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Pushing the “Envelope”
 We saw, for a FODO 

system, that the motion of a 
single particle is contained 
within an “envelope”



 Wish to determine its 
functional form, and the rate 
at which the phase of the 
oscillatory motion develops



 Decouple motion of 
individual particle from 
intrinsic properties of the 
accelerator design

Envelope described by an 
“amplitude function”



  

Hill’s Equation --
Analytical Solution

 We saw that the equation of transverse motion is Hill’s 
Equation:



 Note:  “similar” to simple harmonic oscillator equation, 
but “spring constant” is not constant -- depends upon 
longitudinal position, s.

 So, assume solution is sinusoidal, with a phase which 
advances as a function of location s; also assume 
amplitude is modulated by a function which also 
depends upon s: 

 Plug into Hill’s Equation...
x(s) = A

√
β(s) sin[ψ(s) + δ]

x
′′ + K(s)x = 0



  

Analytical Solution (cont’d)
x(s) = A

√
β(s) sin[ψ(s) + δ]

x′ =
1

2
Aβ−

1

2 β′ sin[ψ(s) + δ] + A
√

β cos[ψ(s) + δ]ψ′

x′′ = . . .

Plug into Hill’s Equation, and collect terms... 

    and    are constants of integration, defined by the initial
conditions              of the particle.  For arbitrary        , 
must have contents of each [   ] = 0 simultaneously.

A δ
A, δ(x0, x

′

0)

x′′ + K(s)x = A
√

β

[
ψ′′ +

β′

β
ψ′

]
cos[ψ(s) + δ]

+A
√

β

[
−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K

]
sin[ψ(s) + δ] = 0



  

Analytical Solution (cont’d)
 Thus, we must have ...

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

and

The function β(s) is the
local wavelength (λ/2π)
of the oscillatory motion.

Differential equation 
that the amplitude 
function must obeyNote:  the phase advance is an

observable quantity.  So, while could 
choose different value of const,  then    
     would just be scale accordingly; 
so, we can choose const = 1.
β



  

Some Comments
 We chose the amplitude function to be a positive definite function in its 

definition, since we want to describe real solutions.
 The square root of the amplitude function determines the shape of the 

envelope of a particle’s motion.  But it also is a local wavelength of the 
motion. 

 This seems strange at first, but ...
 Imagine a particle oscillating within our focusing lens system; if the 

lenses are suddenly spaced further apart, the particle’s motion will 
grow larger between lenses, and additionally it will travel further before 
a complete oscillation takes place.  If the lenses are spaced closer 
together, the oscillation will not be allowed to grow as large, and more 
oscillations will occur per unit distance travelled.

 Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate 
of change of the oscillation phase as well as the maximum oscillation 
amplitude.  These attributes must be tied together.



  

The Amplitude Function, 

 Since the amplitude function is a wavelength, it will have numerical values 
of many meters, say.  However, typical particle transverse motion is on the 
scale of mm.  So, this means that the constant A must have units of m1/2, 
and it must be numerically small.  More on this subject next time...

β

Higher    -- 
smaller phase advance
larger beam size

Lower    -- 
greater phase advance
smaller beam size

β

β
F F FF D D D D



  

Equation of Motion 
of Amplitude Function

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.
(in regions where K is either zero or constant)



  

Piecewise Solutions
 K = 0:

 since            ,  then from original diff. eq.:
 Therefore, parabola is always concave up

 K > 0, K < 0:

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

2ββ′′
− (β′)2 = 4β > 0

β′′ > 0

β(s) ∼ sin / cos or sinh / cosh + const

Parabola!



  

Courant-Snyder Parameters, &
Connection to Matrix Approach
 Suppose, for the moment, that we know the value of the 

amplitude function and its slope at two points along our 
particle transport system.

 Have seen how to write the motion of a single particle in 
one degree of freedom between two points in terms of a 
matrix.  We can now recast the elements of this matrix 
in terms of the local values of the amplitude function.  

 Define two new variables,


 Collectively,                 are called the Courant-Snyder 
Parameters (sometimes called “Twiss” or “lattice” parameters)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ



  

The Transport Matrix
 We can write:
 Solve for a and b in terms of initial 

conditions and write in matrix form
 we get:
  

x(s) = a
√

β sinψ + b
√

β cos ψ

(
x
x′

)
=




(
β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

− 1+α0α√
β0β

sin ∆ψ − α−α0√
β0β

cos∆ψ
(

β0

β

)1/2

(cos ∆ψ − α sin∆ψ)




(
x0

x′

0

)



  

Periodic Solutions
 Within a system made up of periodic sections it is natural 

to want the beam envelope to have the same periodicity.
 Taking the previous matrix to be that of a periodic section, 

and demanding the C-S parameters be periodic yields...

Mperiodic =

(
cos ∆ψ + α sin ∆ψ β sin ∆ψ

−γ sin ∆ψ cos ∆ψ − α sin ∆ψ

)

Mperiodic

values of β, α above correspond to one
  particular point in the accelerator



  

Periodicity and the “Tune”
 We see from above that matrix of a 

periodic section (which, for example, 
could be an entire synchrotron!) has a 
Trace which is

 If the matrix does represent an entire 
synchrotron, then the total phase 
advance is just 2π x the tune:

trace(Mperiodic) = 2 cos ∆ψ

∆ψ = 2πν =

∮
ds

β(s)



  

Propagation of 
Courant-Snyder Parameters
 We note that can write periodic matrix 

corresponding to location s as:







 where detJ = 1, trace(J) = 0; J2 = −I

M0 =

(
cos ∆ψ + α sin ∆ψ β sin ∆ψ

−γ sin ∆ψ cos∆ψ − α sin ∆ψ

)

=

(
1 0

0 1

)
cos ∆ψ +

(
α β
−γ −α

)
sin ∆ψ

= I cos∆ψ + J sin ∆ψ = eJ∆ψ

J =

(
α β
−γ −α

)



  

Tracking β, α, γ ...
 Let M1 and M2 be the “periodic” matrices at two points, 

and M  propagates the motion between them.  Then,








 Or, equivalently,
 So, if know parameters (i.e., J ) at one point, can find 

them at another point if given the matrix for motion in 
between

M2 = M M1 M
−1

J2 = M J1 M
−1

M1

M2
M

(M1, M2 are “once around”)



  

Evolution of the Phase Advance
 Again, if know parameters at one point, 

and the matrix from there to another 
point, then

 So, from knowledge of matrices, can 
“transport” phase and C-S parameters 
along a beam line

M1→2 =

(
a b
c d

)
=⇒

b

aβ1 − bα1

= tan∆ψ1→2



  

Simple Examples
 Propagation 

through a Drift

 Propagation 
through a Thin Lens

M =

(
1 L
0 1

)

=⇒ ∆ψ = tan−1

(
L

β1 − Lα1

)

β = β0 − 2α0L + γ0L
2

α = α0 − γ0L

γ = γ0

M =

(
1 0

−1/F 1

)

=⇒ ∆ψ = 0

β = β0

α = α0 + β0/F

γ = γ0 + 2α0/F + β0/F 2



  

Choice of Initial Conditions


 Have seen how  β can be propagated from one point to 
another.  Still, have the choice of initial conditions...

 If periodic system, like a “ring,” then natural to choose 
the periodic solution for  β, α 

 If beam line connects one ring to another ring, or a ring 
to a target, then we take the periodic solution of the 
upstream ring as the initial condition for the beam line

 Will discuss optical “mismatches” and their implications 
in future talks



  

Computation of 
Courant-Snyder Parameters

 As an example, consider a FODO system

 Thus, use above matrix to compute 
functions at exit of the F quad..

M =

(
1 0

−1/F 1

) (
1 L
0 1

) (
1 0

1/F 1

) (
1 L
0 1

)

=

(
1 L

−1/F 1 − L/F

) (
1 L

1/F 1 + L/F

)

=

(
1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)
F -F F

L L



  

FODO Cell
 From the matrix:

 If go from D quad to D quad, get
 at exit:

traceM = a + d = 2 − L2/F 2
= 2 cos µ sin

µ

2
=

L

2F

β =
b

sinµ
= 2F

√
1 + sinµ/2

1 − sinµ/2
α =

a − d

2 sinµ
=

√
1 + sinµ/2

1 − sinµ/2

β = 2F

√
1 − sinµ/2

1 + sinµ/2
, α =

√
1 − sinµ/2

1 + sinµ/2

M =

(
1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)
=

(
a b
c d

)
Here, µ is
phase advance
through one
periodic cell



  

 Tevatron Cell
sin(µ/2) = L/2F = 0.6 −→ µ ≈ 1.2(69◦)
βmax = 2(25 m)

√
1.6/0.4 = 100 m

βmin = 2(25 m)
√

0.4/1.6 = 25 m
ν ≈ 100 × 1.2/2π ∼ 20

Periodic FODO Cell Functions

! "#:= $ %&:= '()
!

% $!

!
"
#

$
%

:= "*
+ '()+

+ '()#
:= $ * % $! "*!:=

%
+ "*

%
+

$ *

:=

"(
+ '()#

+ '()+
#:= $( % $!, - "(#( )!:=

$ . ', - $ * % "*! '!# % '
%

!+ ' !</0

$( % "(! ' !#, -!# % ' !#, -
%

!+ 123456/'4

:=

$ 7 ', - $( % "(! '!# % '
%

!+ ' !</0

$ * % "*! ' !#, -!# % ' !#, -
%

!+ 123456/'4

:=

' # #8#+, % !!..:=

! "#= $ %&=

# +# %# "# 9# &# :#
#

%#

9#

:#

;#

+##

+%#

$. ', -

$7 ', -

'



  

Computer Codes
 Complicated arrangements can be fed 

into now-standard computer codes for 
analysis
 TRANSPORT
 SYNCH
 MAD
 CHEF
    many more ...



  

An Example -- NuMI Beam Line
 Using 

CHEF
(Michelotti, Ostiguy)



  

NuMI Beam Line using CHEF


