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Old science but still challenging

« Helium cryogenics 1s
based in old technology
(much 1s 19th century)
but 1s still “state of the
art” in terms of practical
engineering 1Ssues

— l.e., it seems easy but

there is usually some
trouble

B g - "5'1 d
James Dewar (invented vacuum flask in 1892)
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TIME

Artificial Intelligence

An apology and warning;:
The 100 Worst Ideas of the
Century At the turn of the century,
2o Sy, Bk e s e s o s 0 Time Magazine declared

years have seen plenty of dud inventions, foolish decisions and
hugely embarrassing mistakes. Here's a list, not in any

B e g cryogenics one of “The
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2= Fermilab
Outline

* Principles of cryogenic refrigeration --
generating the cold helium

* Modes of heat transport -- removing the heat from
the cooled device

* A selection of design 1ssues and standard practices
In cryogenic engineering which experience tells
me are important

— A project physicist or project manager might find it
useful to have some familiarity with these i1deas

— O, . . . these were just interesting

» Safety and compliance 1ssues
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Principles of cryogenic
refrigeration --
generating the cold helium
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A typical modern helium cycle

(stmplified, from Linde Kryotechnik, AG)

* The “Claude process”, shown to the v
right, includes intermediate 15 bar /300 K

temperature expanders @ K|

* Modern cryoplants follow this pattern

* Major refrigerator components are

— Compressor(s)

— Expander(s)

— Heat exchangers
— Control valves

K Kompressor
LI, Wérme-

* The large, vacuum jacketed container [ astaserer
for the heat exchangers is called the A oot
“COId bOX” z tI-ZIEt!]hséisiitgeizeitseﬁtnahme
fiir den Verbraucher
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Compressor losses

from B. Ziegler, “Second Law Analysis of the Helium Refrigerators for the
HERA Proton Magnet Ring,” in Advances in Cryogenic Engineering,
Vol. 31. Plenum Press. 1986. n. 693

50.2 to coldbox
total el
power 120
input
3.6 42,8 0 05
electric compressors gas oil+water
motors coclers removal
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Cold box losses

from B. Ziegler, “Second Law Analysis of the Helium Refrigerators for
the HERA Proton Magnet Ring,” in Advances in Cryogenic Engineering,
Vol. 31, Plenum Press, 1986, p. 693

19.2  refrigeration

> 9.5 leadscoocling

50.3 )
3.4 shieldeoocling
1.3 0.2 0.7
turbines heat- valves
exchangers
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Room-temperature power

Cryoplant coefficient of performance (W/W)

40 K - 80 K 5K-8K 2 K

TESLA TDR: 17 168 588
XFEL: 20 220 870

Industrial est: 16.5 200 700
ILC assumption: 16.4 197.9 703.0

* Above numbers were compiled for the ILC RDR.
A good estimate for 1sothermal cooling would be
~ 250 WW @4.5K
~ 12W/W @ 80K
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Getting KW of cooling below 4.2 K

e Helium at 1 atm boils at 4.2 K. For lower
temperature need lower pressure.

* A Claude cycle could operate with a
subatmospheric compressor inlet pressure

* At high heat loads and low temperature
(hence low vapor pressure), volumetric
flows become huge, so cold compressors
are used to boost pressure before the helium
reaches room temperature
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Helium cycle with cold compressor

1 atm
series of
COMpressors vacuum
pumps
300K to 4.5K
refrigeration with
heat exchange to
pumped intermediate
pressure stream
cold
4.5K helium compressors
hoat
exchanger
1.8K, .018 atm
JT "_HM' % helium vapor
heat added |
from load
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40 - 80 K

A flow scheme

. Shield
for a cryogenic S N
refrigerator
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Expanders are red,
compressors are blue,
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Cooling the magnets and RF cavities

* Physicists and engineers designing an accelerator
will be able to specify and buy cryogenic plants,
but must design the accelerator components
(magnets or RF cavities and their containers)

e Cooling mode, heat transfer, pressure drops, cool-
down, warm-up and non-steady or upset system
operations all must be considered as part of the

component d

esign

* The cooled d
cryogenic sy

29 May 2008

evices must be viewed as part of the
stem
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Modes of heat transport --
removing the heat from the
cooled device
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Cooling modes 1n large-scale cryogenic
systems recently 1in operation
* Pool boiling helium I (SRF for HERA, LEP, KEKB)

e Forced flow of subcooled or supercritical helium I
(Tevatron, HERA, SSC)

« Stagnant, pressurized helium II (Tore Supra, LHC)

» Saturated helium II (CEBAF, TTF at DESY, SNS at Oak
Ridge, and foreseen for ILC)

 This list also illustrates the extent to which
superconductivity and cryogenics have become standard
technology for accelerators
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Helium phase diagram *

(S. W. VanSciver, Helium ™~
Cryogenics, p. 54) -

T T T T T T 100

* Critical point
— 5.2 K, 2.245 atm ; Hel @ P
 Lambda transition at 1 atm | we= @ //RimcaL 1

- 2172K @

® SRF -- HERA, LEP, KEKB - )

@ Magnets -- HERA, Tevatron oF 3
® Magnets -- SSC 3
® Magnets -- Tore Supra, LHC ! f ]

O SRF -- CEBAF, TTF, SNS, ILC e
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Pressurized versus pool boiling

* Pressurized helium (normal or superfluid)

— gives maximum penetration of helium mass in
magnet coils, which may be a factor 1n stability
1f not also heat transfer

— but heat flow results 1n a temperature rise.

* Pool boiling

— gives pressure stability (important for
superconducting RF),

— provides maximum local heat transfer,
— and provides nearly 1sothermal cooling.
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Cooling modes -- magnets vs RF

« Accelerator magnets are often cooled with
subcooled liquid

— Typically working near the limit of the superconductor
with large stored energy

— Ensure complete liquid coverage and penetration

* Superconducting RF cavities are generally cooled
with a saturated bath

— Large surface heat transfer in pool boiling for local “hot
spots”

— Very stable pressures, avoid impact of pressure
variation on cavity tune

29 May 2008 Cryogenics 18
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Pool boiling and 2-phase flow

* Considerations for pool boiling systems

— Control of liquid levels, long time constants, inventory
management

— Forced convection for warm-up and cool-down

* Two-phase flow

— Liquid and vapor phases separate with any acceptably
low pressure drop (Baker Plot does not apply!)

— Easy to develop “slug” flow due to liquid separation in
low places 1n piping

29 May 2008 Cryogenics 19
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Cryogenic system string lengths

* “String” here refers to the distance which
cryogens flow away from the refrigerator

* Tevatron -- 125 meters
— 24 refrigerators, 48 strings

e HERA -- 650 meters

— 3 refrigerators in one location, 4 feed points (via
transfer line), 8 octants (strings)

e LHC -- 3300 meters

— 8 refrigerators, 8 octants (strings)
e So why are the Tevatron strings so short?
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Fermilab’s magnet cooling scheme

* Rapid cycling machine originally designed for
fixed target physics implied warm 1ron magnets
 Warm 1ron constrained cryostat and helium
channels to small diameter
— Which resulted in somewhat larger static heat

— plus high pressure drop

* Two phase helium flow to remove static heat

— Coil bathed 1n pressurized liquid which 1s cooled by 2-
phase

e Keeping pressure (hence temperature) low
required short string lengths
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Fermilab magnet cooling scheme

2-phase out 2-phase m

A

Heat directly to 2-phase |,
(Q 2-phase) 0

Smele-phase Smgle-phase
flow m "f" "f" "'."" "T" A "f" A ] "f" "f" "f" flow out
Heat transferred to 2-phase -

T.P Y olee/collar blocking heat flow @

7 i

o A B
e N
/! A
Heat transferred to single-phase Inner smgle-phase passages

(mner and outer passages)

Outer single-phase passages
Q vigible, measured heat mput to the magnet, 15 based on
smele phase flow, T, P out andT, P m.
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Tevatron dipole cross-section

IRON YOKE LAMINATION
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LHC magnet cooling scheme

similar to Tevatron in also being indirect cooling, 1.e., helium-

to-helium heat transfer in the magnets

pressurized Hel, static

saturated Hell,flowing heat ewxchanger tube

|

magnet  helium vessel s¢ bus bar connection
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Heat transport through channels--

pressurized supertluid

Conduction through ordinary materials 1s

_ dT
written as 4~ dx » Where q1s heat flux, T

1s temperature, and k 1s thermal
conductivity. Heat transport through the
pressurized superfluid with constant cross-

section and constant heat flux obeys

. 1 dr
4= £(7) dv where m = 3 and q 1s the heat

flux in W/em>.
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Superfluid Heat Transport Function

(Steven W. VanSciver, Helium Cryogenics, p. 144)

From 1.85 K to 1.95 K 400
assume 1()is constant, and = eq | *em
T UR(TY)
=1200 :
(T) . Then the £l
temperature difference 5 '
through the conduit 1s £
3 = 440~
ar =9t .
1200 where L 1s \
distance 1n cm, and q 1s the s 22

. 2
heat flux in W/cm". 1.6 T(K) 2.0
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Comparison of apparent thermal

conductivities of superfluid and Cu

Tempin |Temp out |Cond Cu |Q Cu Q He

(K) (K) (W/emK) | (W) (W)

4.0 3.8 60 2.0 0.000006
2.0 1.8 30 1.0 10.1

Calculation is for a 1 foot long, 1 inch diameter cylinder
with the above temperatures at each end. Copper is very
high purity; room temperature copper 1s 4 W/cmK.

So a superfluid heat pipe is about 10 times better than a
high-purity copper rod at 2 K, and the effective thermal
conductivity of superfluid in the 1.8 K to 2.0 K temperature
range 1s about 100 times that of room-temperature copper.

29 May 2008 Cryogenics 27

Tom Peterson



Some Suitable Materials for
Low Temperature Use

e e — e  ——— —— — — — — —— —

Austenitic stainless steels e.g. 304, 3041, 316, 321

Aluminum alloys e.g. 6061, 6063, 1100

Copper e.g. OFHC, ETP and phosphorous deoxidized

Brass

Fiber reinforced plastics such as G —10 and G -11

Niobium &Titanium (frequently used in superconducting RF systems)

Invar (Ni /Fe alloy) useful in making washers due to its lower
coefficient of expansion

Indium (used as an O rnng matenal)

Kapton and Mylar (used in Multilayer Insulation and as electrical
insulation

Quartz (used in windows)

T

mon RO

HE

HH

May 14, 2003 J. G. Weisend |l
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A selection of design 1ssues and
standard practices 1n cryogenic
engineering
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Pressure drop 1n pipe

« The standard, classical formulas work fine for helium gas and liquid

e Helium flow is usually turbulent, but warm helium flow in small
channels such as 1n a current lead may be laminar

« The pipe size constraint is often an off-design consideration such as
cool-down or emergency venting

29 May 2008

Pressure drop for turbulent flow in a pipe 1s

2
_p L
AP = TBJF where £ 1s average fluid density, v

1s average fluid velocity, L 1s pipe length, D 1s pipe

mner diameter, and J s friction factor based on
diameter.
D 2

Substituting "'~ #” {ﬁ TJ where 7 is mass flow

- 2
m
gives AP _(0_811)ELf
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Interconnects

* Complicated access since within msulating vacuum, need
space to connect flanges, make welds, etc.

 Allowance for thermal contraction
e Mechanical support and stability

29 May 2008 Cryogenics 31
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LHC IR Quad Interconniet crmhab

U ST

8= [T
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Lateral elastic pipe instability

——— Yot . 1
““q_._”' ‘.._ b
=
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Lateral elastic pipe instability

 Lateral displacement force 1s proportional to
lateral displacement and to pressure

* If the restoring spring constant of the piping
system 1n which the bellows 1s installed is less
than the constant relating lateral displacement
force to lateral displacement (a “negative spring
constant”) at a given pressure, the system 1s
transversely, elastically unstable at that pressure.

» Relatively light pipe supports near the bellows can
prevent this mstability by adding stiffness.
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Displacement force ™ Fermilab

proportional to displacement

¢ TEST STAND _

| S
- < = LLOWS
-5 LLO
P2t
/ Y
A
¢ MAGNET _ il 4
\) . :
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Axial pressure forces

D | Walls 1n tension | m—l

4— Bellows doe tensile load —>

* Pressure-containing pipes and vessels carry tension in their
walls due to pressure forces

 Introduction of a bellows or elastic element introduces the
possibility of unbalanced forces on the piping
— Combination of bellows and elbow are often overlooked

* The following slide shows a free body diagram for a helium
vessel within a cryogenic supply box for LHC at CERN
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Forces on DFBX-E due to 3¢ Fermilab

20 bar M1 line pressure plus - o\ (15000 Ibf)

3.5 bar in the helium vessel  (Combined pressure and gravity)

i

||||||
llllll

PPPPPPPP
llllllllll

LG5k 08E
::_ls_s uz?LD
]
(LN N
T

|\ 20.0kN
(4500 Ibf)

| 4 i
£13 - m— — = —
o] -"6€35_mm
o R

767 mm'| -ty
(30.2in) =—
20.8 kN (4680 Ibf) x 2 12.5 kN (2820 Ibf) x 2
(rods in tension) (rods in tension)

y
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Provisions for cool-down and warm-up

e Cool-down

— Return vapor may block liquid supply flow 1n
the same channel; a simple fill from the top or
one end might not work. A cool-down vent
and/or a bottom-fill port may be required.

e Warm-up

— Flow will stratify. Local electric heat, a bottom
vent port, or other feature to force heat down to
the lower parts of a cold mass may be required.

29 May 2008 Cryogenics 38
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Thermal intercepts

ilab

Stainless steel in pure condu

300.0 "
With no thermal intercept, . m
250.0+assume a heat fluxof —— .
1 W/sq.cm. to 2.0 K . n
200.0 / ¢ .
N o No intercept
¢ m " 80 K interce|
150.0 ; .
100.0 i} . ) Then adding an 80 K intercept
" . . . .
. -/ at the midpoint results in
50.0 . " 0.23 W/sq.cm. to 2.0 K and
1.77 W/sq.cm. to 80 K
0.0F ‘ ‘ ‘ ‘ ‘
0.00 0.20 0.40 0.60 0.80 1.00
Positiol
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Thermal intercept benefit

* From previous illustration:

— No thermal intercept:

* 1 W/sq.cm. to 2 K x 700 W/W =700 W of room
temperature power per sq.cm. of rod between 2 K
and 300 K

— With thermal intercept:

* 0.23 W/sq.cm. to 2 K x 700 W/W + 1.77 W/sq.cm.
to 80 Kx 12 W/W=161 W+21 W=182W of

room temperature power per sq.cm. of rod between
2 Kand 300 K

29 May 2008 Cryogenics 40
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Heat capacity

Heat capacity per unit mass

10.00000 ’
1.00000
0.10000
0.01000 :
) 4 Stainless Steel
f -= Helium
0.00100
0.00010 ‘ ‘ | | | | |
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0
Temperature (K)
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Heat capacity per unit volume

10.0000

1.0000

0.1000

Stainless Steel

= Helium

0.0100

0.0010

0.0001
1.0

10.0 100.0
Temperature (K)

1000.0
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Thermal

8

§

ny

contraction

e Amount of

contraction

decreases with

g

{multiply valuee by 107%)
a

lower temperature
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* Most shrinkage ;
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Vacuum barriers

e Separate insulating vacuum into
manageable sections
— Leak checking and trouble-shooting
— Reduce extent of accidental loss of vacuum

— Regions for vacuum instrumentation

29 May 2008 Cryogenics 44
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Vacuum barrier schematic

L

oy
|f|> WEIEE
Pressu re ¢
(1.5E5Pa )
: =10 mm r1—r| [.H.]—1 mam
L
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Barriers between superfluid and normal fluid

* A thermal barrier separating normal fluid helium from
pressurized superfluid helium may be a “lambda plate”,
“lambda plug”, or a check valve

« Fermilab routinely tests magnets in subcooled liquid in the
positive pressure vertical dewar

29 May 2008 Cryogenics 46
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Double-bath
insert assembly

* Top plate

 (Closed-foam
(Rohacel)
insulation

* 4.4 K vapor space
e Lambda plate

 Magnet

* Displacer
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Lambda plate
assembly

* Lambda plate
and seal (blue)

 Intermediate
support plate

* Copper clad
magnet (for
cooldown)

29 May 2008 Cryogenics 48
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Lambda plate
assembly

another view

* Lambda plate
and seal (blue)

 Intermediate
support plate

* Copper clad
magnet (for
cooldown)
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Lambda plugs

* An end box for pressurized superfluid will need to
pass instrumentation and power into the superfluid
region

— Feedthrough via vacuum space, directly to SF volume
 Risk of helium to vacuum leak

= _ Feedthrough via 4.5 K helium space to superfluid space
e Must limit heat transfer from 4.5 K to 2 K
 This is sometimes called a “lambda plug”

» Typically required for current leads
« LHC has many

e Failure results in a heat load to 2 K level

29 May 2008 Cryogenics 50
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300K | barretun

3F Fermilab
Simplified LHC magnet cooling scheme

Two jumper connections
(Include vacuum breaks) ——

X

T ransfer line

-1.24 % slope

C 46K Sbha >

D ZDK 1.3 har ( ray
vy
B 4K ldmbar

N

P

E 75K 185 bar

F 75K 181 bar 65
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Lambda plug installed

View of lambda plug from 4.5 K helium vessel
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eads

Well-developed
technology

Much information in
the cryogenics
literature

CERN has defined the
state of the art

HTS materials work

very well 1n current
leads up to 80 K

53
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Current lead installation

* Most problems today arise
with current lead integration
into the supply box

— Temperature at top plate

» Leakage of cold seals

— Vacuum or “chimney” enclosure
» Heat transfer around or into lead
— Temperature at joint to
superconductor

* Quench avoidance forces higher
than optimal current lead flow

Cryogenics 54
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........

LHC test strmg 2 feed box

Many current
—“ leads and

29 May 2008 Cryogenics 55
Tom Peterson



" The TTF III Power Coupler

» TTF III Coupler has a robust and
reliable design.

- Extensively power tested with
significant margin

* New Coupler Test Stand at LAL,
Orsay

Corlo Pagani

freguency

1.3 GHz

aperation

pulsed: 500 wsec rise fime,
800 psec flat top with beam

two windows, TiM coated

% safe operation
# clean cavity assembly for high Eacc

2 K heat load 0,06 W
4 K heat load 05w
70 K heat lzad AW

izalated inner conductor

bias voltage, suppressing multipacting

dingnostic

sufficient for sofe operation and meonitoring

27

10 + 30 New Couplers in
construction by industry

ILC- Americas Ws
October 14, 2004
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Instrumentation thermal transitions (1)

“Cryogenic” (low thermal conductivity) wire such as
phosphor bronze or manganin for low currents

Wires 1n tube which also bridges the low temperature
space to room temperature space
— Fermilab, DESY, and CERN all try to avoid cold feed-throughs

Room temperature seal from cryogenic region to air. Seals
to vacuum are welded or brazed.

Good packing factor (while still allowing wire pull) and
length prevent thermo-acoustic oscillations and heat leaks.

Typical 1s 6 mm (1/4 inch) tubing with 1 meter (minimum)
between 4 K and 80 K and 1 meter (minimum) between 80
K and room temperature

Tube may also serve as pressure tap.
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Instrumentation thermal transitions (2)

* Transitions containing gas are always arranged so the
thermal gradient is up.

e Larger wire bundles (e.g., 100+ wires in 3/4 inch tube) are
potted with Stycast® Epoxy 2850-FT, Catalyst 24-LV at
the thermal intercept.

* The potted section 1s not vacuum-tight (leakage through
wires), but serves as a thermal sink and blocks convection.

* The space above a potted section 1s pumped and back-
filled with helium and also includes a trapped-volume
relief 1in case cold gas needs to be vented upon warm-up.
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Overpressurization

Cryogens expand by about a factor of 800:1 in going from
the liquid state to ambient temperature

If constrained by a constant volume, pressures become
enormous and the container will burst
— “Trapped volumes” are always a concern

Air condensing on the cold outside surface of a liquid
helium vessel (for example, due to loss of insulating
vacuum) can deposit up to 4 W/cm?, resulting in tens of
KW of heating and many kg/sec mass flow rate required
for safe venting of containers of only 100 liters in volume.

The beam vacuum of an SRF system presents this problem.
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Relief Valves

« Valves which open when
triggered by sensing a
“set” pressure 1n order to
prevent over-pressure of a
volume

» Typically directly driven

UPPER HOUSING
OR BONNET

FASTENERS
open by overpressure, not -'
by an actuator or control
tem _— STEM SEAL
SYS . _ __BODY SEAL
— Diagram at right from ~ _ STEM OR SHAFT
http://webwormcpt.blog A - BODY
spot.com/2008/01/useful OUTLET Wil eI FIER S RO
-documents-related-to- ~ DISK OR MAIN SEAL
pressure_07.html
INLET
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Kautzky Valves

* Devised by Hans Kautzky
(Fermilab) in late ‘70’s.

e Thornton Murphy, Don
Breyne, and others, and I
“industrialized™ it

« Concept was to have
hysteresis to avoid valve
chatter

* Chatters anyway

* But an inexpensive and
practical “quench” (not
“safety”!) valve
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Kautzky valves in the tunnel
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Bayonet assembly

 One seal for a
cold, vacuum-
jacketed line

e Figure from Eden
Cryogenics
catalogue
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FEMALE MALE
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Expanders

* Provide cooling at
various temperature
levels in the
refrigerator by
allowing the helium
to “do work™

« “Expansion
engines” are piston
machines

 Satellite refrigerator

engines shown at
right
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Expansion
engines

* View inside the cryostat

* Cylinders are two long
vertical pipes
« Valves are two thinner

pipes extending to the
bottom of each cylinder

* A “wet” engine expands
into the two-phase regime

e Mechanical reliability and
maintenance are issues
for reciprocating
expanders
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Cryogenic Turboexpander

Cryogenic turboexpander
Self-acting gas bearing system

Thrust bearing
Radial bearing

Speed sensor

X

4

J
3

A8
T 7

Source: LINDEKRYOTECHNIK AG
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Contamination

* The most common problem 1n cryogenic system
reliability 1s contamination
— All other gases freeze in low temperature helium
— Purities of a few ppm or better are required
— Removal of frozen contaminants requires warm-up
— Air in-leakage can shut down a cryogenic system for
days
— Subatmospheric systems are most at risk

— Sources of contamination may include not only air
leaking into subatmospheric sections but contaminated
source gas, placing new equipment in the system, and
diffusion in via helium leaks
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Purification

» Activated charcoal (charcoal “bed”) at room
temperature removes oil vapor and water

— Molecular sieve 1s also used for water
absorption at room temperature

» Activated charcoal at 80 K removes air (an
“80 K bed”)

» Activated charcoal at 20 K removes neon (a
“20 K bed”)
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Safety and compliance 1ssues

at Fermilab

Increasing demand by DOE for compliance to engineering standards
such as ASME codes

10CFR851 (Code of Federal Regulations), dated Feb 9, 2006, governs
“the conduct of contractor activities at DOE sites™.

Part 4, the “Pressure Safety” section says, “Contractors must ensure
that all pressure vessels, boilers, air receivers, and supporting piping
systems conform to [the applicable ASME pressure vessel and piping
codes]”.

“When national consensus codes are not applicable (because of
pressure range, vessel geometry, use of special materials, etc.),
contractors must implement measures to provide equivalent protection
and ensure a level of safety greater than or equal to the level of
protection afforded by the ASME or applicable state or local code.”
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Fermilab ES&H Manual contents

Preface

1000 Policy And Administration * Fermilab’s ES&H

2000 Planning For Safe Operations manual already required
3000 Investigation And Reporting essentially the equivalent
4000 Safety Training of 10CFRS851

5000 Occupational Safety and Health o . .
* But there 1s an increasing

6000 Fire Safety . .
emphasis on strict

7000 Construction Safety

8000 Environmental Protection Compllance

9000 Vehicle And Traffic Safety e The result will be more

10000 Radiation Safety englneerlng tlme for

11000 User And Visitor Safety . .
project documentation

FESHM Table of Contents
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* 503

* 503
¢ 503

e 5031.4 Inspection and Testing of Relief Systems

2% Fermilab

Relevant Fermilab ES&H

Manual Chapters

1 Pressure Vessels 09/2006
e 503]
1.2 Onsite Filling Guidelines, Rev. 04/2007
1.3 Gas Regulators Rev. 02/06

1.1 Pressure Piping Systems 11/2007

Rev. 06/2006
e 5031.5 Low Pressure Vessels 07/2002
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Relevant Fermilab ES&H
Manual Chapters

5032 Cryogenic System Review Rev. 05/2005

5032.1 Liquid Nitrogen Dewar Installation and Operation Rules
Rev. 08/2004

5032.2 Guidelines for the Design, Review and Approval of
Liquid Cryogenic Targets Rev. 11/95

5032.3 Transporting Gases in Building Elevators 02/2006
5033 Vacuum Vessel Safety Rev. 2/2002
5033.1 Vacuum Window Safety, 07/2004
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Relevant Fermilab ES&H
Manual Chapters

* 5034 Pressure Vessel Testing 3/2001

e 5034.1 Retesting Procedures for D.O.T. Gas

Storage Cylinders Including Tube Trailers
12/2006

e 5063 Confined Spaces 11/2004

* 5064 Oxygen Deficiency Hazards (ODH)
12/2003
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Outline of a typical cryogenic

system safety document

* Flow schematic, or “process and
instrumentation diagram” (P&ID)

e Valve and instrumentation list

* Vessel and piping engineering notes
 Failure mode and effects analysis (FMEA)
* What-1if analysis

* Operating procedures

* Oxygen deficiency hazards analysis (ODH)
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References

e This talk will be available at
— http:// www-bd.fnal.gov/ADSeminars/

— http://tdserverl.fnal.gov/peterson/tom/refmenu.htm

* Cryogenic Engineering Conference (CEC) and
International Cryogenic Engineering Conference
(ICEC) proceedings provide a wealth of
information
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Thank you for your interest!

.u‘ ‘(‘ 2 ’P\"

b ..‘ln “..
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Additional information
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The need for cryogenic temperatures
for cooling superconductors

Conductor Critical temperature Typical operating
(K) temperature (K)

Nb 9.3 1.8—-35.0

NbT1 10 1.8-35.0

Nbs;Sn 18 4.5-10

YBa,Cu;0, 92 20— 80

(YBCO)

BizSI’zCﬂzCUgOlo 108 20 — 80

(BSCCO)
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Some possible refrigerants

Substance Normal boiling Fusion temperature
point (K) (K)

Oxygen 90.18 54.40

Argon 87.28 83.85

Nitrogen 77.36 63.15

Neon 27.09 24.57

Hydrogen 20.39 13.96

Helium 4224 -
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T T T T T T 100

Helium phase  =¢

diagram
(Steven W. VanSciver, "

Helium Cryogenics, p. 54)
He II CRITICAL -
POINT

e Critical point is 5.2 K, = | 18

2.245 atm - ron -

e [ambda transition 3 E

from helium I to [ / l
helium Il 1s 2.172 K i S e Bl

T(K
Fig. 3.1. *He phase diagram.
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Isothermal heat absorption

» Net 1deal work (energy per unit mass of working
fluid) into the system 1s T, As- Ah

* For a refrigerator with the heat load absorbed by
evaporation at constant liquid temperature, Ty,

Ah =T, As

e Thus, the ratio of applied work to heat absorbed 1s

(Tymp As- Ah)/ Ah =T, /T -1

e For low temperatures this 1s approximately the
ratio of absolute temperatures, T, /T,

29 May 2008 Cryogenics 81
Tom Peterson



, £& Fermilab
Power required for a non-

1sothermal load

¢« - P=m {z:zmb (SGHI ™ Sin )_ (hm.nf - hiﬂ )}

* Where P 1s the 1deal room-temperature
power required to remove a non-1sothermal
heat load, mdot 1s mass flow. T 1s
temperature to which heat 1s ultimately
rejected, s and h are entropy and enthalpy
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Helium cycle efficiency

RHIC

Equivalent 25
capacity at
4.5K (KW)

Power 450
required 1n
W/W

Efficiency 16%

29 May 2008

CEBAF

13

350

20%

Cryogenics
Tom Peterson

HERA

8.4 per
coldbox

285

25%

LEP

6 per

coldbox

230

30%
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COLD COMPRESSOR 5

Example of a cold compressor
with active magnetic bearings
used at Tore Supra, CEBAF
and Oak Ridge

Source: Air Liquide
and Bernd Petersen, DESY
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Plot from “Simultaneous Flow of O1l and Gas,”
by Ovid Baker (1954) -- Do not use for helium!
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Fig, 3—=-Flow-pattern regions.
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Cooling modes--surface heat flux

* Boiling helium I (normal helium)

— 1 W/cm? in nucleate boiling with 0.5 K temperature rise
to the object surface so equivalent to 2 W/cm?’K

e Forced convection helium I

— Convection coefficients on the order of 0.1 W/cm?K

 Saturated helium II (superfluid helium, SF)
— 1 W/cm? heat transport to the surface without bubbles

e Pressurized helium II
— Kapitza conductance about 0.6 W/cm?K
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Heat transport through channels--

pressurized normal helium in SSC

e SSC dipole nominal operating temperature was to
be 4.35 K, tightly constrained for magnet quench
performance

« Allowable temperature rise of only 0.050 K
allowed heat absorption of about 4 J/gK x 0.050 K
=(0.20 J/g and forced high flow rate (100 g/s) as

well as use of recoolers

« Forced flow of supercritical helium periodically
recooled by heat exchange with a saturated bath
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Heat transport through channels--

pressurized normal helium

* This plot of helium

enthalpy versus T H(J/g) s

illustrates the large
amount of heat absorbed
(20+ J/g) if one can
tolerate 6.5 K

e 25 g/sx20J/g=500W
between recoolers
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Helium II heat transport reference

e “Practical data on steady state heat transport in
superfluid helium at atmospheric pressure”
— By G. Bon Mardion, G. Claudet, and P. Seyfert, in
Cryogenics, January 1979
* Solve the last equation on slide 23 for g, with a
constant diameter channel and length L, and
integrate over the temperature range from Tc to T-

lambda

« One then has g°LVm = W(Tc¢,Tw), where the
function W = (J(dT/F(T)))Vm

— Bon Mardion, et. al., use m = 3.4
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Simplified SF heat analysis

* One can use this simplified heat transport
analysis method 1n many ways for quick but
reliably conservative design calculations

— Size a long vent line pipe to minimize heat
transport into the Helium 11

— Size capillary ports for equalizing pressure
between normal and SF baths

— Estimate the acceptable size of a crack 1n a seal
(for example 1n an epoxy lambda plug)

 Also then select a sealing surface length
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CERN’s Short Straight Section

Vittorio Parma -- CERN

LHC SHORT STRAIGHT SECTION

(technical service module side)
Connection to cryogenic
distribution line ;

He phase separqtor

Beam tubes

Diode

Vacuum barrier

pressure gauge connectigg - ; BPM

Instrumentation conneaflons " Electrical feeds to Magnet helium

Corrector magnets
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Vacuum barrier in SSS

Functions:

+  Segmentation of insulation vacuum compartments (200m long)
*+  Piece-wise installation/commissioning of LHC vacuum systems
+  Ease localisation of leaks

+  Containment of accidental vacuum degradation

*  Allow local infervention for machine maintenance

- ~ 100 Vacuum Barriers required

LHC Insulation
\Vacuum Barrier Vacuum vessel interface

Main bellows

Cold mass'-interfa;e Il

»F

Central plate with
thermalisation
c0pper§ng
Corrugated
cylinders
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Instrumentation

» Useful for troubleshooting even if not required for
process

* Flow (cold venturi, warm mass flow sensors)

« Temperature (calibrated resistors are so good that
we no longer include vapor pressure
thermometers)

* Pressure (cold transducers for fast response;
warm sensors at end of cap tube filled with wires
give 0.1 to 1.0 second response)
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Instrumentatlon (a lot of 1t')
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A stealthy heat source -- helium 1n-leak

* Several times 1n operating a test stand we have
had mysteriously large heat loads appear which

turned out to be very small in-leakage of warm
helium gas

— Warm-up valve may leak
e 300 K helium into lower temperature or 4.5 K into 2 K space

— Pressure drops may cause unexpected pressure
differential

— We recently had a pressure differential the opposite of
what we expected (rapid fill pulled down a supply line
pressure), and a leaking check valve. Result was an
apparently large heat load during fill which did not
dissipate as expected.
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Lambda plug fabrication (LBL)- 1

e Superconducting cable
potted in an insulating
block of G10-CR

— Plane of reinforcement
parallel to faces

— Four 8 kA cables and
24 200-600 A cables

e Plug design and
procedures developed
at LBL
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Lambda plug fabrication - 2

* Encapsulated in
Stycast 2850MT
(blue) epoxy using
hardener 24LV

B °© Application via

: Injection in a vacuum

chamber
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5031 Pressure Vessels

“This chapter applies to any vessel used at Fermilab that falls within
the scope of the American Society of Mechanical Engineers (ASME)
Boiler and Pressure Vessel Code, Section VIII.”

Scope of ASME Boiler and Pressure Vessel Code, Section VIII, is
basically

— 15 psi differential pressure and > 6 inches diameter

“An Engineering Note shall be prepared by an engineer or designer for
all existing or new operational pressure vessels at Fermilab™

Purchased Vessels: All vessels purchased by Fermilab or its
experimenters shall be made (designed and fabricated) in accordance
with the Code, unless a determination has been made that another
standard 1s more applicable.

Rules also cover in-house built, non-code materials, existing and used
vessels, exceptional vessels, etc.
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5031.1 Pressure Piping Systems

« “Policy: All piping systems built and/or operated at
Fermilab shall be 1n accordance with this chapter and

the appropriate governing code”, generally one of the
ASME/ANSI B31 piping codes.

* An engineering note must be prepared, reviewed, and
approved, depending on various factors but result 1s a
reviewed note is required for most cryogenic piping
systems

« But various exceptions and other rules also apply, such
as for hydraulics, flammable gases, etc.
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5032 Cryogenic System Review

« “This chapter describes procedures for reviewing the safety aspects of
cryogenic systems as well as the required occupational training for
cryogenic personnel. It pertains to all cryogenic systems including, for
example, those used for refrigerating magnets, hydrogen targets, argon
calorimeters, or as a source of gas. It also includes cryogenic systems
supplying purge gas for detectors where the stored liquid inventory is
greater than 200 liters.”

« Review is required for new systems and after significant changes are
made
» The chapter specifies what documentation is required, including
— System design documents

— Operating procedures
— Safety analyses (FMEA, What-if, ODH)

— Engineering documents (stress levels, relief valve sizing, etc.)

29 May 2008 Cryogenics 101
Tom Peterson



2% Fermilab

5033 Vacuum Vessel Safety

* A vacuum vessel 1s defined as
— Over 12 inches diameter
— Total volume greater than 35 cubic feet

— Vessel under external pressure with Pressure x
Volume > 515 psi-ft?

« ASME code design rules apply 1n certain
ways as described 1n the chapter

* An engineering note and review are
required
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5064 Oxygen Deficiency
Hazards (ODH)

 An ODH area 1s one where the oxygen level could
drop to below 18% oxygen, and the estimated
probability of this happening is greater than 10-’
events per hour (about once every 1000 years)

* This chapter describes the hazard analysis
procedure in detail
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