
1 of 12

080708
DCV

Using ClassACNet

Introduction
The ClassACNet library provides an object based interface between front-end data

structures and the global accelerator control system commonly referred to as ACNet.
ClassACNet is a C++ namespace containing the definitions of two classes that form the
basis for communication with ACNet: 1) class Portal which is layered on top of the

MOOC and ACNet libraries to provide full-featured MOOC operability, and 2) class
ObjAccessor which ties front-end objects to Portal instances. Class ObjAccessor is an
abstract class and must be subclassed, so the ClassACNet library contains a collection of

off-the-shelf accessor classes that address most common data access needs. Accessors
are included for reading and setting memory based data in situ, for instantiating and
manipulating scalars, vectors & matrices, for calling user provided C-style callback

functions and for calling the accessor and mutator methods of user provided classes. In
cases where special processing is required the user may want to create custom
ObjAccessor derived classes. In that event the ClassACNet library provides a rich set of

examples.

The file ClassACNetOverview.ppt contains a series of slides outlining the material

presented in this note along with other more detailed information.

Overview
To attach front-end objects to ACNet the front-end user instantiates a Portal with the
desired operating attributes and then instantiates one or more accessors that are connected
to user objects. Upon instantiation ObjAccessors automatically attach themselves to the

most recently instantiated Portal so the user code can look something like the following:

(void) new Portal(…) // slow devices
(void) new Accessor(…)
(void) new Accessor(…)
 :
(void) new Portal(…) // fast devices
(void) new Accessor(…)
(void) new Accessor(…)
 :

As indicated it is possible to instantiate multiple Portals with multiple accessors per
portal.

2 of 12

080708
DCV

ACNet devices have optional basic status, basic control, reading, setting and reading of

setting properties. In ClassACNet a fully implemented 'Device' is composed of a pair of
ObjAccessor instances -- one for status/control: the 'Control Object', and another for
reading/setting: the 'Data Object'. The mapping from ACNet device property to

ClassACNet device is depicted below:

 | ACNet | ClassACNet
 |<- Property ->|<------------------------ Device ------------------------>|

 basic
 status --> reading ----\
 +---- Control Object ----\
 basic <-- setting -+--/ (ObjAccessor instance) \
 control | \
 reading | \
 of -- +-- Device --
 setting /
 /
 reading --> reading ----\ /
 +---- Data Object ----/
 setting <-- setting -+--/ (ObjAccessor instance)
 |
 reading reading |
 of --> of --
 setting setting

Data and control objects each have a reading that can be read and a setting that can be
both set and read. For any given device the control and data objects are optional so it is
possible to have a control only or a data only device. For any given control or data object

the reading and setting are optional so it is possible to have a reading and setting, reading
only or setting only object. Devices may also support an optional fast read method that
provides optimized access to object readings for fast plotting. ClassACNet devices map

one-to-one feature-wise to ACNet devices. Note that the full ClassACNet device
symmetry is partially lost because the ACNet device model does not support reading the
basic control property.

Class Portal
The Portal class encapsulates the functionality of a MOOC class supporting the five basic

data properties, fast plotting and alarms and limits. Portals also support double buffering
of data if necessary to alleviate buffer alignment issues, and
MOOC_WHACK_FORWARD if the user needs to modify incoming setting values.

Normally the user need only instantiate the Portal class – there are no other required

3 of 12

080708
DCV

methods. Class Portal’s constructor defines the MOOC features that will be supported by

all accessors attached to a given portal. The Portal class constructor prototype is:

 Portal(ePortalStatus * const statusPtr,
 char const * const namePtr, unsigned int const portalID,
 unsigned int const maxAlarms = kNumDevices,
 bool const fastPlotEnable = k720HzPlot,
 unsigned int const maxPlots = kNumDevices,
 eDiagnosticControl const diagnosticControl = kDiagnosticDisable);

The constructor parameters are defined as follows:

• statusPtr – pointer to constructor status destination – a nonzero status value
indicates an error condition

• namePtr – pointer to a text string that uniquely identifies this instance for use in
diagnostic messages

• portalID – integer portal identifier identical in value to the second 16 bit word of
the associated ACNet device’s SSDN

• maxAlarms – integer number of alarm scans to be handled by this portal – the

default is 256 – use of smaller values is recommended to save on memory and processing
overhead

• fastPlotEnable – boolean true selects 720 Hz fast plot mode – false selects 15 Hz

mode
• maxPlots - integer number of fast-time plots to be handled by this portal – the

default is 256 – use of smaller values is recommended to save on memory and processing

overhead
• diagnosticControl – nonzero values enable diagnostic messages – various

options enable general messages, ACNet setting messages or ACNet reading messages.

The Portal class supports an option to allow the user to invoke the periodic fast plot data
sampling handler. By default the Portal instance periodically samples via the UCD

auxiliary interrupt. The Portal class’ static method SetFastSamping(bool const enable)
should be called prior to Portal instantiation to flag the user’s intent to periodically call
the fast data sampling routine ClassACNet::FtpHandler(class Portal * const portalPtr).

A call to the SetFastSamping method affects all subsequent Portal instantiations. Note
that when calling the FtpHandler method for a given Portal at interrupt context the user is
responsible for saving and restoring the floating point context if any accessor attached to

that Portal includes floating point code in its FastRead method.

Please see the file classacnet.h for detailed examples, definitions and declarations for the

class Portal constructor and other methods.

4 of 12

080708
DCV

Class ObjAccessor
Class ObjAccessor defines the interface between one or more user data objects and a
Portal. As mentioned above ObjAccessor is an abstract class that cannot be directly

instantiated. The casual user does not need to understand all ObjAccessor constructor
parameters, however, several of the parameters appear in the constructors of derived
classes so familiarity will help gain a deeper understanding of accessor operation. The

ObjAccessor class constructor prototype is:

 ObjAccessor(ePortalStatus * const statusPtr,
 char const * const namePtr, unsigned int const deviceID,
 bool const controlObject = false,
 unsigned long int const maxReadBuffer = 0,
 unsigned long int const maxSetBuffer = 0,
 eDiagnosticControl const diagnosticControl = kDiagOff);

The constructor parameters are defined as follows:
• statusPtr – pointer to constructor status destination – a nonzero status value

indicates an error condition
• namePtr – pointer to a text string that uniquely identifies this instance for use in

diagnostic messages

• deviceID – integer device identifier identical in value to the low byte of the first
16 bit word of the associated ACNet device’s SSDN

• controlObject – boolean true indicates that this accessor connects to the basic

status/control of the device – false indicates reading/setting
• maxReadBuffer – integer number of bytes required to double buffer the largest

possible reading addressed by this accessor – if zero double buffering is disabled

• maxSetBuffer - integer number of bytes required to double buffer the largest
possible setting addressed by this accessor – if zero double buffering is disabled

• diagnosticControl – nonzero values allow diagnostic messages – possible values

enable general messages, ACNet setting messages or ACNet reading messages.

The ObjAccessor class supports an offset multiplier for use when the user data will be

addressed as a large byte array via length and offset. The offset multiplier default value
is one and may be modified by calling OffsetScale(unsigned long int const scaleFactor)
after accessor instantiation. ACNet offsets are multiplied by the offset multiplier to

allow the range limited offset value to address large data ‘pages’.

The double buffering feature is intended for use when the user data contains floating

point values which will be copied with floating point instructions. This is a concern

5 of 12

080708
DCV

because the MOOC/ACNet message buffers are not always long word aligned. If the

selected accessor class will not try to pass values as floating point (e.g., the bcopy based
in situ accessors) then the associated maxXxxBuffer parameter values should be set to
zero.

Please see the file classacnet.h for detailed examples, definitions and declarations for the
class ObjAccessor constructor and other methods.

Fast Plotting Support
The ACNet continuous and snapshot plot protocols are supported by cooperative code

elements in the ObjAccessor and Portal classes. If a given device has a data object then
its accessor will be used for fast plotting otherwise the control object’s accessor will be
used. To enable fast plotting the FastReadByteCount method of the accessor must return

a nonzero value. If the accessor does not enable fast plotting in this manner a MOOC fast
read not supported error will be returned at plot setup time. When fast plotting is enabled
the accessor’s FastRead method will be called at the fast plot data collection rate. If the

accessor does not provide a FastRead method the ObjAccessor base class will call the
normal Read method if available, otherwise it will call the ReadSetting method.

The ACNet SSDN
The ACNet SSDN must be configured properly to address user accessors. Five special
fields are defined within 8 byte SSDN as follows:

• portalID: SSDNHX property (0023/0021/0000/0124)
• deviceID: SSDNHX property (0023/0021/0000/0124)
• deviceChan: SSDNHX property (0023/0021/0000/0124)
• deviceType: SSDNHX property (0023/0021/0000/0124)
• misc: SSDNHX property (0023/0021/0000/0124)

• The portalID field identifies the Portal instance number and must match the
portalID parameter of the Portal constructor.

• The deviceID field identifies the device instance number attached to the given

portal and must match the deviceID parameter of the ObjAccessor constructor.
• The deviceChan field is used with the proper deviceType value to address user

data by channel number.

• The deviceType field determines how deviceChannel and length & offset will be
interpreted to address user data as follows:

- kArrayDevice (0) – length, offset and data byte count are used to calculate
an index and count to address one of n identically sized data elements.

6 of 12

080708
DCV

- kChannelDevice (1) – the deviceChan field is used to address one of n

potentially different sized data elements. Length must equal the data element
size and offset must be zero.
- kLengthOffsetDevice (2) – length, offset and the offset scale factor are used

as count and index to address a portion of the data elements treated as an array
of char: data[offset * offsetScale] for length bytes.

• The misc field is a 16 bit value that is passed to all read and set methods as user

defined extra information.

Class ObjAccessor Derivatives
The first and most general accessor type is the ‘in situ accessor’ which reads/sets user
data where it resides in memory. Use of this group of accessors is limited to cases where
ACNet settings or readings simply need to be transferred to or from the front-end’s

memory with no special synchronization or control flow requirements. This is ideal for
reading slowly updating data values or setting parameters that will be picked-up as
needed by the front-end software. In order to optimize code space the in situ support is

provided by several classes that are tailored to the nature of the user data:
• ReadSetInSitu – supports a reading, setting and reading of setting for scalars,

vectors or matrices

• ReadInSitu – supports reading only for scalars, vectors or matrices
• SetInSitu - – supports setting and reading of setting only for scalars, vectors or

matrices

• WriteOnlyInSitu - – supports setting and reading of setting (image) only for
scalars, vectors or matrices when the target resides in write only hardware

• ReadBndsSetInSitu – supports a reading, setting and reading of setting for

scalars, vectors or matrices with setting bounds checking
• BndsSetInSitu - – supports setting and reading of setting only for scalars,

vectors or matrices with setting bounds checking

• BndsWriteOnlyInSitu - – supports unchecked setting and reading of setting
(image) only for scalars, vectors or matrices with setting bounds checking when the target
resides in write only hardware

Other standard derived accessor classes include:
• classacnetobject.h – instantiate and access scalars
• classacnetvector.h – instantiate and access vectors (2D arrays)

• classacnetmatrix.h – instantiate and access matrices (3D arrays)
• classacnetconstruction.h – reading via object construction

7 of 12

080708
DCV

• classacnetfunction.h – call user provided reading, setting and reading of setting

C style callback functions
• classacnetmethod.h – call user class provided accessor and mutator methods
• classacnetstring.h – read 2D character arrays (array of C strings) properly byte

swapped
• classacnetfiledirectory.h – construct and read a 2D array of characters (array of

C strings) containing the specified file names in the specified front-end file system

directory, properly byte swapped

Please see the various header files identified above for detailed examples, definitions and

declarations for the various forms of these accessors.

Some Examples
The following code examples not only show how to instantiate many of the standard
accessors, but also provide a look at the structure of typical ClassACNet based front-end
programs. In many cases the user simply instantiates a Portal and then a series of

accessors.

8 of 12

080708
DCV

• In Situ Accessor Example:

 #include "classacnetinsitu.h" // ClassACNet stuff

 using namespace ClassACNet;

 void Foo(void) {

 typedef enum { // data type & legal setting range
 kFooMin = -100,
 kFooMax = 100
 } tFooType;

 const unsigned long int kRows = 5;
 const unsigned long int kCols = 5;

 float reading[kRows][kCols];
 tFooType setting[kRows][kCols];
 ePortalStatus status;

 class Portal
 myPortal(&status, "MyPort", 0x0020, 10, k720HzPlot, 10, kDiagOff);
 :

 // data device with buffering alignment critical
 // because of the use of a float reading type
 // supports matrix reading and setting with setting limits
 class ReadBndsSetInSitu<float, tFooType, kRows, kCols>
 myAccessor(&status, "m:xxTEST", 0x0001, kData, kAlign,
 &reading[0][0],
 &setting[0][0], kFooMin, kFooMax,
 kDiagOff);
 :

 while(true) { // do front-end processing
 :
 }

 }

9 of 12

080708
DCV

• Matrix Object Accessor Example:

 #include "classacnetmatrix.h" // ClassACNet stuff

 using namespace ClassACNet;

 void Foo(void) {

 const unsigned long int kRows = 5;
 const unsigned long int kCols = 5;

 ePortalStatus status;
 float reading = 123.0f;
 int setting = 456;

 class Portal
 myPortal(&status, "MyPort", 0x0020, 10, k720HzPlot, 10, kDiagOff);
 :
 ReadSetMatrix<float,int, kRows, kCols>
 object3(&status, "Test", 0x0000, kData, kAlign, kDiagOff);
 object3[4][4].reading = reading; // 2D array set reading
 object3[4][4].setting = setting; // 2D array set setting
 reading = object3[4][4].reading; // 2D array get reading
 setting = object3[4][4].setting; // 2D array get setting

 ReadMatrix<float, kRows, kCols>
 object1(&status, "Test", 0x0001, kData, kAlign, kDiagOff);
 object1[2][2] = reading; // 2D array set reading
 reading = object1[2][2]; // 2D array get reading

 SetMatrix<int, kRows, kCols>
 object5(&status, "Test", 0x0002, kData, kNoAlign, kDiagOff);
 object5[3][3] = setting; // 2D array set setting
 setting = object5[3][3]; // 2D array get setting

 ReadBndsSetMatrix<float,int, kRows, kCols>
 object0(&status, "Test", 0x0003, kData, kAlign, 0, 999, kDiagOff);
 object0[1][1].reading = reading; // 2D array set reading
 object0[1][1].setting = setting; // 2D array set setting
 reading = object0[1][1].reading; // 2D array get reading
 setting = object0[1][1].setting; // 2D array get setting

 BndsSetMatrix<int, kRows, kCols>
 object2(&status, "Test", 0x0004, kData, kNoAlign, 0, 999, kDiagOff);
 object2[3][3] = setting; // 2D array set setting
 setting = object2[3][3]; // 2D array get setting
 :
 return;

 }

10 of 12

080708
DCV

• Constructor Accessor Example:

#include "classacnetconstruction.h" // object construction accessor stuff

 class RawMultiturn { // raw measurement data
 :
 }

 class Orbit {
 public:

 // constructor
 Orbit(class RawMultiturn const &rawData);
 // NOTE: destructor will never be called!

 // new with placement operator
 inline void operator new(size_t size, voidp) {
 return(p);
 }
 :
 }

 using namespace ClassACNet;

 ePortalStatus status;

 static RawMultiturn rawData(...);
 :

 class Portal
 myPortal(&status, "MyPort", 0x0020, 10, k720HzPlot, 10, kDiagOff);
 :
 // build Orbit data from most recent raw data
 class ObjConstructor<class Orbit, class RawMultiturn>
 myAccessor(&status,
 "m:TEST", 0x0002, kData, kAlign,
 rawData,
 kNoDiagnostic);
 :

11 of 12

080708
DCV

• Method Accessor Example:

 class Foo {
 public:
 typedef enum { // data type & legal setting range
 kFooMin = -100,
 kFooMax = 100
 } tFooType;

 // accessors
 int Read(float *destPtr, unsigned long int const misc) const {
 *destPtr = _reading; return(ClassACNet::kDeviceOk);
 };
 int Get(tFooType *destPtr, unsigned long int const misc) const {
 *destPtr = _setting;
 return(ClassACNet::kDeviceOk);
 };

 // mutator
 int Set(tFooType const &value, unsigned long int const misc) {
 _setting = value;
 return(ClassACNet::kDeviceOk);
 };

 private:
 float _reading;
 tFooType _setting;
 };
 :

 #include "classacnetmethod.h" // ClassAcnet stuff

 using namespace ClassACNet;

 void Bar(void) {

 class Foo myFoo;
 ePortalStatus status;

 class Portal
 myPortal(&status, "MyPort", 0x0020, 10, k720HzPlot, 10, kDiagOff);
 :
 // data device with critical buffering alignment due to use of float type
 // supports reading and setting with setting limits
 ReadBndsSetMethod<class Foo, float, Foo::tFooType>
 myAccessor(&status, "m:xxTEST", 0x0001, kData, kAlign,
 &myFoo,
 &Foo::Read,
 &Foo::Get, &Foo::Set, Foo::kFooMin, Foo::kFooMax, kDiagOff);
 :
 return;

 }

12 of 12

080708
DCV

ClassACNet Remote
 The file classacnetremote.h contains declarations for classes that are designed to access
ACNet devices in remote ACNet nodes. Three classes are defined:

• class ACNetState - supports setting the state device associated with the current

front-end
• class ACNetRead – supports reading ACNet devices in remote nodes
• class ACNetSet – supports setting ACNet devices in remote nodes

Please see the file classacnetremote.h for detailed examples, definitions and declarations
for the various forms of these accessors.

ClassACNet Model
The file classacnetmodel.cpp contains stub code for implementing a full-featured

ClassACNet accessor. The model code appears to be quite lengthy, but recall that it is a
subclass of ObjAccessor so any of the method stubs that are not required in the user’s
application may simply be deleted! The base class will ‘cover for’ any methods that are

not provided by the user. For example if the user does not provide a FastRead method
the base class will call the Read method in its place. So in this case the user can have fast
plotting support simply by providing the FastReadByteCount method to tell the

ClassACNet Port that fast plotting is desired without writing any special fast plot code.

ClassACNet Examples
The file classacnetexample.cpp contains examples of the use of various standard
accessors and also the remote ACNet classes. Also each of the accessor header files
begin with an example that uses the code contained in the header.

