

Heating mechanisms	mm mrad/hour
IBS heating at 50 mA	~3
Stacktail heating	5-6
Noise of core systems	~2
<u>Total heating</u>	~10

Data taken during stacking interruption

Data taken during stack-tail Schottky noise measurements; all cooling is off for ~10 min,

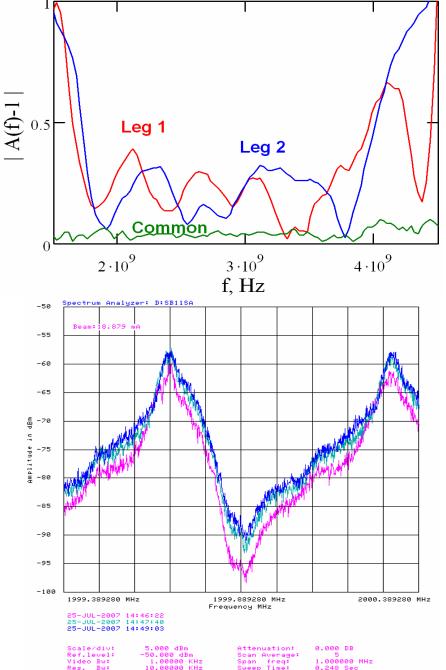

Estimate of Stacktail heating based on other measurements

Heating mechanisms	mm mrad/hour
Parametric heating	~0.25
Dispersion mismatch	~2.4
Kicker offset (res. at 3.25 GHz)	~1.2 - 2.2
Unaccounted*	~1.1 mm

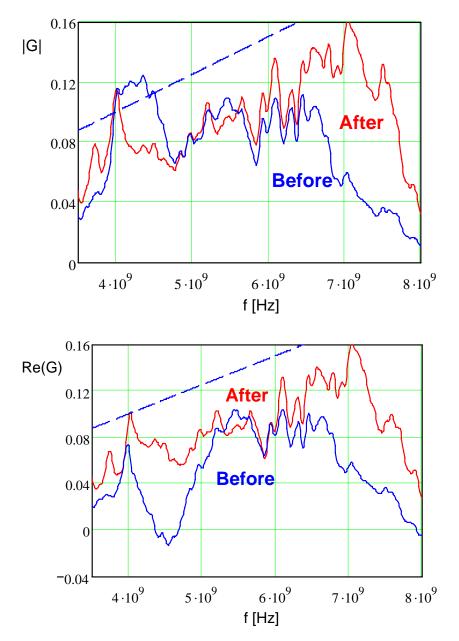
* Most probably it is heating due to geometric kicker offset

Accumulator Optics Change

- Accumulator optics correction increased slip-factor, η , by ~20% and resulted in an acceptable \perp emittances
- It reduced heating due to
 - IBS smaller dispersion invariant
 - Dispersion match smaller dispersion in kickers
 - Parametric heating
 - Kicker offset heating
 - the core sets between two peaks generated by Q and (1-Q) sidebands
- It also improved core cooling


Numerical simulation for measured kicker parameters: $x_0=2 \text{ mm}, Q=27, \omega_0/2\pi = 3.25 \text{ GHz}$

What did we achieved after fixing transverse blowup?


- But then the longitudinal heating set another limitation
 - Replacement of BAW (bulk-acoustic wave) notch filter 3 by SC notch filter addressed the longitudinal core stability but longitudinal heating still has been too large

Longitudinal Heating and its Mitigation

- Longitudinal core blowup is excited by Stacktail noise on harmonics of core revolution frequency
- Notch filters for additional suppression
 - ~35 Db dynamic range is set by noise of preamplifier
 - at high power by intermods
- Coherent Stability of the core at band edges was corrected by replacement of BA notch filter by SC one

Longitudinal core cooling equalizer

Equalizer for 4-8 core cooling system resulted in the largest gain in the effective bandwidth

$$\frac{W_{new}}{W_{old}} = 1.77$$

That addressed problem of longitudinal core blowup

Conclusions and Further plans

- During last 1.5 years:
 - Zero stack stacking rate: $(20 \Rightarrow 27.5) \cdot 10^{10}$ /hour
 - further increase to $\sim 30.10^{10}$ /hour is expected in 2008
 - Average stacking rate (weekly peak): $(10.5 \Rightarrow 16.5) \cdot 10^{10}$ /hour
 - further increase to (20-22)·10¹⁰/hour is expected in 2008
- The work carried out during last 2 years resulted in
 - Much better understanding for operation of cooling systems
 - All important upgrades have been introduced
 - Few final ones will be finished during 2008
 - Installation of equalizers in all Recycler stochastic cooling systems is a byproduct of this work
- Optimal tuning of Antiproton source is a high priority for 2008
 - Gain ramping of the stacktail
 - Separate gain ramps for longitudinal Debuncher cooling
 - Two turn delay notch filter for L Debuncher cooling
 - Better transverse and longitudinal cooling in Debuncher
 - Fixing phasing and gain errors for pickup and kickers
 - Modification of band-pass filters so that to equalize the bandwidth

Sequence of major events for the Stacktail upgrade

Hybrid flip	 - October 1, 2006
Equalizer prototype installation	
First attempt	- March 12, 2007
Installation wit reduced gain at high <i>f</i>	- March 19, 2007
Final installation	- March 23, 2007
Stacking record, 23.1 mA/hour	- March 22, 2007
Legs 2 & 3 pulled away	- April 3, 2007
Accumulator lattice upgrade	- May 16, 2007
Leg 3 is fully operational	- May 4, 2007
New lithium lens lost	- May 24, 2007
Final equalizer installation	- June 4 , 2007
SC notch filter 3 installed	- July 18, 2007
Longitudinal core cooling equalizer	- Shutdown 2007
Sequence of major events for the Debuncher cool	ing improvements
Notch filtens installation for Dobunchen L cooling bands 284	Shutdown 2007

Notch filters installation for Debuncher \perp cooling, bands 3&4 - Shutdown 2007 Debuncher lattice upgrade (pickup-to-kicker Δv_{y} -correction) - Nov. 20, 2007