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Overview

 Found analytical solution to Hill’s Equation:

 So far, discussed amplitude function, β
 What about A?

 Given β(s), how big is the beam at a particular 
location?         mm?  cm?  m?

 If perturb the beam’s trajectory, how much will it 
move downstream?

 Single particle behavior vs. a “beam”

x(s) = A
√

β(s) sin[ψ(s) + δ]



  

Betatron Oscillation Amplitude
 Transverse oscillations in a synchrotron (or beam line) are 

called Betatron Oscillations (first observed/analyzed in a 
betatron)

 Given x = a
√

β sinψ + b
√

β cos ψ

x′ =
1√
β

([b − aα] cos ψ − [a + bα] sinψ)

↓
a =

x0√
β0

, b =
α0x0 + β0x

′

0√
β0

=⇒ x(s) =

√
β(s)

β0

[x0 cos∆ψ + (α0x0 + β0x
′

0) sin∆ψ]

amplitude: A =

√
x2

0
+(α0x0+β0x′

0
)2

β0



  

Free Betatron Oscillation

 Suppose a particle traveling along the 
design path is given a sudden (impulse) 
deflection through angle

 Then, downstream, we have
∆x

′
= x

′

0 = ∆θ

s0
s

x

Example:
Suppose ∆θ = 0.1 mrad, β0 = 49 m, β(s) = 64 m,
and ∆ψ = n × 2π + 30◦. Then x(s) = 2.8 mm.

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]



  

Courant-Snyder Invariant

 In general,
x = A

√
β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β

While C-S parameters evolve along the beam line, the
  combination above remains constant.



  

 The eqn. for the C-S invariant is that of an ellipse.                
If compute the area of the ellipse, find that 

 area = πA
2

x
′

x

area = πA
2
≡ ε

x̂ =

√
βε/π

x̂′ =

√
γε/π

x(x′ = 0) =
√

ε/πγ

x′(x = 0) =
√

ε/πβ

i.e., while the 
ellipse changes 
shape along the 
beam line, its area 
remains constant

Emittance =  area within a phase 
      space trajectory

Properties of the 
Phase Space Ellipse

γx2
+ 2αxx′

+ βx′2
= A2



  

Motion in Phase Space

 Follow phase space trajectory...

x

x’

x’

x equal areas

Bea
m Li

ne
 ...



  

Beam Emittance

 Phase space area 
which contains a 
certain fraction of 
the beam particles

 Popular Choices:
 95%
 39%
 15%
   ...more on this 

subject coming up...

x’

x



  

Adiabatic Damping 
from Acceleration

 Transverse oscillations imply transverse momentum.  As 
accelerate, momentum is “delivered” in the longitudinal 
direction (along the s-direction).  Thus, on average, the 
angular divergence of a particle will decrease, as will its 
oscillation amplitude, during acceleration.







 The coordinates x-x’ are not canonical conjugates, but 
x-px are;  thus, the area of a trajectory in x-px phase 
space is invariant for adiabatic changes to the system.

s

∆p, from RF system



  

Normalized Beam Emittance
 Hence, as particles are accelerated, the area in x-x’ 

phase space is not preserved, while area in x-px  is 
preserved.  Thus, we define a “normalized” beam 
emittance, as





 In principle, the normalized beam emittance should be 
preserved during acceleration, and hence along the chain 
of accelerators (at FNAL: Linac, Booster, Main Injector, 
etc.).  Thus it is a measure of beam quality, and its 
preservation a measure of accelerator performance.

εN ≡ ε · (βγ)



  

Gaussian Beam in a 
Periodic System

 Imagine a synchrotron in which the transverse distribution 
of circulating particles has reached an equilibrium with a 
Gaussian profile in transverse coordinate x with zero mean 
and standard deviation .
 The distribution can be described as follows:

βx’+αx

x

r2 = x2 + (βx′ + αx)2

Radius, a, containing fraction, 
f, of particles, corresponding to 
phase space area with 
emittance, ε:

ρ(r, θ)rdrdθ =
1

2πσ2
e−r2/2σ2

r drdθ

a2 = −2σ2 ln(1 − f) = εβ/π

∫ 2π

0

∫
a

0

ρ rdrdθ = f



  

Gaussian Emittance

 So, the normalized emittance that contains 
a fraction f of a Gaussian beam is:

 Common values of f :
εN =

−2π ln(1 − f)σ2(s)

β(s)
(βγ)

Lorentz!

f εN/(βγ)
95% 6πσ2/β

86.5% 4πσ2/β
39% πσ2/β
15% σ2/β

Typically used 
at Fermilab



  

Emittance Measurements

 Typical practice, in a synchrotron, is to 
measure rms beam size (assumed 
Gaussian), at a location where β is  
presumed to be known, and thus emittance 
can be deduced.

 While Gaussian description is often good 
approximation of the distribution, not 
necessarily true.  Also possible to define the 
emittance in terms of 2nd moments of the  
(arbitrary) distribution.



  

Emittance in Terms of Moments

 For each particle,
 Average over the (stationary) distribution...

x = A
√

β sinψ x′ =
A
√

β
(cos ψ − α sinψ)

x2 = A2β sin2 ψ x′2 =
A2

β
(cos2 ψ + α2 sin2 ψ − α sin 2ψ)

〈x2〉 =
1

2
〈A2〉β 〈x′2〉 =

〈A2〉

2β
(1 + α2) =

1

2
〈A2〉γ

xx′ = A2(
1

2
sin 2ψ − α sin2 ψ)

〈xx′〉 = −
1

2
〈A2〉α

and ...

From which the average of all particle emittances will be π〈A2〉 = 2π
√
〈x2〉〈x′2〉 − 〈xx′〉2

and the “normalized rms emittance” can be defined as: εN = π(βγ)
√
〈x2〉〈x′2〉 − 〈xx′〉2

βγ −
α
2 = 1



  

TRANSPORT of Beam Moments

 For simplicity, define              ;  then,

 Correlation Matrix:

 then, 

ε̃ ≡
1

2
〈A2〉

ε̃J =

(
ε̃α ε̃β
−ε̃γ −ε̃α

)
=

(
−〈xx′〉 〈x2〉
−〈x′2〉 〈xx′〉

)

Σ ≡

(
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)
= −ε̃JS, where S =

(
0 1

−1 0

)

Σ2 = −ε̃J2S = −ε̃MJ1M
−1

S

= M(−ε̃J1S)S−1
M

−1
S

= MΣ1S
−1

M
−1

S

= MΣ1M
T

Here, M is from 
point 1 to point 2 
along the beam line



  

Summary
 So, can look at propagation of amplitude function through 

beam line given matrices of individual elements.  Beam 
size at a particular location determined by



 Or, given an initial particle distribution, can look at 
propagation of second moments (position, angle) given the 
same element matrices.

 Have neglected:
 dispersion of trajectories due to momentum (next time)
 hor-ver coupling (typically zero, by design)

xrms(s) =
√

β(s)εN/π(βγ)



  

 Effects of a local gradient error
 Suppose gradient of a thin lens is changed by 

amount         ...

Propagation of 
    Amplitude Function Mismatch

∆B
′

q ≡

∆B′!

Bρ

∆α = βq

Downstream of the source, 

At the source, 

≈ −qβ0 sin 2∆ψ0 (for small q)

q

β

s

β0(s)

β0(s) + ∆β(s)

Define:

∆β(s)

β(s)
= −qβ0 sin 2∆ψ0 +

1

2
(qβ0)

2(1 − cos 2∆ψ0)



  

Mismatch Invariant

 Consider two solutions to                  
through a focusing system
 for example, one may be the periodic solution, 

the other a perturbed solution
 Then,

β′′
+ 4Kβ = const.

J02 = MJ01M
−1

J02 + ∆J2 = M(J01 + ∆J1)M
−1

∆J2 = M∆J1M
−1

det ∆J2 = detM det ∆J1 detM
−1

det ∆J2 = det ∆J1

Thus, det ∆J for two solutions is a constant along a beamline

propagate original

    solution

propagate perturbed

    solution



  

Expressions for 
Determinant of ΔJ

det ∆J = det(J1 − J0)

=

∣∣∣∣
∆α ∆β
−∆γ −∆α

∣∣∣∣
= −∆α2 + ∆β∆γ

= 2 − (β0γ1 + β1γ0 − 2α0α1)

= −

(
∆β
β0

)2

+
(
∆α − α0

∆β
β0

)2

1 + ∆β
β0

< 0



  

Some Examples...

 Injection Mismatch and Emittance 
Dilution

 Adjustment of Quadrupole in Beam Line
 Tune Shift in a Synchrotron
 Half-integer Stopband in a Synchrotron



  

Injection Mismatch and
Emittance Dilution

 Suppose beam arrives through a transfer 
line into a synchrotron, but the beta 
function of the line is not matched to the 
periodic beta function of the ring...

 Particles will follow phase space 
trajectories dictated by the ring lattice; 
actual nonlinearities of the real 
accelerator will cause their motion to 
decohere

 Net result:  emittance dilution

ε/ε0 = 1 −

1

2
det ∆J

if ε ∼ 〈x2〉, then

x’

x

incoming ellipse



  

Matched:
   circular
Mismatched:
   elliptical

Let’s Role the Video Tape...

Decoherence occurs 
in a “real” accelerator 
due to inherent non-
linear fields; particle 
motion gets out of 
phase, results in an 
apparent increase of 
phase space area



  

 Suppose a beam line is perfectly matched to a circular accelerator 
downstream.

 Suppose now adjust a thin lens quad in the beam line, with nominal focal 
length F; just after the lens,



 The mismatch invariant,       , is constant downstream, so... 
 the beta function distortion through the rest of the line will have 

amplitude:  
 at the source, and at injection point to the accelerator,
 and the resulting emittance growth will be

ε/ε0 = 1 +
1

2
(β0/F )2(∆I/I)2

Quad Error/Adjustment

∆J

∆β/β ≈ β0q
∆J = −∆α

2

∆α = β0q = (β0/F )(∆B′/B′)
∆β = 0

Suppose β0 = 45 m, F = 15 m,
and a 5% change is made;
then ∆β/β ≈ 15%, but ε/ε0 ≈ 1.01



  

Tune Shift in a Synchrotron

 Insert “thin quad” at one point in the 
synchrotron:

M = MqM0 =

(
1 0

−q 1

) (
a b

c d

)
=

(
a b

c − aq d − bq

)

trM = a + d − bq = trM0 − q β0 sin 2πν0

cos 2π(ν0 + ∆ν) = cos 2πν0 − β0q sin 2πν0

∆ν ≈

1

4π
β0qFor small changes or small errors:

Note:  will also generate a distortion of amplitude function...



  

Half integer Stopband Beta at the quad:!0 20 m":= Quad error: q
1

200 m"
:=

Half the trace of M:
  (should between 
    +1 and -1)

TrM_2 #0( ) cos 2 $" #0"( )
1

2
!0" q" sin 2 $" #0"( )"%:=

1

4 $"
!0" q" 7.958 10

3%
&=

New tune:

# #0( )
1

2 $"
acos cos 2 $" #0"( )

1

2
!0" q" sin 2 $" #0"( )"%'

(
)

*
+
,

"'
(
)

*
+
,

8+ #0 8.5-if

1

2 $"
acos cos 2 $" 8.5 #0%( )"./ 01

1

2
!0" q" sin 2 $" 8.5 #0%( )"./ 01"%.

2
/

0
3
1

".
2
/

0
3
1

8.5+ #0 8.5>if

:=

#0 8.25 8.2501, 8.75..:= # 8.25( ) 8.258=

8.25 8.3 8.35 8.4 8.45 8.5 8.55 8.6 8.65 8.7 8.75
8.25

8.3

8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7

8.75

# #0( )

#0

Half-Integer Stopband
 Actual tune 

change due 
to gradient 
error:

cos 2πν
= cos 2πν0

−β0q sin 2πν0

For given gradient error, or 
distribution of errors, as approach 
tune with half-integer value the 
lattice will become unstable -- the 
“stopband width” is the spread of 
unstable tune values.


