INTERPRETATION OF THE DAEMON
PUBLISHING DEMO

Elliott McCrory, 2 July 2008

TABLE OF CONTENTS

INEFOAUCTION ..ttt st h e s bttt eae e s bt e sb et e eat e e b e e bt e b e e et e sabesbe e bt e eabeeabesaeesbeenbeensesneesaeenne 1
DaeMON EXAMPIE USING SPIINE ...eeuteiieiieiiterieete ettt ettt ettt et e eatesb e e bt et e eabesatesbeesbeebesabesheesaeenbeeaeesaeesbeanbeen sabeans 2
A Realistic Example of @ PUDIISRING CIaSScc.coiuiiiiiiieieeeie ettt et sttt et st st e st et st e saeesbeebeeas 6
CommENtS AN CONCIUSIONScoviiiiiiiiiiiice ettt et e sa e e e e ae e e esr e e bt e n e sanesaee sesneennees 8
Appendix 1, ParameterPublisherEXamPle.java.........ceccuiie ittt e et e e s enae e e et e e e e eseeeeennes 8

INTRODUCTION

The Daemon Infrastructure in the LHC control system is based on the tools that are being used throughout the
control system. For developing daemons and doing publishing, it is suggested that the daemons be developed as
Spring” beans. This is a new concept for Fermilab/LAFS developers, and (likely) for accelerator physicists in
general. But this framework, while complicated to understand in its entirety, is easy to use. Marek Misiowiec has
created an example for a publishing daemon, and the “business” is entirely contained in one class. This class is
easy to extend and to modify. Marek’s example is available from CVS as Isa/1sa-demo-daemon.

First, | will describe in full detail how this example works. Then | will describe how | modified the existing example,
ignoring a lot of the Spring details, to create a non-trivial daemon.

This document is unnecessary if you want to create your daemon without understanding the underlying Spring-
based pieces. In this case, you can probably get away with reading only the last section, A Realistic Example of a
Publishing Class.

!see http://en.wikipedia.org/wiki/Spring framework for an explanation of the Spring Framework, and
http://www.springsource.com for the main commercial homepage.

JMS Publishing Demo Interpretation Version 2 Page 1

DAEMON EXAMPLE USING SPRING

There are two ways to run the publishing in this package, through ConcentrationStarter? or through
ParameterPublisherExample. The former is how Marek does publishing in the BLM concentrators, and the
latter is a simplified example of publishing one parameter without “concentration.”

For our use for Instrumentation Daemons, | believe that ParameterPublisherExample is a better, simpler way
to do the job at hand, so I will focus on this.

RUNNING THIS EXAMPLE

1. Check out the code from CVS and configure the project in the normal way.
Run ParameterPublisherExample.java as a Java application in the background. This publishes a new
value every five (5) seconds

3. RunParameterMonitor. java as a Java application. This subscribes to the data published by
ParameterPublisherExample and shows some output.

KEY ELEMENTS OF THIS EXAMPLE

JMS PUBLISHING

Data are published using JMS, but using a JAPC/LSA wrapper. This wrapper ensures consistent use of JMS across
applications, and all JMS publishing should be done this way. In CERN AB/CO, a topic must be created for your
publisher. Marek chose to use an existing topic, “LHC_BLM”, for this demo. You can see this specified in two
places:

1. Primarily, this topic is specified in the file concentration.parameters, as the property
demo.concentrated.parameter.

2. Inthe file ConcentrationStarter. java: result.setPropertyName(). This occurrence only
specifies the default value of demo.concentrated. parameter if it is not otherwise set.

For the Fermilab daemon processes, it will be necessary to create a new publishing topic for each new daemon.

CLASSES IN THE PACKAGE

e ConcentrationAdapter. This class implements the two JAPC interfaces for receiving parameters. When a
new parameter comes in, this class sorts out which one is the one we are interested in and returns it (as
an AcquiredParameterValue). This class can be ignored.

o Implements cern.japc.group.ParameterGroupValueReceivedAdapter,
cern.japc.spi.adaptation.AcquiredParameterValueAdapter

> The example that Marek developed is based on a project he is working on, the BLM concentrators. This explains the use of
the word “concentrator” throughout the example. | believe that this choice of wording has nothing to do with the actual
functionality of the example.

JMS Publishing Demo Interpretation Version 2 Page 2

e ConcentrationStarter. This is the main class for handling the concentrator-based publishing. This class
can be ignored.
o Implements java.lang.Runnable

e ParameterHolder. Used in the two publishing example. This becomes the Spring bean that handles the
publishing of our custom parameter.

e ParameterMonitor. This class subscribes to the parameter that is being published. It allows you to see
that the parameter is actually being published properly.

e ParameterPublisher. Becomes the Spring bean that handles the publishing in the simplified publishing
example.

e ParameterPublisherExample. This is the main class for handling the simplified (non-concentrator)
publishing. This class is listed in Appendix 1, PARAMETERPUBLISHEREXAMPLE.JAVA.

0 Implements java. lang.Runnable

e PropertyPlaceholderConfigurerExt. This is a utility class that extends the Spring class
PropertyPlaceholderConfigurer so that the configuration parameters are read in early in the start-
up cycle, and they can be used in the Spring XML file.

O Extends
org.springframework.beans.factory.config.PropertyPlaceholderConfigurer

e ServicelLocator. This class is used by both publishing examples to return the beans that do the required
operations (services).

e BCTReader.java. A class copied from an SPS expert that subscribes to the SPS beam current transformer
for a particular SPS user. This class is used by ...

o ExtendedParameterPublisher.java. This class utilizes BCTReader to get the beam intensity from the SPS
for a specific user cycle. Then it calculates three new numbers based on this reading and the elapsed time
between readings. See the next section for discussion of these last two classes.

The classes ParameterHolder, ParameterPublisher and ServicelLocator are necessary to make the Spring
system work properly, but can probably be used without modification by our daemons. If this is true, we should
put these classes into a separate CMS package and simply use the JAR file from this package in each of the
daemons.

SPRING COMPONENTS

Much of the work in binding together the objects in this demo is specified in the XML file, publishing-spring-
beans.xml. In this file, four (4) beans are created:

1. placeholderPublishing. This bean is created so that the Spring framework starts properly on your
beans. In particular, it causes the properties files to be loaded so that the rest of the Spring beans can
utilize the values defined there. For example, a property called property.one would be accessed in
subsequent beans with the syntax ${property.one}. The attributes of this bean are:

e C(lass:
cern.lsa.demo.daemons.concentration.PropertyPlaceholderConfigurerExt. This
is a helper class in this package that extends a Spring class,
PropertyPlaceholderConfigurer, that deals with the configuration of the Spring
environment.

e Location of the property file: concentration.properties

JMS Publishing Demo Interpretation Version 2 Page 3

e The property systemPropertiesModeName is set to the value
SYSTEM_PROPERTIES_MODE_OVERRIDE; this means that properties that are already set in the
system environment take precedence over the properties set in any other way (for example,
from the properties file).

2. DemoJmsPublishService. This bean configures the JMS Publishing class by setting the property,
JmsTopicPrefix, to the desired value, ${demo. jms.topic.prefix} (which is, in this example, set to
CERN.LHC.BLM in the file concentration.properties).

e (Class: cern.japc.ext.remote. jms.JmsPublishServicelmpl

3. DemoParameterPublisher. Creates the bean for doing the publishing

e C(lass: cern.lsa.demo.daemons.concentration.ParameterPublisher

e Uses Spring to “inject” objects into this class:

0 The publishing object, DemoJmsPubl ishService, using the setter method,
setJmsPublisher().

0 It also specifies the parameter name to be published,
S{demo.concentrated.parameter}, through the setter setPublishedParameter().
4. ParameterPublisherExample.
e C(Class: cern. lsa.demo.daemons.concentration.ParameterHolder
e Injects the previous bean for publishing into the main class.

MAIN CLASS DISSECTED

The main publishing class, ParameterPublisherExample. java, is the place where all the publishing of the
daemon’s data takes place. This simple example published one java. lang.String value every five seconds.

Java.lang.Runnable.run()

Marek has chosen for ParameterPublisherExample to implement java. lang.Runnable. This means that all
of the meaningful, run-time code is contained in the method run(). Here is the code for that method (the entire
listing is in Appendix 1).

public void run(Q) {
publisher =
ServicelLocator.<ParameterPublisher> getSingleton(*'DemoParameterPublisher™);

System.out.printIn(*’Concentration started!');

while (true) {
try {
// sleep a bit
Thread.sleep(5000);
} catch (InterruptedException ie) {
ie.printStackTrace();
¥

try {
System.out.printin(
“"publishing dummy value " + (System.currentTimeMillis()/1000));
publisher.publish(createDummyParameterValue());
} catch (Exception e) {
e.printStackTrace();
}

}

JMS Publishing Demo Interpretation Version 2 Page 4

The first statement gets the publishing object, created previously by the Spring environment and (which is
ServicelLocator. java).

This example publishes new values once every five seconds, so it sleeps for 5000 milliseconds.

The method publisher.publish() takes as it’s argument a cern. japc.AcquiredParameterValue object,
which is created by the utility routine createDummyParameterValue().

Thus, in the run() method, there are only two lines that would need to be changed—how you determine when to
publish values and how you create the AcquiredParameterValue to publish. For the foreseen LAFS daemons,
the timing will be determined by the reception of data, so there will not be a need to sleep().

Method createDummyParameterValue()

There is a lot of flexibility built into JAPC parameters. Consequently, it takes several steps to create a parameter
from scratch. Here is the method createDummyParameterValue(), adding line numbers for clarity:

1 | private AcquiredParameterValue createDummyParameterValue() {

Map<String, SimpleParameterValue> valuesToReturn =

2 new HashMap<String, SimpleParameterValue>(1);

valuesToReturn.put(
3 "'crateNames",
ParameterValueFactory.newParameterValue(new String[]{"'dummy*}));

MapParameterValue resultValue =
ParameterValueFactory.newParameterValue(valuesToReturn);

5 | AcquiredParameterValuelmpl result = new AcquiredParameterValuelmpl();

result._setHeader(
new ValueHeaderImpl (System.currentTimeMillis()*1000, // Acq stamp
0, // cycleTimestamp
ParameterValueFactory.newSelector(null)));

result.setParameterName(
System.getProperty(‘'demo.concentrated.parameter', "LHC_BLM/Demo'));

8 result.setValue(resultValue);

return result;

3

Line 1 and 2: The method returns an AcquiredParameterValue, which holds a Map<String,
SimpleParameterValue>. The key of this Map is interpreted as the name of the property for the virtual device
you are returning.

Line 3: The key/property is “crateNames”, and the value is a parameter that contains a String [] value of length
1, which is the word, “dummy”.

Line 4: An object of type cern. japc.MapParameterValue is created based on the Map created in lines 2 and 3.

Line 5: A new cern. japc.AcquiredParameterValue instance is created, using the “Impl” class. (This pattern
is seen quite frequently in the code produced by AB/CO/AP.) This will be the return value.

JMS Publishing Demo Interpretation Version 2 Page 5

Line 6: The header for the result is created. The time stamp is taken from the system clock; there is not cycle
stamp and there is no timing selector.

Line 7: The name of the parameter is set, taken from the name specified in the configuration file. This step utilizes
the flexibility of the Spring system, but it may be argued that your daemon will know, a priori, the name of its
parameter(s), so going to the configuration file might not be necessary.

Line 8: The value of our virtual parameter is set!

Line 9: The parameter is returned, ready to be published.

A REALISTIC EXAMPLE OF A PUBLISHING CLASS

This example has been modified to create a somewhat more realistic publishing example. This new example is
contained in the class ExtendedPublisherExample. java, as described above. This class gets the beam
intensity from the SPS for a specific user cycle. Then it calculates three new properties based on this current
reading and the elapsed time between readings:

1. “totalCharge”: Total beam intensity in the SPS over the last 5 minutes;
2. “averagePower”: Average beam power over the last five minutes;
3. “peakPower”: A peak power value, which is the measured intensity over an interval of 0.1 seconds’.

DISSECTING THIS PUBLISHING CLASS

Starting from Marek’s example, the sleep(5000)was removed (along with the try/catch) and a subscription to
an SPS beam-current transformer (BCT) was created. The data from the SPS are managed in the class,
BCTReader . j ava.*

When the subscription to the SPS BCT is created, “this” is added as a ParameterValuelListener to
BCTReader. In the valueReceived()method, some boiler-plate interpretation occurs, but the meat of the
calculations is in the method calculatePowers(). This method returns success or failure, which then triggers
the creation of the AcquiredParameterValue from the method createParameterValue(). The three scalar
properties are returned in this parameter.

Note that you can create any type and number of properties in your virtual device. The receiver of this parameter
may either hard-code the property names or it can use the introspection of AcquiredParameterValue to figure
out what has been published. The monitoring class in this example, ParameterMonitor, hard-codes what to
expect.

OTHER MODIFICATIONS

® This power calculation is probably not exactly right, in particular, it only receives data for one SPS user cycle. But (I hope) it
shows how data-driven calculations work.
* This class was written by Anthony Rey (AB/OP)—I made only a couple of minor changes to it

JMS Publishing Demo Interpretation Version 2 Page 6

The only other change was to the file concentration.parameters—the value of
demo.concentrated.parameter was changed to “LHC_BLM/Demo2” so as not to conflict with the example
Marek wrote.

SAMPLE OUTPUT

Here is a sample of the output of the publisher/daemon, ExtendedParameterPublisher.java:

8 Intensity: 1.4591200256347656E12, time=Wed Jul 02 14:28:02 CEST 2008
Time interval: 287.999 seconds. Total charge=1.0340719909667969E13

Ave power=2588.707110278679 Watts,

peak power=1051996.123268398 Watts.
Publishing LHC_BLM/Demo2
8 Intensity: 1.5859999656677246E11, time=Wed Jul 02 14:28:50 CEST 2008
Time interval: 288.001 seconds. Total charge=9.008479909896852E12

Ave power=2255.177033435853 Watts,

peak power=114347.40021886963 Watts.
Publishing LHC_BLM/Demo2
8 Intensity: 1.5225599670410156E12, time=Wed Jul 02 14:29:38 CEST 2008
Time interval: 287.999 seconds. Total charge=9.151219930648805E12

Ave power=2290.9263870541467 Watts,

peak power=1097735.0421011483 Watts.
Publishing LHC_BLM/Demo2
8 Intensity: 1.6652999877929688E12, time=Wed Jul 02 14:30:26 CEST 2008
Time interval: 288.0 seconds. Total charge=9.341539907455445E12

Ave power=2338.5631777649714 Watts,

peak power=1200647.7194876298 Watts.
Publishing LHC_BLM/Demo2
8 Intensity: 1.2053599548339844E12, time=Wed Jul 02 14:31:14 CEST 2008
Time interval: 288.0 seconds. Total charge=9.008479909896852E12

Ave power=2255.1848639116633 Watts,

peak power=869040.2279118099 Watts.
Publishing LHC_BLM/Demo2
8 Intensity: 1.3163800048828125E12, time=Wed Jul 02 14:32:02 CEST 2008
Time interval: 288.0 seconds. Total charge=8.88159987449646E12

Ave power=2223.421687634478 Watts,

peak power=949083.4458819163 Watts.
Publishing LHC_BLM/Demo2

And here is a sample of the output of the program (ParameterMonitor . java) that is monitoring this virtual
parameter:

++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001682]
Average Power: 2588.707110278679
Peak Power: 1051996.123268398
Total Charge: 1.0340719909667969E13
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001730]
Average Power: 2255.177033435853
Peak Power: 114347.40021886963
Total Charge: 9.008479909896852E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001778]
Average Power: 2290.9263870541467

JMS Publishing Demo Interpretation Version 2 Page 7

Peak Power: 1097735.0421011483
Total Charge: 9.151219930648805E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001826]
Average Power: 2338.5631777649714
Peak Power: 1200647.7194876298
Total Charge: 9.341539907455445E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001874]
Average Power: 2255.1848639116633
Peak Power: 869040.2279118099
Total Charge: 9.008479909896852E12
++ got value for LHC_BLM/Demo2 Cycle=[0] AcqStamp=[1215001922]
Average Power: 2223.421687634478
Peak Power: 949083.4458819163
Total Charge: 8.88159987449646E12

COMMENTS AND CONCLUSIONS

PERSONAL COMMENTS

The Spring framework has been officially adopted by AB/CO for their application programs. For example, most of
the Fixed Displays are implemented in this environment. It is arguable that the “simplicity” of this framework is
not really very simple since every Java programmer needs to become a Spring Bean programmer and an XML
programmer. The folks in AB/CO/AP who have gone through this learning curve really like Spring. And my initial
introduction to it is not entirely awful—the simplicity of the resulting Java code is fabulous. But | am not fully
convinced that Spring, overall, is a simplification.

Having said that, Spring is the environment that AB/CO/AP has written the Daemon Infrastructure example(s) in. |
hope that this document shows you that it is possible to ignore great chunks of the Spring stuff to focus on your
daemon.

CONCLUSIONS

To write your daemon to publish data, start with this package and modify the class
ExtendedParameterPublisher.java. We may be able to encapsulate some of the Spring management to
further simplify this process.

APPENDIX 1, ParameterPublisherExample.java

package cern.lsa.demo.daemons.concentration;
import java.util_HashMap;
import java.util_Map;

import cern.japc.AcquiredParameterValue;
import cern.japc.MapParameterValue;
import cern.japc.SimpleParameterValue;

JMS Publishing Demo Interpretation Version 2 Page 8

import cern.japc.factory.ParameterValueFactory;
import cern.japc.spi.AcquiredParameterValuelmpl;
import cern.japc.spi.ValueHeaderImpl;

/**
* This class starts the LHC BLM concentrator server. Command "exit" is used to stop

the server.
*

* @version $Revision: 1.1 $, $Date: 2008/06/30 15:56:30 $, $Author: emccrory $
*

* to run needs : -Dserverld=LhcBImServer
*/
public class ParameterPublisherExample implements Runnable {

private static Thread serverThread;
private ParameterPublisher publisher;

public void run(Q) {
this.publisher = ServicelLocator.<ParameterPublisher>
getSingleton("'DemoParameterPublisher™);

System.out.printIn(’'Concentration started!"');

while (true) {
try {
// sleep a bit
Thread.sleep(5000);
} catch (InterruptedException ie) {
ie.printStackTrace();

try { // and then prepare a dummy value to publish it using custom virtual
parameter publisher:
System.out.printIn(publishing dummy value " +
(System.currentTimeMillis()/1000));
this._publisher._publish(createDummyParameterValue());
} catch (Exception e) {
e.printStackTrace();
}

private AcquiredParameterValue createDummyParameterValue() {
Map<String, SimpleParameterValue> valuesToReturn = new HashMap<String,
SimpleParameterValue>(1);
valuesToReturn_put(*crateNames",
ParameterValueFactory.newParameterValue(new
String[J{"dummy*'}));
MapParameterValue resultValue =
ParameterValueFactory._newParameterValue(valuesToReturn);
AcquiredParameterValuelmpl result = new AcquiredParameterValuelmpl();
result.setHeader(new ValueHeaderImpl(System.currentTimeMillis() *
1000, // acqgTimestamp
o, // cycleTimestamp
ParameterValueFactory.newSelector(null)))

result.setParameterName(System.getProperty(‘'demo.concentrated.parameter’,
"LHC_BLM/Demo™));

result_setValue(resultValue);

return result;

JMS Publishing Demo Interpretation Version 2 Page 9

public static void main(String[] args) {
ParameterPublisherExample ppe = new ParameterPublisherExample();
serverThread = new Thread(ppe);
serverThread.start();

/**
* @return the publisher
*/
public ParameterPublisher getPublisher() {
return publisher;

}

/**
* @param publisher the publisher to set
*/

public void setPublisher(ParameterPublisher publisher) {
this.publisher = publisher;
}

JMS Publishing Demo Interpretation Version 2 Page 10

