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Objective 
 The success of Tevatron Run II is based on advances in  

 the accelerator physics,  
 as well as, on the excellence and advances in  

 engineering 
 instrumentation  
 and machine operation.  

 Lectures are devoted to review the main advances in Accelerator 
physics which contributed to the luminosity growth and/or 
improvement of the Tevatron complex operations.  

 The lectures are aimed for the Run II participants who would like to 
deepen their understanding of the accelerator physics.  

 The level of the presented material corresponds to the advanced 
course of accelerator physics but at the same time we would like to 
present material so that it could be understandable for less prepared 
listeners 

 It will be presented by real participants 
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List of the lectures (can be modified on the road) 
1.   Linear optics fundamentals and linear optics with coupling 

  between degrees of freedom (Lebedev) 
2. Linear optics measurements (closed orbit distortion, turn-by 

  turn) (Gianfelice-Wendt) 
3. Non-linear dynamics and its measurements in Tevatron (Alexahin) 
4. Impedances. (Burov) 
5. Longitudinal instabilities  
6. Transverse instabilities  
7. Single and multiple IBS and gas scattering  
8. Stochastic cooling and stacking  
9. Stochastic cooling hardware and stochastic cooling measurements  
10. Electron cooling and its fundamentals  
11. Cooling and beam manipulations in Recycler  
12. Antiproton production  
13. Luminosity evolution in Tevatron  
14. Beam-beam effects and their simulations  
15. Instrumentation, feedbacks and their development for Run II  
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Lecture 1 
Linear Optics Fundamentals and Linear 
Optics with Coupling Between Degrees of 
Freedom 

Valeri Lebedev 
Contents 
 Equations of motion, Symplecticity condition, Liouville theorem   
 Eigen-vectors and mode emittances of multidimensional motion,  
 Parameterization of single dimension motion, Twiss parameters, 

parameterization of multidimensional motion 
 X-Y coupled motion, Edwards-Teng and extended Mais-Ripken 

parameterizations 
 Perturbation theory for symplectic motion 

March 31, 2009 



Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009  5

Where coupling effects are important? 
 Coupling build-in into design 

 Electron cooler 
 P1 line (required by vertical dispersion match) 

 Model without coupling is too rough 
 Tevatron  

 large spread of skew-quadrupole component in dipoles 
 “Real machine optics” represents measured coupling  

 Debuncher 
 Accumulator 
 Recycler 

 Coupling is not negligible in all other transfer lines and machines  
What will be discussed 
 X-Y coupling 

 X-S coupling can be described the same way 
 X-Y-S coupling is straight forward extension 

 Many results of two dimensional coupling theory can be applied 
directly 
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Equations of motion 
 Linearized equations of two dimensional motion 
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PceBK xyyx /,,    - dipole  
  (linear part of beam space charge force can be added too)  

PceGk /      - quadrupole,  
PceGN s /   - skew-quadrupole,  
PceBR s /   - longitudinal magnetic field 

From mathematics point of view:  
It is a system of ordinary linear differential equations with 

variable coefficients 
The equations for x and y motions are closely coupled 
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 Hamiltonian form of the motion equation 

xUHx ˆ
ds
d

                 
Hamiltonian matrix        Unit symplectic matrix  
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Rxx   are the canonical variables  
Coincide with usual coordinates (x, x, y, y) if Bs = 0 

 Canonical coordinates:   xx  ,  yy   

 Canonical momenta:  yRp xx 2
 ,   xRp yy 2

 , 





 

ds
dy

ds
dx

yx  ,  

PceBR

R

R

p
y
p
x

y

x

s

y

x

y

x /,

1002
0100
0210
0001

,, 
































































 Rxx 





       

 Here and below we put a cap above transfer matrices and vectors 
related to the canonical variables. 
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Transfer matrix (linear map) 
 Solution of system of four first order linear differential equations 

can be presented as sum of 4 linearly independent vector-functions 
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Or in the vector form :   CXx )(~)( ss   
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XCx  

 Let’s express the solution through it’s initial value (s = 0): 
)0(),0()( xMx ss   

Taking into account that CXx )0(~)0(   we obtain 
CXMxMxCX )0(~),0()0(),0()()(~ ssss   

     1)0(~)(~),0(  XXM ss    - M(0,s) is transfer matrix from s=0 to s 



Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009  9

Unit symplectic matrix  
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 Antisymmetric  

TUU   
 

 Useful properties 
IUUUU  TT      IUU   

1det U  
0UaaT     for any vector a  

 
 In the literature it is also denoted as S   



Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009  10

Symplecticity condition 
 Lagrange invariant 

 Remind that the equation of motion is: xUHx ˆ
ds
d

    

       0ˆˆˆˆˆˆˆˆˆˆ 2121
2

12
1

21  xUUHxxUUHxxUxxUxxUx TTTTT
T

T

ds
d

ds
d

ds
d

         

and, consequently,      constˆˆ 21 xUx T
    

 Symplecticity condition  
 Remind: transfer matrix for canonical variables  0ˆ),0(ˆˆ xMx s  

     constˆ),0(ˆ),0(ˆˆˆˆ 0000  xMUMxxUx ss TTT
         

 As the above equation is satisfied for any x̂  it yields  

UMUM ),0(ˆ),0(ˆ ss T   UMUM ),(ˆ),(ˆ
2121 ssss T

 
 There 16 equations but only 6 are independent because 

),0(ˆ),0(ˆ ss T MUM  is antisymmetric 
 i.e. there are six equations which bound transfer matrix 

elements 
 Only 10 of 16 transfer matrix elements are independent 
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 Properties of symplectic matrices 
UMUM ˆˆ T

 
 

...)(...U     IMUMU ˆˆ T
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Liouville’s theorem   
 Transfer matrix determinant 

Computing determinant of both sides of symplecticity condition 

UMUM ),0(ˆ),0(ˆ ss T  we obtain    1),0(ˆdet
2
sM  

Taking into account that IM )0,0(ˆ
 we obtain    1),0(ˆdet sM  

 Liouville’s theorem  

Prove that the phase volume, 
V

yxdyddxd  , is conserved in the course of 

the motion, )0(),0()( xMx ss  . Then, 
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 Liouville’s theorem is justified also in the general case of non-linear 

motion:     1),0(ˆdet sM  
 It works even for case of the stochastic cooling 

 Strong filamentation of the phase space 
 Next we will see that the symplecticity additionally results in 

conservation of the mode emittances (analogs of x and y emittances) 
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Eigen-vectors and eigen-values  
 For circular accelerator the turn-by-turn particle positions can be 

expressed through the eigen-vectors,   

kkk vvM ˆˆˆ    ,   where ),0(ˆˆ LMM   and   k  = 1, 2, 3, 4  





4

1
0 ˆˆ

k
kkc vx   




4

1

ˆˆ
k

kk
n

kn c vx 
 

    Stability condition   1k  
 Complex conjugate of the eigen-value equation results in that  

the complex conjugate of eigen-vector is also eigen-vector with 
complex conjugate eigen-value: 

 *** ˆˆˆ
kkk vvM   

 Product of eigen-values   
      1...det...det...det 444   MMIM  

       4321
4

4321 ...det   IM  

Comparing we obtain that     14321   

    Stability condition      1k  
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 Eigen-values of stable motion 
 For stable betatron motion    

1i   and  
1i  (integer and half-integer resonance condition) 

 Four eigen-values split into two complex conjugate pairs 
 Symplectic orthogonality of eigen-vectors  

For any two eigen-vectors the symplecticity condition yields  
      i

T
jijii

T
jji

T

jiii
T

jj vUvvUvvMUvMvvMUv    1ˆˆˆ0   

i.e.     01  i
T

jij vUv   
That yields that for stable motion the only scalar product different 
from zero is  

 0
ii vUv 

 
Note that it is purely imaginary:  

    vUvvUvvUvvUv ˆˆˆˆˆˆˆˆ *     
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Eigen-vectors normalization 
 We leave only two of four eigen-vectors in further consideration 

 Two other are complex conjugate and can be omitted  
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 For two top equations 
 Factor of 2 sets correct relation to emittances and phase advances 
 Sign “minus” determines which 2 of 4 eigen-vectors have to be used 

 Equations in the second line are actually identities 
 8 independent real variables uniquely determine the eigen-vectors  

 16 – 2 (arbitrary phases) - 2 (two top eqs.) 
- 4 (two bottom complex eqs.)  = 8 

 Adding 2 betatron phases we obtain 10 independent real variables 
describing the motion  
– The same as for the transfer matrix elements considered above 
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Beam ellipsoid in 4D phase space 
 Turn-by-turn particle positions and angles at the lattice beginning  

 2211 ˆˆReˆ 21 vvx  ii eAeA    
where real parameters, A1, A2,1 and 2 , are the betatron 
amplitudes and phases.  

 Let us introduce the following real matrix:    



  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV    .

   
  Chosen normalization of eigen-vectors results in that V̂  is a 

symplectic matrix: UVUV ˆˆ T  
     UVUV Tˆˆ 1   

 Using matrix V̂   allows one to rewrite the top equation in the 
compact form:  A


AVx ˆˆ   

where      
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 Single particle phase space:  
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Vector 

 defines sphere with unit radius in 4-D space  

  


AVx ˆˆ  defines 3D surface of 4D-ellipsoid contained all particles  
 Standard form of surface parameterization is a bilinear form     

1ˆˆ xΞxT
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Mode emittances and total beam emittance 
 Symmetric matrix Ξ  uniquely determines the beam phase space  

 It has 10 independent parameters
 It can be expressed through matrix V̂ and 2 amplitudes  

(also 10 param.)  
 4D beam emittance and mode emittances

 Inverting equation for matrix Ξ̂  we obtain VΞVAAΞ ˆˆˆˆ 11 T  

 i.e. symplectic transform  V̂  reduces matrix Ξ̂ to its diagonal form 
but does not change 4D volume of the ellipsoid because 1ˆdet V 

 In new coordinates 
1ˆˆˆˆ 2

44
2

33
2

22
2

11  yx pypx  
 Then 4D beam emittance (omit correction 2/2 for real 4D volume) 

 221

44332211

4
)ˆdet(

1
)ˆdet(
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ˆˆˆˆ

1 AAD 
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2
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11214 ,,
)ˆdet(

1 AAD  
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 Beam envelope bilinear form 
 Summarizing above we conclude, if we know  

 beam emittances 
 eigen-vectors and, consequently,  matrix V̂  

 then the particle ellipsoid can be described as following: 
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 Symplectic transform/motion does not change mode emittances 
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Second order moments of the Gaussian distribution 
 Gaussian distribution function for coupled beam motion  







 xΞxx ˆˆˆ

2
1exp

4
1)ˆ(

21
2

Tf
 

 The second order moments of the distribution  
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Transform, xVy ˆˆˆ 1 , reduces matrix Ξ̂  to its diagonal form and makes an 
integration trivial 
Finally one obtains 
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 Relationship between bilinear form and second order moments  

   IUVΞVUVΞVΞX   TTT ˆˆˆˆˆˆˆˆ 1         
1ˆˆ  ΞX    

 And, consequently,    X̂det214   D  
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Finding Emittances and Eigen-vectors from  X̂  and  Ξ̂  
 Solution of characteristic equation results in the mode emittances  

  Consider equation    0ˆdet  UΞ i 
   It has 4 roots:  121 /1     and  243 /1    

 Proof:  
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 Eigen-vectors of charact. eq. are equal to the motion eigen-vectors: 

0ˆˆ 







 l

l

i vUΞ
  

 Proof: Rewrite TT UVΞVUΞ ˆˆˆˆ  as ΞVUUVΞ  ˆˆˆˆ  and multiply it by  lu  
as result one obtains the above equation. 
Here   l = 1, 2;       TT ii  100,001 21 uu 

   and we also took into account that: ll vuV ˆˆ  , ll iuUu  , lll /uuΞ   

 Similarly for the second order moments:   0ˆˆ  lli vIUX    



Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009  22

Eigen-vectors and Beta-functions of Uncoupled Motion 
 Eigen-vectors:    
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Eigen-vectors and Beta-functions of Coupled Motion 
 Parameterization of eigen-vectors for X-Y coupled motion  

 Extended Mais-Ripken presentation  
 only 8 of 11 parameters are independent (’s and ’s) 
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Transfer matrix between two points 
 V-matrices of two points are related by transfer matrix  

1122
ˆˆˆ   VMSV   

 Here matrix S removes the betatron phase advance and 
restores the eigen-vectors to their normal form 

   


























22

22

11

11

cossin00
sincos00

00cossin
00sincos

   







S
 

 Multiplying this equation on both sides by, UVUV T
1

1
1

ˆˆ 
,  

results in 
 

UVSUVM T
1212

ˆˆˆ          



Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009  26

Derbenev's vertex to 
plane transform  
 Eigen-vectors of 

 decoupled motion  
in the coordinate  
system rotated  
by 45 deg 
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 Focusing system with 45 deg difference for X and Y betatron phase 
advances will transform from one to another distribution 

 Mode emittances are conserved in the vertex-to-plane transform 
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Tune Shifts due to Focusing Perturbations 
Perturbation theory 
 Unperturbed motion: 4,...1,ˆˆˆ  jjjj vvM   

 Perturbed motion:     0,1,ˆˆ~,~~ˆˆ
4

1

 


iiij
i

iijjjjjjj  vvvvvMΔM  

 Linearizing:      ,ˆˆˆˆˆ
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 Eigen-values  and eigen-vectors are complex conjugated. Reindexing 
   *

22
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114321 ˆˆˆˆˆˆˆˆ vvvvvvvv   results in two matrix equations 
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Tune Shifts due to Focusing Perturbations (2) 
Perturbation theory (continue) 
 V consists of symplectic vectors and its inversion is: UUVV T

cc i2
11   

 Substituting one finally obtains  
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 Multiplication both sides by   0001  results in correction factors 
for eigen-values  
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Tune Shifts due to Focusing Perturbations (3) 
Tune shifts due to quadrupole and skew-quadrupole errors 
 Hamiltonian 22 2 yxyxH ysx   
 Transfer matrix: 
 
 Eigen-values  corrections:  MMΔIMΔM ˆˆˆˆ

q =>  MMΔMΔ ˆˆˆ
q  
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 Performing multiplications one finally obtains 
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Conclusions 
 The same as for uncoupled motion 

 Mode emittances and total emittance are conserved 
 Twiss parameters and emittances determine the beam ellipsoid 

in 4D phase space and vice-versa 
 Twiss parameters of two points and betatron phase advances 

determine corresponding  eigen-vectors and transfer matrix 
between these points 

 There are 8 independent parameters which determine the eigen-
vectors 

 General structure of eigen-vectors and motion is closely 
coupled with the uncoupled case 

 Symplecticity of the motion enables to build effective perturbation 
theory 


