INTERPRETATION OF MAREK’S DAEMON
DEMO

Elliott McCrory, 1 July 2008

INTRODUCTION

The environment for creating daemon processes within the LHC control system is based on the tools that are being
used throughout the control system. Primarily, it is suggested that daemons be developed as Spring beans. This is
a new concept for Fermilab/LAFS developers, and (likely) for accelerator physicists in general. But this framework,
while complicated to understand in its entirety, is easy to use. Marek Misiowiec has created an example for a
publishing daemon, and the “business” is entirely contained in one class. This class is easy to extend and to
modify.

First, | will describe in full detail how this example works. Then | will describe how | modified the existing example,
ignoring a lot of the Spring details, to create a non-trivial daemon.

This document is unnecessary if you want to create your daemon without understanding the underlying Spring-
based pieces. In this case, you can probably get away with reading only the last section, A New Publishing Class.

DAEMON EXAMPLE USING SPRING

Marek Misiowiec has created a simple demo of how to implement a simple class of daemons in the CERN AB/CO—
LSA controls environment. It is stored in CVS as Isa/Isa-demo-daemon.

There are two ways to run the publishing in this package, through ConcentrationStarter or through
ParameterPublisherExample. The former is how Marek does publishing in the BLM concentrators, and the
latter is a simplified example of publishing one parameter without “concentration.”

For our use for Instrumentation Daemons, | believe that ParameterPublisherExample is a better, simpler way
to do the job at hand, so | will focus on this.

RUNNING THIS EXAMPLE

1. Check out the code from CVS and configure the project in the normal way.

2. RunParameterPublisherExample.java as a Java application in the background. This publishes a new
value every five (5) seconds

3. RunParameterMonitor.java as a Java application. This subscribes to the data published by
ParameterPublisherExample and shows some output.

KEY ELEMENTS OF THIS EXAMPLE

JMS Publishing Demo Interpretation Version 1 Page 1

JMS PUBLISHING

Data are published using JMS, but using a JAPC/LSA wrapper. This wrapper ensures consistent use of JMS across
applications, and all JMS publishing should be done this way. In CERN AB/CO, a topic must be created for your
publisher. Marek chose to use an existing topic, “LHC_BLM”, for this demo. You can see this specified in two
places:

1. Primarily, this topic is specified in the file concentration.parameters, as the property
demo.concentrated.parameter.

2. Inthe file ConcentrationStarter.java, line 66: result.setPropertyName(). This occurrence
only specifies the default value of demo.concentrated.parameter if it is not otherwise set.

For the Fermilab daemon processes, it will be necessary to create a new publishing topic. It is not completely clear
at this time if one topic for all the daemons, or separate topics for each individual daemon should be created. We
should discuss this.

CLASSES IN THE PACKAGE

e ConcentrationAdapter. This class implements the two JAPC adapters for receiving parameters. When a
new parameter comes in, this class sorts out which one is the one we are interested in and returns it (as
an AcquiredParameterValue).

0 Implements cern.japc.group.ParameterGroupValueReceivedAdapter,
cern.japc.spi.adaptation.AcquiredParameterValueAdapter

e ConcentrationStarter. This is the main class for handling the concentrator-based publishing.

0 Implements java.lang.Runnable

e ParameterHolder. Used in the Concentrator publishing example. This becomes the Spring bean that
handles the publishing of our custom parameter.

e ParameterMonitor. This is a simple class that only subscribes to the parameter that is being published. IT
allows you to see that the parameter is actually being published properly.

e ParameterPublisher. Becomes the Spring bean that handles the publishing in the simplified publishing
example.

e ParameterPublisherExample. This is the main class for handling the simplified (non-concentrator)
publishing. This class is listed in Appendix 1, PARAMETERPUBLISHEREXAMPLE.JAVA.

0 Implements java. lang.Runnable

e PropertyPlaceholderConfigurerExt. This is a utility class that extends the Spring class (see bullet below) so
that the configuration parameters are read in early in the start-up cycle, and they can be used in the
Spring XML file.

O Extends
org.springframework.beans. factory.config.PropertyPlaceholderConfigurer

e Servicelocator. This class is used by both publishing examples to return the beans that do the required
operations (services).

e BCTReader.java. A class copied from an SPS expert that subscribes to the SPS beam current transformer
for a particular SPS user. This class is used by ...

o ExtendedParameterPublisher.java. This class utilizes BCTReader to get the beam intensity from the SPS
for a specific user cycle. Then it calculates three new numbers based on this reading and the elapsed time
between readings: Total beam intensity over the last 5 minutes; Average beam power over the last five

JMS Publishing Demo Interpretation Version 1 Page 2

minutes (pretty kludgy and probably not perfectly correct); a “peak power” value, which is the measured
intensity over an interval of 0.1 seconds. See the next section for discussion of these last two classes.

SPRING COMPONENTS

Much of the work in binding together the objects in this demo is specified in the XML file, publishing-spring-
beans.xml (see Appendix 1, PARAMETERPUBLISHEREXAMPLE.JAVA). In this file, four (4) beans are created:

1. placeholderPublishing. This bean is created so that the Spring framework starts properly on your
beans. In particular, it causes the properties files to be loaded so that the rest of the Spring beans can
utilize the values defined there. For example, a property called property.one would be accessed in
subsequent beans with the syntax ${property.one}

e C(lass:
cern.lsa.demo.daemons.concentration.PropertyPlaceholderConfigurerExt. This
is a helper class in this package that extends a Spring class,
PropertyPlaceholderConfigurer, that deals with the configuration of the Spring
environment.

e Location of the property file: concentration.properties

e The property systemPropertiesModeName is set to the value
SYSTEM_PROPERTIES_ MODE_OVERRIDE; this means that properties that are already set in the
system environment take precedence over the properties set in any other way (for example,
from the properties file).

2. DemoJdmsPublishService. This bean configures the JMS Publishing class by setting the property,
JmsTopicPrefix, to the desired value, ${demo. jms.topic.prefix} (which is, in this example, set to
CERN.LHC.BLM in the file concentration.properties).

e Class: cern.japc.ext.remote. jms.JImsPublishServicelmpl

3. DemoParameterPublisher. Creates the bean for doing the publishing

e C(Class: cern. lsa.demo.daemons.concentration.ParameterPublisher

e Uses Spring to “inject” objects into this class:

0 The publishing object, DemoJdmsPubl ishService, using the setter method,
setIdmsPublisher().

0 It also specifies the parameter name to be published,
S{demo.concentrated.parameter}, through the setter setPublishedParameter().

4. ParameterPublisherExample.

e C(Class: cern.lsa.demo.daemons.concentration.ParameterHolder

e Injects the previous bean for publishing into the main class.

MAIN CLASS DISSECTED

Java.lang.Runnable.run()

Marek has chosen for ParameterPublisherExample to implement java. lang.Runnable. This means that all
of the meaningful, run-time code is contained in the method run(). Here is the code for that method (the entire
listing is in Appendix 1).

JMS Publishing Demo Interpretation Version 1 Page 3

public void run() {
publisher =
ServicelLocator._<ParameterPublisher> getSingleton(*'DemoParameterPublisher');

System.out._printIn(’’Concentration started!");

while (true) {

try {
// sleep a bit

Thread.sleep(5000);

} catch (InterruptedException ie) {
ie.printStackTrace();

}

try {
System.out.printin(

"publishing dummy value " + (System.currentTimeMillis()/1000));
publisher.publish(createDummyParameterValue());
} catch (Exception e) {
e.printStackTrace();
}

}
}

The first statement gets the publishing object, created previously by the Spring environment. You can use this as it
is with no modification.

It has been decided for this example that new values will be published once per five seconds. So the publisher
sleeps for 5000 milliseconds.

The method publisher.publish() takes as it’s argument a standard cern. japc.AcquiredParameterVvalue
object. This object is created by the utility routine createDummyParameterValue().

Thus, in the run() method, there are only two lines that would need to be changed—how long you sleep between
publishing and how you create the AcquiredParameterValue. For the foreseen LAFS daemons, the timing will
be wholly determined by the reception of data from the front ends, so there will likely not be a need to sleep().

Method createDummyParameterValue()

There is a great deal of flexibility built into JAPC parameters. Consequently, it takes several steps to create a
parameter from scratch. Here is the method, adding line numbers for clarity:

1 | private AcquiredParameterValue createDummyParameterValue() {

> Map<String, SimpleParameterValue> valuesToReturn =
new HashMap<String, SimpleParameterValue>(1);

valuesToReturn.put(
3 ""'crateNames",
ParameterValueFactory.newParameterValue(new String[]{"dummy"}));

MapParameterValue resultValue =
ParameterValueFactory.newParameterValue(valuesToReturn);

5 | AcquiredParameterValuelmpl result = new AcquiredParameterValuelmpl();

result._setHeader(

6 new ValueHeaderlImpl(System.currentTimeMillis()*1000, // Acq stamp
o, // cycleTimestamp
ParameterValueFactory.newSelector(null)));

JMS Publishing Demo Interpretation Version 1 Page 4

result._setParameterName(
System.getProperty(*'demo.concentrated.parameter', "LHC_BLM/Demo'));

8 result_setValue(resultValue);

return result;

}

Line 1 and 2: The method returns an AcquiredParameterValue, which simply holds a Map<String,
SimpleParameterValue>, as seen here.

Line 3: The key to the value (which is the “property”) is named “crateNames” here, and the value is “dummy”.
Line 4: An object of type cern. japc.MapParameterValue is created based on the Map created in line 3.

Line 5: A new cern. japc.AcquiredParameterValue is created, using the “Impl” class. (This pattern is seen
quite frequently in the code produced by AB/CO/AP.) This will be the return value.

Line 6: The header for the result is created. The time stamp is taken from the system clock; there is not cycle
stamp and there is no timing selector.

Line 7: The name of the parameter is set, based on the name specified in the configuration. This step utilizes the
flexibility of the Spring system, but it may be argued that your daemon will know, a priori, the name of its
parameter(s), so going to the configuration file might not be necessary.

Line 8: The value is set!

Line 9: The parameter is returned, ready to be published.

A NEW PUBLISHING CLASS

| have modified the example from Marek to create a somewhat more realistic daemon. This new daemon is
contained in the class ExtendedPublisherExample.java, as described above. This class utilizes BCTReader to get the
beam intensity from the SPS for a specific user cycle. Then it calculates three new numbers based on this reading
and the elapsed time between readings: Total beam intensity over the last 5 minutes; Average beam power over
the last five minutes (pretty kludgy and probably not perfectly correct); a “peak power” value, which is the
measured intensity over an interval of 0.1 seconds.

Other than this new class, the only other change | made was to the file concentration.parameters—I changed
the value of demo.concentrated. parameter to “LHC_BLM/Demo2” so as not to conflict with the example
Marek wrote.

Here is a sample of the output of the publisher/daemon, ExtendedParameterPublisher.java:

17 Intensity: 2.6169000244140625E12, time=Tue Jul 01 15:20:50 CEST 2008
Time interval: 288.001 seconds. Total charge=2.2203998565673828E11

Ave power=55.58534638095629 Watts,

peak power=1886732.1620556451 Watts.
Publishing LHC_BLM/Demo2
18 Intensity: 2.6803399658203125E12, time=Tue Jul 01 15:21:38 CEST 2008
Time interval: 287.999 seconds. Total charge=2.632760009765625E12

Ave power=659.0880148069377 Watts,

peak power=1932471.0808883954 Watts.

JMS Publishing Demo Interpretation Version 1 Page 5

Publishing LHC_BLM/Demo2

19 Intensity: 0.0, time=Tue Jul 01 15:22:26 CEST 2008

Time interval: 288.0 seconds. Total charge=2.9816799926757812E12
Ave power=746.4344324199812 Watts,
peak power=0.0 Watts.

Publishing LHC_BLM/Demo2

20 Intensity: 2.8547998046875E12, time=Tue Jul 01 15:23:14 CEST 2008

Time interval: 288.0 seconds. Total charge=2.8547998046875E12
Ave power=714.6712179439095 Watts,
peak power=2058253.1076784593 Watts.

Publishing LHC_BLM/Demo2

And here is a sample of the output of the program (ParameterMonitor . java, which is not modified) that is
monitoring these virtual parameters:

++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1214918450]
Average Power: 55.58534638095629
Peak Power: 1886732.1620556451
Total Charge: 2.2203998565673828E11
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1214918498]
Average Power: 659.0880148069377
Peak Power: 1932471.0808883954
Total Charge: 2.632760009765625E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1214918546]
Average Power: 746.4344324199812
Peak Power: 0.0
Total Charge: 2.9816799926757812E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1214918594]
Average Power: 714.6712179439095
Peak Power: 2058253.1076784593
Total Charge: 2.8547998046875E12

APPENDIX 1, ParameterPublisherExample.java

package cern.lsa.demo.daemons.concentration;
import java.util_HashMap;
import java.util_Map;

import cern.japc.AcquiredParameterValue;

import cern.japc.MapParameterValue;

import cern.japc.SimpleParameterValue;

import cern.japc.factory.ParameterValueFactory;
import cern.japc.spi.AcquiredParameterValuelmpl;
import cern.japc.spi.ValueHeaderImpl;

/**
* This class starts the LHC BLM concentrator server. Command "exit"™ is used to stop

the server.
*

* @version $Revision: 1.1 $, $Date: 2008/06/30 15:56:30 $, $Author: emccrory $

*

* to run needs : -Dserverld=LhcBImServer
*/
public class ParameterPublisherExample implements Runnable {

JMS Publishing Demo Interpretation Version 1 Page 6

private static Thread serverThread;
private ParameterPublisher publisher;

public void run() {
this_publisher = ServicelLocator.<ParameterPublisher>
getSingleton("'DemoParameterPublisher');

System.out.printIn('Concentration started!"');

while (true) {
try {
// sleep a bit
Thread.sleep(5000);
} catch (InterruptedException ie) {
ie.printStackTrace();

try { // and then prepare a dummy value to publish it using custom virtual
parameter publisher:
System.out.printin("'publishing dummy value " +
(System.currentTimeMillis()/1000));
this.publisher.publish(createDummyParameterValue());
} catch (Exception e) {
e.printStackTrace();
}

private AcquiredParameterValue createDummyParameterValue() {
Map<String, SimpleParameterValue> valuesToReturn = new HashMap<String,
SimpleParameterValue>(1);
valuesToReturn.put(*“crateNames",
ParameterValueFactory.newParameterValue(new
String[1{""dummy”}));

MapParameterValue resultValue =
ParameterValueFactory.newParameterValue(valuesToReturn);
AcquiredParameterValuelmpl result = new AcquiredParameterValuelmpl();
result.setHeader(new ValueHeaderImpl (System.currentTimeMillis() *
1000, // acqgTimestamp
o, // cycleTimestamp
ParameterValueFactory.newSelector(null)))

result._setParameterName(System.getProperty(‘'demo.concentrated.parameter",
"LHC_BLM/Demo'™));

result_setValue(resultValue);

return result;

}

public static void main(String[] args) {
ParameterPublisherExample ppe = new ParameterPublisherExample();
serverThread = new Thread(ppe);
serverThread.start();

/**
* @return the publisher
*/
public ParameterPublisher getPublisher() {
return publisher;
}

JMS Publishing Demo Interpretation Version 1 Page 7

/**

* @param publisher the publisher to set

*/

public void setPublisher(ParameterPublisher publisher) {
this_publisher = publisher;

}

JMS Publishing Demo Interpretation Version 1 Page 8

