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Objective

B The success of Tevatron Run IT is based on advances in

¢ the accelerator physics,

¢ as well as, on the excellence and advances in
e engineering
e instrumentation
e and machine operation.

B |ectures are devoted to review the main advances in Accelerator
physics which contributed to the luminosity growth and/or
improvement of the Tevatron complex operations.

B The lectures are aimed for the Run II participants who would like to
deepen their understanding of the accelerator physics.

B The level of the presented material corresponds to the advanced
course of accelerator physics but at the same time we would like to
present material so that it could be understandable for less prepared
listeners

B It will be presented by real participants
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List of the lectures (can be modified on the road)

1. Linear optics fundamentals and linear optics with coupling
between degrees of freedom (Lebedev)

2. Linear optics measurements (closed orbit distortion, turn-by
turn) (Gianfelice-Wendt)

3. Non-linear dynamics and its measurements in Tevatron (Alexahin)

4. Impedances. (Burov)

5. Longitudinal instabilities

6. Transverse instabilities

-

8

9

Single and multiple IBS and gas scattering
Stochastic cooling and stacking
Stochastic cooling hardware and stochastic cooling measurements
10. Electron cooling and its fundamentals
11. Cooling and beam manipulations in Recycler
12. Antiproton production
13. Luminosity evolution in Tevatron
14. Beam-beam effects and their simulations
15. Instrumentation, feedbacks and their development for Run IT
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March 31, 2009
Lecture 1

Valeri Lebedev
Contents
B Equations of motion, Symplecticity condition, Liouville theorem
B Eigen-vectors and mode emittances of multidimensional motion,
B Parameterization of single dimension motion, Twiss parameters,
parameterization of multidimensional motion
B X-Y coupled motion, Edwards-Teng and extended Mais-Ripken
parameterizations
B Perturbation theory for symplectic motion
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Where coupling effects are important?
B Coupling build-in into design

¢ Electron cooler

¢ P1line (required by vertical dispersion match)
B Model without coupling is oo rough

¢ Tevatron

e large spread of skew-quadrupole component in dipoles

B "Real machine optics” represents measured coupling

¢ Debuncher

¢ Accumulator

¢ Recycler
B Coupling is not negligible in all other transfer lines and machines
What will be discussed
B X-Y coupling

¢ X-S coupling can be described the same way
B X-Y-S coupling is straight forward extension

¢ Many results of two dimensional coupling theory can be applied
directly
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Equations of motion
B |inearized equations of two dimensional motion

x”+(KX2+k)><+(N —%R’jy—Ry’zo ,

y”+(Ky2 —k)y+(N +%R’jx+ RX'=0

K., =eB, ,/Pc -dipole

(linear part of beam space charge force can be added too)

k =eG/Pc - quadrupole,
N =eG, / Pc - skew-quadrupole,
R=eB;/Pc - longitudinal magnetic field

From mathematics point of view:
It is a system of ordinary linear differential equations with
variable coefficients
The equations for x and y motions are closely coupled
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B Hamiltonian form of the motion equation

dx -
— = UHx
ds
Hamiltonian matrix Unit symplectic matrix
] ) _
KX2+|<+RT 0 N ~R/2 0 1 0 O]
-1 0 0 O
= O 1 v R? O “Zlo o 0 1
N R/2 K, -k+— 0
4 0O 0 -1 0
| —R/2 0 0 1 - -
x = Rx are the canonical variables
Coincide with usual coordinates (x, 6., y, 6,) if Bs=0
¢ Canonical coordinates: X=X, Y=Y
R _dx _dy
¢ Canonical momenta: Px =% _Ey, by =0, +§X, (QX T ds | Y =E)
[ X [ X | 1 0 O 0]
0 1 -R/2 0
x=| ~ x=| > , R= / , R=eB,/Pc
y y 0 O 1 0
0, b, | R/2 0 0 1]
¢ Here and below we put a cap above transfer matrices and vectors

related to the canonical variables.
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Transfer matrix (linear map)
B Solution of system of four first order linear differential equations
can be presented as sum of 4 linearly independent vector-functions

x(s) | Xk(s)
dx(s)/ds| & |6,.(s)
= C.| ~
v | & 56
| dy(s)/ds 10,,(5)
Or in the vector form : x(s) = X(s)C
[ X(s) ]| c, | X(s) X(s) XK(s)  X(s) |
| dx(s)/ds e, < o | Ga(s) 0,(5) O5(s) 6,(5)
A AT R P R OB AC R AC B AC
| dy(s)/ds | c, | 10,,(s) 6,,(s) 0,,(s) 6,,(s)

B |et's express the solution through it's initial value (s = 0):
x(s) =M(0,5)x(0) |
Taking into account that x(0) = X(0)C we obtain

X(s)C = x(s) = M(0, s)x(0) = M(0, s)X(0)C

= ‘ M(0,5) =X(s)X(0) " | - M(0,s) is transfer matrix from s=0 to s
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Unit symplectic matrix

0 1 0 O
-1 0 0 O
U =
0 0 0 1
0 0 -1 0
B Antisymmetric
U=-U'
B Useful properties
U'U=UU =1 UU=-1
detU =1

a'Ua=0 for any vector a

B TIn the literature it is also denoted as S
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Symplecticity condition
B |agrange invariant

. . o ax . .
¢ Remind that the equation of motion is: o UHXx
dfaren) O, o o 7. 0%, . .. 5
= E( 1TUX2): d—;sz +X1TUd—SZ =%, H'U'Ux, +%, UUHX, =0
A Tern
and, consequently, x, Ux, = const ‘

B Symplecticity condition
¢ Remind: transfer matrix for canonical variables %=M(0,s)x,
— X,/ Ux, =%, M(0,5)" UM(0,5)X, = const
¢ As the above equation is satisfied for any X it yields
M(O, s)' UM(O, s)=U = M(s,,s,) UM(s,,s,)=U
e There 16 equations but only 6 are independent because
M(0,s)" UM(0,s) is antisymmetric

e i.e. there are six equations which bound transfer matrix
elements

= Only 10 of 16 transfer matrix elements are independent
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B Properties of symplectic matrices
MUM=U |

U(..=..) —~  UM'UM=-I

(=M | UM'U=-M" |

M(...=...) —~  MUM'U=-I
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| iouville’s theorem

Transfer matrix determinant
Computing determinant of both sides of symplecticity condition

M(0,5)" UM(0,5) = U we obtain (det(M(0,s))f =1

Taking into account that M(0,0) =1 we ob’rain‘ (det(M(O, S)))=1
Liouville's theorem

I = [ dxde,dydo,
Vv

Prove that the phase volume, , is conserved in the course of

the motion, x(s) = M(0,s)x(0) . Then,
jﬁ(x’, g.Y',0,)
v o(X,0,Y,6,)
Liouville’s theorem is justified also in the general case of non-linear

motion: (det(M(O, S)»zl ‘
¢ It works even for case of the stochastic cooling
e Strong filamentation of the phase space
Next we will see that the symplecticity additionally results in
conservation of the mode emittances (analogs of x and y emittances)

I" = [ dxde/dy'de), = dxd,dydd, =[ det(M kixd6,dydd, =T
Vv’ Vv
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Eigen-vectors and eigen-values

B For circular accelerator the turn-by-turn particle positions can be
expressed through the eigen-vectors,

M{’k :ﬂ«ki}k ‘ , Wherle M:M(O’ L) and k — 1’ 2’ 3’ 4
4 R 4 I
X, zécki}k = Xn = kz_;/lk Ck Vi
—  Stability condition Ay <1

B Complex conjugate of the eigen-value equation results in that
the complex conjugate of eigen-vector is also eigen-vector with
complex conjugate eigen-value:

M = £,
B Product of eigen-values
det(M — AI)= A* +...+det(M)= 2" + ...+ det(M)= 2" +...+1
detM - A1) =(1- ) A=) A-4)A-4,)=2" +..+ LA, 4.4,
A AyAnhy =1

Comparing we obtain that

. Stability condition | A=t |
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B Eigen-values of stable motion
¢ For stable betatron motion
4=1  and
4 #*1 (integer and half-integer resonance condition)
¢ Four eigen-values split into fwo complex conjugate pairs
B Symplectic orthogonality of eigen-vectors
For any two eigen-vectors the symplecticity condition yields

0=19," UMY, - 4% )= (Mv, ] UMY, - 4.9 "UA, = (- 2.2, UV,

o L-2,4Uv, =0 |

That yields that for stable motion the only scalar product different
from zero is

| 9,U¥, 20

Note that it is purely imaginary:
(FUv) = (FUV) = VU = OV
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Eigen-vectors normalization

¢

We leave only two of four eigen-vectors in further consideration
e Two other are complex conjugate and can be omitted

v, Uv,==2i , v, Uv,=-2i |,
ATern A Teen

v, Uv, =0 , v, Uv,=0 ,
A Tern A +zoA

v, Uv, =0 , v, Uv, =0

For two top equations
e Factor of 2 sets correct relation to emittances and phase advances
e Sign "minus” determines which 2 of 4 eigen-vectors have to be used

Equations in the second line are actually identities
8 independent real variables uniquely determine the eigen-vectors
e 16 - 2 (arbitrary phases) - 2 (two top egs.)

- 4 (two bottom complex eqs.) = 8
Adding 2 betatron phases we obtain 10 independent real variables
describing the motion
- The same as for the transfer matrix elements considered above
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Beam ellipsoid in 4D phase space
B Turn-by-turn particle positions and angles at the lattice beginning
X = Re(ﬁe“"’l%l + Aze“"“ffz)
where real parameters, A1 A2 y1 and y» , are the betatron
amplitudes and phases.

V - Vl ,_Vl ’VZ ,_VZ

B |et us infroduce the following real matrix: [ } ‘

B Chosen normalization of eigen-vectors results in that V isa
symplectic matrix: ViUV =U
- V'=—Uuv'u
B Using matrix V allows one to rewrite the top equation in the
compact form: %=VAZ,

where
‘A 0 0 0 [ cosy, |
0 0 O - —sin
A - Al ! gA = l/ll
0O 0 A O Cos v,
0 0 0 A | —siny, |
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B Single particle phase space:
sY [ cosy, |

" _ —sin
A x=VAE, En= &
Cosy,

__Sin v, |

O Ensembl$ of particles:

[ CcOSw, COSy, |
X _ | =siny, cosy .
<& o S (Eg)=1
cosy, Siny,
| —siny, siny,

Vector ¢ defines sphere with unit radius in 4-D space

= % =VA¢Z defines 3D surface of 4D-ellipsoid contained all particles
B Standard form of surface parameterization is a bilinear form

Ex=1 |

(é?,g)=1, =— iT((\AfA)_l)T({IA)_lgzl

AN AN AN

==UVEV'U
= =diag(A 2 A AT AT
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Mode emittances and total beam emittance

B Symmetric matrix E uniquely determines the beam phase space
¢ It has 10 independent parameters

¢ It can be expressed through matrix Vand 2 amplitudes
(also 10 param.)

B 4D beam emittance and mode emi‘r’rances
¢ Inverting equation for ma’rr'lx we obtain E=A'AT=V'EV
¢ i.e. symplectic transform V reduces matrix E to its diagonal form

but does not change 4D volume of the ellipsoid because detV =1
¢ Innew coordina‘res
—~r 12

Ep X +E “—‘22 px + Hssy + *—*44 py =1

¢ Then 4D beam emittance (omit correction n°/2 for real 4D volume)

£y = L 1 =(AA) =
U JELEL SR, VetE)  \det(E)
1
Esp = 6,8, = — | g=A" , &=A"
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B Beam envelope bilinear form
¢ Summarizing above we conclude, if we know
e beam emittances
e eigen-vectors and, consequently, matrix v
¢ then the particle ellipsoid can be described as following:

XEx=1,
1/, 0O 0 0]
" ~ 0 1/¢ 0 0 [~
==UV ' v'u'
0 0 1lg, O
0 0 0 1/g,
B Symplectic transform/motion does not change mode emittances
c T o X,=Mp%, 2 T(" —‘1)Te. r —1lx _1
X, =X, = > X, (M, =My, X, =

AN A AN

= (Mlz_l)T =M, = (Ml;”l)T UVEV, UM, '=UV,EZV, U

N

Y~ A
12 1) UV, =M.,V
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Second order moments of the Gaussian distribution

B (Gaussian distribution function for coupled beam motion

) 1 1 orn.
f(x)= exp| —=X'=
(x) drtee, p( 2" X)
B The second order moments of the distribution
RR; = [R%,f (R = %%, exp(—%féﬁjdf(“

Pa

X,

2
ArceE,

Transform, ¥ =V 'X , reduces matrix E to its diagonal form and makes an

integration trivial
Finally one obtains

&, 0 0 O
. |0 0 0.
x=v| v
0 0 & O
0 0 0 &

¢ And, consequently,
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Finding Emittances and Eigen-vectors from X and =

b

B Solution of characteristic equation results in the mode emittances
¢ Consider equation det(E-i2U)=0 ‘
It has 4 roots: 4, =-4,=1/¢ and A, =-1,=1/¢,
¢ Proof:
det(E—i4U)=det{UVEV U —i2U)=det(& -ia UV UVU)=

det(é’—i/lU):(lz—ﬂz)[lz—f] -0

& &,

B Eigen-vectors of charact. eq. are equal to the motion eigen-vectors:

[é—'Uj%, -0
€

AN AN AN

¢ Proof: Rewrite Z=UVE'V'U" as EVU = UVZ' and multiply it by wu,
as result one obtains the above equation.
Here 1=1,2; w=[1 —-i 0 0] , w=[0 01 —if
and we also took into account that: Vu, =¥, , Uy =—lu, Eu =u,/¢g

]

B Similarly for the second order moments: ‘ (XU”EJ)QH =0

Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009

21



nled Motion

Eigen-vectors and Beta-functions of Uncou

B Eigen-vectors:

VB || B 0
v=| l+a|, V= o 1
| VB VB B
B Eigen-vectors or’rhogonal ity:
%*Uﬁz{\/ﬁ I_—a}{o 1} I +oa |=-2i
R -2
v U,v=0
B Bilinear form
1+ g_
S S I
0 1/¢ a B
L & &

¢ Courant-Snyder invariant

AT 2A 1+ a? o
X EX = X° +2X¢9—+92£=1 — &=
ep £ £

L+a’ X* + 200 + 67

22
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Eigen-vectors and Beta-functions of Cou

pled Motion

B Parameterization of eigen-vectors for X-Y coupled motion

¢ Extended Mais-Ripken presentation

P Poe"
Cil-u)+ oy, iU+ ay, i
i\’1 = \/Euxv Vv, = \/FN
pye L \/ﬁTy
_iu+a1y it _i(l—u)Jrcx2y ’
JBy By |

VA 0 [ COs ¢ 0
+a 0 0 cos g
v =R , V =R , R = . .
" \(/)E Y2 }/:720[ asing bsing
0 —?ﬁ?; | csing  dsing
L — L 2 —
_ ﬂlx _ alx
A=y 0 BT
- 2
5, - By = Dy (sing)’ =u.
1-u 1-u

—dsing bsing |
csing —asing
COS ¢ 0

0 Cos¢g

o only 8 of 11 parameters are independent (8's and a.'s)
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Eigen-vectors and beta-functions of Coupled Motion(2)
B Single particle motion | oo
%(s) = Re(\/?ﬁl(s)e““”ﬁ““s” N \/g%z(s)e“““*“z(s”) i

X(s) = Re( Je B (s)e O 4 me—i(uz(s)—VZ(s)+w2)) 3

= y(s) = Re(q/glﬂly(s)e w&nO&w) y e B, (s)e '(”2(5)+‘”2))+ ,,,,,,,,,,, ,

B Beam sizes - QK 3

Gx — \/glﬂlx + 82ﬂ2x !
Oy = \/glﬁly + 82182y ’

<Xy \/ﬂlxﬂly COS Vl + 82 \/ﬂZxﬂZy COS V2

Sat Aug 16 13:11:28 2008 OptiM - MAIN: - C:\VAL\Optics\Tevatron\Tevatron\Gold\LowBeta_April2004\Tev_10.0pt

Y.

\[ E‘ 2x €2

-0.08— '

Q 10

‘-| — —]

>

L

><|

< = ]

'_

wi |

i}

o — = T e ‘ ‘ — o
o BETA_1X BETA_2Y BETA_1lY BETA_2X 500

Coupled beta-function in Tevatron (600 m in sector F)
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Transfer matrix between two points
B V-matrices of two points are related by transfer matrix
V S = M12V

¢ Here matrix S removes the betatron phase advance and
restores the eigen-vectors to their normal form

[ COSAp, SinAu, 0 0
g —SinAg,  COSAy, 0 0
0 0 COSAu, SinAwu,
0 0 —SINAu, COSAu,
¢ Mul’rlplymg this equation on both sides by, v,” =-uv,'U
results in

M,, =-V,SUV,"U

Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009

25



Skew-quadrupole

Derbenev's vertex to }'G”O‘d system
plane transform
e Eigen-vectors of ® | > -
decoupled motion
: : P,
in the coordinate Uncoupled _ m X Flat
system rotated axial-symmetric ~ Rotational > distribution
by 45 deg distribution distribution W
e B [
\i@a l+a 142
| se 1 JB | s | 2B ZH
W s T [Tl
0 _i+a1 _i+20(
- - VB | | 2yp

e Rotational eigen—vec‘rbrs

F, iF,
Wl ln
e Focusing system with 45 deg difference for X and Y betatron phase
advances will transform from one to another distribution

e Mode emittances are conserved in the vertex-to-plane transform
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Tune Shifts due to Focusing Perturbations

Perturbation theory
B Unperturbed motion: Mv, =4, j=1.4

4
B Perturbed motion: (M+AM);’ Ay +AA IV, VJZVJ+Z_1:‘9U o & <<l, £ =0
~ e\ . 4 ~ R 4 A
B Linearizing: (M+AM)(V,-+Zsijvij=(zj+mj{vj+;gijvij,

(M /11) £ =(A;Lj1—AM)vJ.

ij i

i(/l ﬂ)gul (A/IJI_AM)QJ

i=1

B Eigen-values and eigen-vectors are complex conjugated. Reindexing

B, ¥, % %loln % ¥ %] results in two matrix equations

1 0 0 0 AL, A, — A, 0 0 0 &

v 0 4-4 O 0 0 | AN, V. 0 4L-4 0 0 £ |_
0 0 A -4, 0 £y 0 0 1 0 AL,
0 0 0 =2 || &a 0 0 0 -4 || & |

*

where: VC=[% v, v, Q2*J
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Tune Shifts due to Focusing Perturbations (2)

Perturbation theory (continue)

B V consists of symplectic vectors and its inversionis: V. =—

B Substituting one finally obtains

CAA 1 0 0 0

* 1
fa|__ 19 -4 ° ° luvuams
E41 2i | 0 0 (A4, - 4,) 0 : g '
e 0 0 0 (n-47)"
&, _(/12 B ﬂl)_l 0 0 0 |

* -1

1) 0 -2 0 O luvuamy
AL 2 o 0 1 0 ° i
24 0 0 0 (-4

B Multiplication both sndes by [ 0 0 0] results in correction factors

for eigen-values

Ad =

Ad, =

—i_ v, UAM ¥,
21

ER v, UAM ¥,
21
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Tune Shifts due to Focusing Perturbations (3)
Tune shifts due to quadrupole and skew-quadrupole errors

B Hamiltonian AH < ®,x* +20 xy +® y? 0 0 0 0
: ; - - |-®, 0 —®, O

B Transfer matrix: M =I+AM,, AM =| ~* =
—d, 0 —D, O

B FEigen-values corrections: M+AM=(1+ANM M => AM=AN M

AJ, = —% v,"U(AM M J3, = —% 3 UAM, ¥,
| |

AR, = —% %;U(AMQM)VZ = —% v, UAM, ¥,
| |

B Tune shifts

AQ. _ M AQ, = —— 3 'UAMY,
272' /Ii ) Az
AQ, = —— §,"UAMS,
dr
B Performing multiplications one finally obtains
1
A(?1 - E((Dxﬁlx + 2(I)s ﬂlxﬂly COS(Vl) + (Dyﬂly)
1
AQ, = E((DxﬁZX +20, '\/ﬁZxﬁZy cos(v,) + (DyﬂZy)
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Conclusions

B The same as for uncoupled motion
¢ Mode emittances and total emittance are conserved
¢ Twiss parameters and emittances determine the beam ellipsoid
in 4D phase space and vice-versa
¢ Twiss parameters of two points and betatron phase advances
determine corresponding eigen-vectors and transfer matrix
between these points
B There are 8 independent parameters which determine the eigen-
vectors
¢ General structure of eigen-vectors and motion is closely
coupled with the uncoupled case
B Symplecticity of the motion enables to build effective perturbation
theory
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