Tevatron Fixed Target Redux
and the NuSOnG Proposal

Mike Syphers, Fermilab
Janet Conrad, Columbia

AD/TD Accelerator Seminar
6 May 2008

- Short history of Fermilab Fixed Target
- Two Options for after Run II
 - 120/150 GeV Fixed Target
 - 800 GeV Fixed Target
- NuSOnG proposal @ 800 GeV
Why this talk?

- Is the Tevatron really about “finished”?
- The Tevatron is the only facility that can provide high-energy (TeV) fixed target beams at high rates
- NuSOnG requires neutrino beam energies well in excess of 30 GeV (like 300 GeV)

- From this talk, we want to spur ideas for experiments, and identify issues with high intensity fixed target operation

- PAC will discuss this program option at their June mtg
Fixed Target History

- Main Ring ran fixed target program until 1982
- Tevatron ran FT 1983-2000
 - shared time as Collider, ~50/50
Fixed Target History

- **Main Ring:**
 - 200-400 GeV
 - 10-20 sec cycle
 - $>3 \times 10^{13}$ ppp (30 Tp)

- **Tevatron:**
 - 400-800 GeV
 - 40-120 sec cycle
 - 20-28 Tp

- **Resonant Extraction:**
 - slow spill.
 - pings

SPECIAL BULLETIN

The Accelerator Division set an all-time world intensity record of 3.003×10^{13} protons per pulse at 400 GeV at 4:25 p.m. on March 15.

ACCELERATOR DIVISION REJOICES

Throughout the Accelerator Division, signs proclaimed the division's recent achievement.
With the commissioning of the Main Injector, and the full push of the collider physics program, fixed target physics was relegated to 120 GeV from the new synchrotron.

This program, dubbed Switchyard 120 (SY120), began operation in 2004.
pre-MI and post-MI FT Configurations

- **MR/Tev:** beam extracted from A0 straight section
 - **MI:** transport to F0, thru MR remnant, to A0 and out...

1985

- A0
- Magnetic Septum
- F0
- ES Septum
- Abort

2005

- Meson
- 120 GeV
- A0
- F0
- ES/Mag Septa
- Abort
Tevatron Configurations

- **pre-Y2K** (2000, not Young-Kee...), would push/pull Fixed Target equipment with D0 detector, A0 abort
- **CO abort** was proton-only; rated for high rate, high intensity fixed target operation.

<table>
<thead>
<tr>
<th></th>
<th>pre-MI FT</th>
<th>Run II Collider</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Extr. Channel</td>
<td>Abort</td>
</tr>
<tr>
<td>B0</td>
<td>---</td>
<td>“CDF”</td>
</tr>
<tr>
<td>CO</td>
<td>Abort</td>
<td>--- (BTeV)</td>
</tr>
<tr>
<td>DO</td>
<td>ES septa</td>
<td>“D0”</td>
</tr>
<tr>
<td>EO</td>
<td>injection</td>
<td>instrumentation</td>
</tr>
<tr>
<td>FO</td>
<td>RF</td>
<td>RF / injection</td>
</tr>
</tbody>
</table>
The Main Injector ties into the Tevatron tunnel at F0, where Tevatron RF cavities are also located.

Lambertson Magnet:
- if ON, then stays in Tevatron
- if OFF, then to pbar/Switchyard

Beam approaches injection magnetic septa from below; if septa are on, beam is deflected vertically and eventually kicked onto the Tevatron closed orbit; if septa are off, beam passes through and on toward either pbar source or to the SY120 beam line.
Main Ring “Remnant”

Remaining Main Ring elements are used to transport beam through Tevatron:

FO Region:

- Protons to SY/pbar
- Antiproton Injection

Final Destinations:
- F17 --> pbar production
- A0 --> to Switchyard

Tevatron

120 GeV

980 GeV
Switchyard 120

- "Main Ring Remnant" is used to transport beam from F0 to F17 (for pbar production) and/or on toward A0 and the Switchyard/Meson Test Facility.

- SY120 beam line runs at 120 GeV, but with Power Supply upgrades could probably reach 150 GeV.

- **Typical Operation:**
 - When running, typically pulse one 120 GeV ramp ~ every 2 mins.
 - ~1×10^{12} (1 Tp) spilled (slow resonant extraction) over a 4 sec flat-top
 - i.e., 250 Gp/s (peak), 8 Gp/s (ave), 3.3% d.f.
List of Test Beam Memoranda of Understanding (MOU):

T979: Ultra-fast timing, Under review
T978: CALICE Experiment, Approved
T976: CsI Timing Experiment, Experiment completed
T972: Radiation Shielding Experiment, Taking data
T971: LHCb Silicon Detector Upgrade, Approved
T970: DHCAL Detector Research, Experiment completed
T969: GammeV, Experiment completed (IB)
T968: T2K Muon Monitor Prototype Taking data
T967: Muon g-2 Calorimeter Test, Experiment completed
T966: Monolithic pixel detector for ILC, Taking data
T965: PSip Photosensors, Experiment completed
T964: ILC GEM Chamber Characteristics, Taking data
T963: STAR Muon Telescope Detector, Completed
T962: Mini Liquid Argon TPC, Approved (MINOS hall)
T959: Microparticle Shielding Assessment, Completed
T958: FP420 Fast Timing Test, Experiment completed

T957: NIU Tail Catcher/Muon Test, Experiment completed
T956: ILC Muon Detector Tests, Experiment completed
T955: RPC Detector Tests, Experiment completed
T953: U. Iowa Cerenkov Light Tests, Taking data
T951: ALICE EMCAL Prototype Test, Experiment completed
T950: Vacuum Straw Tracker, Experiment completed
T945-Add. 1: Muon Veto Detector for COUPP, Taking data
T945: COUPP Bubble Chamber, Taking data (MINOS hall)
T943: U. Hawaii Monolithic Active Pixel Det., Experiment completed
T941: UIowa PPAC Test, Experiment completed
T936: US/CMS Forward Pixel, Experiment completed
T935: BTeV RICH, Experiment completed
T933: BTeV ECAL, Experiment completed
T932: Diamond Detector, Approved
T931: BTeV Muon, Experiment completed
T930: BTeV Straw, Experiment completed
T927: BTeV Pixel, Experiment completed
T926: RICE, Experiment completed

see... http://www-ppd.fnal.gov/MTBF-w/
What’s Next for the Tevatron?
SY120 reflects small impact on other operations
- very infrequent time line interruptions for 120 GeV ramps
 - one MI pulse (2.4 sec, say) in standard two minute time line: 2% hit on remaining program demanding beam from the Main Injector

On other hand, may say that SY120 program is limited due to the fact that it interrupts other higher-priority programs that demand beam from the Main Injector --
- antiproton production, NuMI

This is the cost of doing several projects/experiments with intellectual connections...

can we remove this “limit”?
A Unique Facility

- As the world’s first superconducting synchrotron the Tevatron was able to deliver fixed target beams at nearly twice the particle energy of any other facility.
- While other SC synchrotrons have been built since, none have the ability to ramp rapidly to full field and thus support a viable fixed target program at particle energies near 1 TeV.
- With the end of Collider Run II program approaching, some are considering fixed target options again...
 - high statistics ν_μ scattering experiment (NuSOnG)
 - Kaon physics
 - More demand for detector (e.g., ILC) test beams
 - ??

see: http://www.fnal.gov/directorate/Longrange/Steering_Public/documents.html
Two Fixed Target Options to Consider

❖ Option One --
 - Operate Tevatron as a “stretcher ring” to store and provide beam to the existing test beam facility, or to future experiments that can tie to the extracted beam line.
 • operate at injection energy of 150 GeV (and upgrade the beam line to SY150), or operate Tevatron at 120 GeV
 • “easy” to implement, almost immediately

❖ Option Two --
 - Resurrect high-energy (800 GeV) fixed target capability
 • though components still exist, would require more down time than Option One to implement

❖ Issues for both:
 - demands of experimental programs, and operating costs
Can use the F0 injection septum as an extraction septum (needs a polarity switch)

Install electrostatic septum near F0, or perhaps C0
 - C0 presently “unused”; ideal for 1/2-integer extraction

Resurrect slow-spill feedback system (“QXR”)
 - fast air-core quadrupole magnets
 - may wish to upgrade electronics

Then, “ready to go”
Integrity limitations
- Tevatron Fixed Target program ran at 20-28 Tp per pulse
- Limited by intensity dependent instabilities at higher energy
 (typ. ~ 600 GeV) as momentum spread adiabatically reduced
- Transverse impedance of Tevatron improved during Run II
 - Lambertson Magnets identified as major sources, and beam tube
 liners introduced; greatly stabilized transverse motion

However, 30 Tp was also about limit of injector
- Today, the MI can deliver 40-45 Tp per pulse, and two
 pulses can be used to fill the Tevatron --> 80 Tp!
 - (same as AGS record intensities at Brookhaven, 28 GeV)
Performance Issues at 120/150 GeV

- Abort at A0 can handle it...
 - to extent that we equate 80 Tp @ 120 GeV with 10 Tp @ 980 GeV (today’s Run II operation)
 - Naturally, fault conditions, etc., would need verification

- Tevatron would be run DC at 120/150: no snap-back, tune drift, etc.; more quench margin

- Beam can be stored in Tev, and spilled “on demand” at different rates at different times

- Many/most fixed target users want smooth beam spill; could consider use of barrier buckets to get rid of 53 MHz component; or, pre-condition in the MI ahead of time. Many variants could be explored.
Tev120 -- beam on demand

Examples of possible particle rates, for comparison

<table>
<thead>
<tr>
<th>N<sub>max</sub></th>
<th>Cycle (sec)</th>
<th>dN/dt (Gp/sec, ave)</th>
<th>dN/dt (Gp/sec, max)</th>
<th>POT/yr (10<sup>18</sup>/yr)</th>
<th>duty factor</th>
<th>hit on MI pgm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tp (1 pulse)</td>
<td>120</td>
<td>8</td>
<td>250</td>
<td>0.17</td>
<td>3.3%</td>
<td>2.5%</td>
</tr>
<tr>
<td>30 Tp (15+15)</td>
<td>3600</td>
<td>8</td>
<td>8</td>
<td>0.17</td>
<td>99.9%</td>
<td>0.08%</td>
</tr>
<tr>
<td>30 Tp (15+15)</td>
<td>120</td>
<td>250</td>
<td>260</td>
<td>5</td>
<td>97.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>40 Tp (20+20)</td>
<td>60</td>
<td>660</td>
<td>700</td>
<td>14</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>50 Tp (1 pulse)</td>
<td>15</td>
<td>3300</td>
<td>4200</td>
<td>70</td>
<td>80%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Scenarios assume 1.5 sec MI cycle, 3 sec in Tev for debunching and/or other “preps”; 66% of year operation

Present Operation
While running 120/150 GeV, prep for 800 GeV operation...

- Proposed neutrino expt, NuSOnG, needs high energy

RF at F0 precludes extraction there at 800 GeV; thus, A0

Re-install electrostatic septum at D0, as previous FT running

Extraction:
- if fast res. extr., need “QXR”
- perhaps form few, long bunches and use kickers? would work out exact scenario with experiment
Performance Issues at 800 GeV

- We know that 800 GeV slow extraction works by design; however, intensity limitations at high energy were always an issue
 - today's high intensity limit at high energy unknown, following septum magnet beam tube upgrades, etc.; but should be improved over FT runs of past
 - also, beam damper systems much improved these days
 - But note: neutrino expt. proposal -- 2.5x Tev record intensity (later)

- Abort at CO -- decommissioned with BTeV in sight
 - would need to re-commission extraction kickers (may need new pulse forming network) and extraction magnets
 - 28 Tp @ 800 GeV = 3.5 MJ; 75 Tp --> 10 MJ
 - need to re-examine instantaneous rates onto abort block, etc.
Ramp-rate & magnet issues

- Power Supplies and RF capable of delivering 55 GeV/s (used previously in FT mode); may be desirable to update/upgrade some dump switch equipment in PS system
- Magnets appear capable of higher rates
 - would need more RF; suggest stick with standard rate
- Neutrino program wants lots of beam in short amount of time -- i.e., pulses (or, “pings”) rather than slow spill
- Thus, use above ramp rate to make a 36-40 sec cycle, with a ~1 sec (or less) flat-top for extracting many (5-50) pulses
Performance Issues at 800 GeV

- Early FT running in 1980’s resulted in many magnet failures
 - bus lead restraints within cryostat identified and fixed
 - since then, ~250,000 cycles between magnet failures
 - (this rate includes failures of non-standard Tev magnets)
- Note: neutrino exp wants 2×10^{20} POT w/ 75 TP/cycle
 - --> ~2.6 million cycles ---> ~10 failures likely
- need to either have enough spares to last through the experimental program, or re-ignite capabilities of repairing

- If 10-12 failures of main magnets is the right scale, then enough spares and repair capabilities exist for the NuSOnG experiment (spool pieces will be the issue)
Performance Issues at 800 GeV

Particle Extraction

- Previous FT running, typically 60 sec cycle w/ ~25-28 Tp/pulse, spilled over 20-23 sec flat-top, roughly a 33-40% duty factor

- During slow resonant extraction, beam was “pinged” (“fast” resonant extraction) to the neutrino experiments

- It may be that few, long bunches could be formed in Tev (or prepped in MI) and then could be kicked out with kicker magnets (kick out 8 bunches of 10 Tp each, say)
 - Single-turn extraction was cleanly performed (test conditions) in Tevatron w/ 10 Tp.

- If only 1-2 neutrino experiments in Switchyard, then would deliberate the extraction method depending upon the needs of the users -- both approaches seem feasible
Summary (Accelerator)

❖ A first look at two possible Fixed Target Options:
 - 120/150 GeV “stretcher ring”
 - 800 GeV FT redux, for neutrino program

❖ Stretcher -- “straightforward” to implement; fast turn-around time; SY120 program/beam line exists
 - higher intensities for various programs -- yet to be demonstrated, but looks very feasible

❖ 800 GeV Beam -- much to re-install, but mostly still exists; hi-intensity an issue, needs addressing
 - we know Z/n is better, but good enough? dampers? beam loading? abort system adequate?
up next...

Tevatron-based Neutrino Beams
1. Tev-based neutrino beams
2. 5 reasons this program is unique
3. A history of this idea
4. How much does it cost?
Tevatron-based Neutrino Beams
A Tevatron-based beam offers the highest energy neutrino beams in the world.

Example 1: The NuTeV Flux

Uniquely high energy, and low background, produced using a sign-selected quad-train
Example 2: The DoNuT (Discovery of the Nu Tau) Flux

Uniquely enriched in ν_τ's which are above threshold for CCQE

It's all about flavor & energy!

A Tev-based program is the only source of
High purity ν_μ beams at high energies
Enriched ν_τ beams at high energies
Our idea:

Build a combined-beam facility, providing both a sign-selected beam and a beam dump flux, with $\times 20$ times the NuTeV POT/year with $\times 150$ times the total DoNuT POT

\[5 \times 10^{19} \text{ POT/year}\]

This a small cost to the planned neutrino programs (cost is mainly in ramp time)

It does not require substantial proton source upgrades
The Experiments I will discuss also need calibration beams

Other slow-spill experiments might happen at the same time…
The Neutrino Physics at a Tev-based Program

5 reasons this program is unique
Why this program is unique? #1: Rate!

<table>
<thead>
<tr>
<th></th>
<th>Total detected at any energy, all detectors</th>
<th>Total that will be seen in the Tev-based neutrino program</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>$\sim 500k$</td>
<td>$> 6M$ (in NuSOnG)</td>
</tr>
<tr>
<td>ν_μ</td>
<td>$< 10M$</td>
<td>$> 600M$ (in NuSOnG)</td>
</tr>
<tr>
<td>ν_τ</td>
<td>10</td>
<td>$\sim 1000-1M$ (small expt -- a 5 kton LAr)</td>
</tr>
</tbody>
</table>
Why this program is unique?

#2 It is above threshold for ν_τ production

$\nu_\mu \rightarrow \nu_\tau$ experiments like MINOS produce a lot of ν_τ
but they are all below threshold

The only practical way to make a ν_τ beam above threshold is via 800 GeV p on target producing D_s which decays
Why are \(\nu_\tau \)'s interesting?

They are the least-studied fermion

Many models favor new physics signatures in the 3rd generation

The maximal \(\nu_\mu \rightarrow \nu_\tau \) mixing may be telling us something about the \(\nu_\tau \)!

<table>
<thead>
<tr>
<th>Expt.</th>
<th>best fit</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minos</td>
<td>1.01</td>
<td>hep-ex/0607088</td>
</tr>
<tr>
<td>SK:</td>
<td>1.02</td>
<td>hep-ex/050106</td>
</tr>
<tr>
<td>K2K:</td>
<td>1.2</td>
<td>hep-ex/0606031</td>
</tr>
</tbody>
</table>
To see $\sim 1\, \text{M}\, \nu_\tau$ events you need a 5 kton LAr detector

Which at the same time could provide valuable R&D for a 100 kton LAr detector at DUSEL for the neutrino factory

You would probably begin with a smaller emulsion, LAr TPC hybrid to get ~ 1000 events

Figure 4 – The inside detector, with one of the top quarters not shown. W: wire chambers, F: field-shaping electrodes; C: cathodes. The inner reinforcing cross is also indicated.
Why this program is unique?

#3 It is above threshold for “inverse muon decay”

This cross section is very precisely known because it is directly related to muon decay, so you can use this process to measure the flux to high precision.
Why this program is unique?

#4 A large sample of neutrino-electron scattering events

75,000 events
30× the existing sample

Measured in the NuSOnG Experiment…
A NuTeV style beam
High energy, very pure beam (×20 POT)

A CHARM II style detector
Fine-grained, massive detector (×6 mass)

Initial 5-year run-plan 1.5E20 POT in ν, 0.5E20 POT in \(\bar{\nu}\)
Could be followed by a phase II \(\bar{\nu}\) extended run

NuSOnG: Neutrino Scattering On Glass
Why is measuring neutrino-electron scattering exciting? We think that neutrinos talk to high-energy scale particles…

The mass reach is the same as the LHC direct searches…
When LHC turns on…

It will be exciting, but very messy!

NuSOnG makes 4 measurements which help untangle the mess:
- neutrino-electron scattering
- antineutrino-electron scattering
- neutrino-quark scattering
- antineutrino-quark scattering
Even if LHC sees nothing but the Standard Model Higgs, NuSOnG might see something…

There is new physics in the neutrino sector!

if LHC agrees with LEP

But NuSOnG agrees with the NuTeV anomaly

There is new physics in the neutrino sector!
Learn more about NuSOOnG:

Andre de Gouvea will be giving the Wine & Cheese Seminar this Friday, 4:00 on NuSOOnG

also at http://www-nusong.fnal.gov
Why this program is unique?

#5 Neutrissimo Searches!

massive partners to the known neutrinos N

v_1, v_2, v_3

A nice, small, inexpensive, dedicated neutrissimo decay search

Tev target area

instrumented decay region

had cal

E M cal

muon sys.

would be a first -- past experiments have been add-ons
Accelerator limits are based on mixing to light ν

Their mass is limited by the parent particle

$$\pi \Rightarrow e \, N \quad m(N) < 130 \, \text{MeV}$$

$$\pi \Rightarrow \mu \, N \quad m(N) < 20 \, \text{MeV}$$

$$K \Rightarrow e \, N \quad m(N) < 450 \, \text{MeV}$$

$$K \Rightarrow \mu \, N \quad m(N) < 350 \, \text{MeV}$$

Only a Tev-based beam allows you to search in B-decay
you to reach up to $\sim 5 \, \text{GeV}$!
The REAL reason this program is unique…

The protons have to be ~800 GeV for this physics!

NuSOnG needs a beam with flux >30 GeV, peaking at ~100 GeV, almost none below (achieved by energy-angle correlation)

The ν_τ experiments need a high rate of D_S production for flux, and neutrinos above tau CC threshold.

The Neutrissimo search needs fixed-target B-production

The reason no one else can do this program is that no one else has a Tevatron!
Other possible neutrino experiments …

- A study of neutrino-production of charm (HiResMuNu)
- A tagged neutrino experiment

Other Physics… Slow Spill

- $D^0 D^0$ mixing (already under consideration)
 this experiment can also measure D_s production,
 important to a high precision ν_τ experiment
- Followup to HyperCP? (just an idea..)
 Watch for final results from HyperCP
 later this year…
The History of this Idea…
A Brief History…

The idea has been around for some time,

The call from the Steering Committee for “near term experiments that can be supported by an evolution of the Fermilab accelerator complex” caused the idea to gel.

The concept was endorsed by the Steering Committee:

[An] experiment with an 800 GeV proton beam would impose approximately a five percent tax on NuMI for both Project X and SNo111. Proton-source upgrades, particularly Project X, make possible a stronger neutrino-science program.
History with the PAC:

Presentation of an EOI in Nov, 2007
PRD article on Terascale reach,
as follow-up to questions, Mar, 2008

And planned future with the PAC

Summary of a Tev-based program (in answer to PAC questions), June 2008
PRD article on QCD as follow-up to questions, autumn, 2008
LOI with more details of NuSOnG design, autumn, 2008
It is too early to consider a full proposal, but I encourage the plan to submit an LOI to be considered by the PAC. Many things are uncertain in the future HEP program and I can think of circumstances that would make NuSOng a very attractive option.

from a letter to the collaboration from Pier Oddone, May 2008

NuSOng will be among the possibilities considered when the Committee discusses the experiments for the long-range strategic plan of the Laboratory at its June meeting. The Committee notes that a discovery at the LHC whose nature could be explored through neutrino scattering (e.g., a Z) could make an experiment like NuSOng compelling.

… at first I thought, “rats! wait ‘til LHC???” then I realized… that’s next year!

… rumor is that P5 says something similar.
How much does it cost?
From the costs turned into P5 by the Directorate…
all have EDIA, G&A, no escalation

Upgrades to the Tevatron $0.5M
Running the Tevatron (incremental cost) $15M/year

Building the two Neutrino Beams, inc. building $22.5 M

NuSOnG detector & building $118.5M

A program of: $322M

Neutrino beams (including running)
NuSOnG
2 small neutrino experiments
A D-mixing expt w/ beam

i.e.
30M year/10 years
Final Thoughts..

- As stated before, Tevatron is a unique facility for providing high energy fixed target beams.

- Before dismantling the Tevatron and its infrastructure, should be sure that it truly has lived out its useful life.
 - Tev120 -- quick set-up; Tev800 -- longer shutdown required, but has all been done before.

- NuSOnG...
 - This program can involve 500-750 physicists, putting out excellent physics in the interim while we build the next accelerator.
 - It has unique and interesting physics goals.
 - It can be staged.
 - It uses our resources well...
Further Reading...

- **Beams Documents Database:**

 - #’s 2178, 2222, 2849

- **Fermilab Steering Group Presentation (McGinnis):**

- **NuSOnG information:**

