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Operational Solution to Obtaining a Flat Vector Sum from Multiple Cavities with Gradient Disparities

Julien Branlard, FNAL
I - Introduction
The simulation effort presented in this paper is motivated by concerns about single klystron multiple cavities operation, when individual cavities have various quenching gradients [1, 2]. In a perfect scenario, all cavities in a cryomodule will operate at the target accelerating gradient of 31 MV/m. From the experience acquired at DESY where a similar scheme of multiple cavities/single klystron is operating, we know that in reality, cavities show a certain disparity in their gradient performance. Some cavities will quench when operating above 24 MV/m while others will handle an accelerating gradient of 34 MV/m without quenching. Hence, cavities with the ability to operate at a gradient higher than the desired accelerating gradient will be paired inside the cryomodule with cavities with a quenching limit below the vector sum gradient. This disparity among cavities raises many interesting conditioning and operating issues: can we still achieve a flat top gradient during the beam loading time, despite the disparity among individual cavities? Can we guarantee that the accelerating gradient of the vector sum is going to be the same under different beam current conditions? How can we adjust the input power coupled to each cavity to optimize the total accelerating gradient? How should the power be distributed among individual cavities within a cryomodule to account for differences in beam loading currents and yet maintain a constant flat top gradient? How much a cavity operating at a low gradient affects the overall vector sum gradient? Etc… the list goes on. More precisely this paper presents a working solution to this question: given a cavity quenching limits distribution, what is the maximum vector sum gradient that can be reached, provided that no cavity quenches with beam or in the absence of beam? 
II - Equations for one cavity under no beam
The starting point is the cavity equation given in Eq.1 [3]:
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(1)

This equation is derived from the standard parallel R, L, C cavity circuit model. In this model, the klystron is a current source, the coupler is a transformer with a 1:n turns ratio and the beam is injected at time t0 on the cavity side as a DC current, as illustrated in Fig1.
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Figure 1: standard RLC cavity model with coupler and beam loading
In Eq.1, RL is the loaded resistance of the cavity (i.e. as seen through the coupler) and is defined as 
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where Q0 is the cavity unloaded quality factor, Ib0 is the nominal DC beam current, 
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 is cavity time constant and t0 is the duration of the fill time of the cavity, which is assumed to be equal to the beam injection time.

When no beam is present (Ib0 = 0), the generator current Ig is reduced to compensate for the absence of beam loading. In the general case, Ig (t > t0 ) = Ig (t < t0 ) ÷ r . For simplicity, r = 2 in this work, so that the generator current is dropped by half and the forward power drops by a factor of four when no beam is present. It is easy to show that the cavity equation without beam is given by:
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(3)
or in the simple case where r = 2, Eq.3 simplifies to
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(4)
Achieving a flat top is equivalent to a null time-derivative of the cavity voltage which is obtained for 
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(5)
This means that if we cut the klystron power by 4 when no beam is present, the cavity voltage will be flat so long the fill time is set to 
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. The cavity voltage will then remain at VFlatTop = RLIg as long as the generator current is kept on.

Note that in the general case where the generator current is divided by r, (i.e. forward power cut by r2 ), the flat top condition mentioned above becomes 
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 and the flat top gradient is then given by 
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For simplicity, all subsequent calculations will be carried with r = 2. Nevertheless, the theory and the methods presented below can be extended to the general case where the forward generator voltage is dropped by an arbitrary ratio when the beam is off. 

Looking at Eq.5, one can observe that the flat top condition under no beam is solely function of (, (i.e indirectly function of QL). This means that for a given fill time, if we set all cavities to the same QL, the flat top condition under no beam is verified for all cavities as long as ( (i.e. QL) verifies
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. This result is independent of the forward power sent to each individual cavity. In the simple case of two cavities, if we distribute the generator current as Ig1 = α1 Ig0 and Ig2 = α2 Ig0 where Ig0 is the nominal generator current, then cavity 1 will achieve a flat top gradient V1  = RLIg1 and cavity 2 will reach its flat top gradient V2  = RLIg2. It is important to notice that due to fact that we chose to set all cavities to the same QL, RL is also the same for all cavities.
Case of multiple cavities without beam:
In the general case of N cavities, we set all cavities to the same QL (chosen so as to verify Eq.5 to guarantee a flat top under no beam condition).  The generator current distributed to each cavity is given by Igi = αi Ig0 . Therefore, after t0, individual cavities will reach a flat top gradient of Vi  = RLIgi and their vector sum gradient is then given by:
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(6)
Since the voltage for individual cavities is flat after t = t0, the vector sum is also flat after t = t0.

III - Multiple cavities with beam loading:

When beam is present, each cavity follows the equation given by Eq.1:
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(7)
Setting all cavities to the same QL will result in all RLi and all (i being equal. The vector sum can then be simplified to the following expression:
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(8)
The flat top for the vector sum is achieved by annulling the time derivative of VS (t). 
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(9)
Using the notation Igi = αi Ig0 again, where Ig0 = 2 Ib0 is the nominal generator current, Eq.9 is equivalent to:
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(10)
When this condition is fulfilled, we know that even though individual cavities will not have a flat voltage for t > t​0, the vector sum will.
In the general case, (arbitrary r), the equivalent condition is:  
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. It is easy to check that substituting r = 2 will yield Eq.9
SUMMARY:
1) we choose a QL value and apply it to all cavities    
( this guaranties that all cavities will have the same ( = 2QL / (0 
2) we choose the fill time to last t0 = ( ln 2     (injection starts at t = t0 )
( this guaranties a flat top for all cavities (hence for the vector sum) in the absence of beam 
3) we distribute the generator current among cavities so that 
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( this guaranties a flat vector sum gradient under beam operation
Meeting these three requirements will guarantee that all cavities will be flat in the absence of beam, and that the vector sum will be flat when the beam is on. There is no consideration made yet as to whether or not a cavity will exceed its quenching limit under these conditions. This issue is addressed in the next section.
IV - Operational case of multiple cavities with and without beam loading:
In this exercise, all cavities are still set to the same input coupling so that the loaded quality factor, QL is the same for all cavities. It is required that the gradient vector sum be flat during the “flat top” phase of the beam acceleration and that the gradient be the same whether the beam is on or off. It is also required that no cavity should exceed its quenching gradient at all time.

How to check for a cavity quench?
When the beam is on, three different scenarios can occur, depending on how much generator current is sent to each cavity. If a cavity receives less than the nominal current (i.e. if Igi < 2Ib0 or αi < 1), its voltage will drop during the beam loading (t > t0 ). If a cavity receives more than the nominal current after the initial (i.e. if Igi > 2Ib0 or αi > 1), its gradient will increase for the duration of the beam loading, and if the cavity receives exactly the nominal current, (i.e. Igi = 2Ib0 or αi = 1), then its gradient will remain flat during the beam loading. This is illustrated in Fig 2. below.

For individual cavities:
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Igi < 2 Ib0
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Igi > 2 Ib0
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Igi = 2 Ib0
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αi = 1

Figure 2: impact of having generator currents smaller or greater than the nominal current.

As illustrated above, in order to check if a cavity quenches, one can look at individual cavity gradients at time t0 (injection time) for cavities with αi < 1 and at time t1 (end of RF pulse) for cavities with αi > 1.  
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for αi < 1
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for αi > 1

From Eq.7 and using the definition of t0 = ( ln 2, we know that 
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(11)
Re-using the notation used above to express the generator current distributed to individual cavities as a function of the nominal generator current Ig0 = 2Ib0,

Igi = αi Ig0 = 2 αi Ib0,
we come to the following expression for the cavity voltage at the injection time t0:
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Let us then derive the expression for 
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also starting from Eq.7. The flat top duration is defined as TFT = t1 – t0. To simplify the expression and by similarity with the definition of t0 = ( ln 2, we introduce the following notation TFT = ( ln( :
t0 = ( ln 2






(13)

TFT = ( ln(
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Then, t1 = t0 + TFT  can then be expressed as 
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These notations are summarized in Fig.3 below.
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Figure 3: notations used for time variables.
We can now re-write the maximum cavity voltage at time t1 as :
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(15)
Re-using the notation used above to express the generator current distributed to individual cavities as a function of the nominal generator current Ig0 = 2Ib0,

Igi = αi Ig0 = 2 αi Ib0,
we now have 
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(16)
So far, we have calculated the cavity voltage for any cavity at the beginning, Vci (t0) and at the end Vci (t1) of the beam loading:
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It is easy to check that if we had a zero beam loading time (i.e. TFT = 0  
[image: image42.wmf]Û

 ( = 1), then Vci (t1) = Vci (t0) = 2RLIb0αi
Now, no quenching will occur so long the cavities with a generator current distribution lower than the nominal current do not reach their quenching limit at time t0 and so long the cavities with a generator current distribution higher than the nominal current do not reach their quenching limit at time t1 as illustrated in Fig.4, where Vqi denotes the quenching voltage for cavity i.
Figure 4: no quenching occurs if Vci(t0) < Vqi for cavities with αi < 1 (a) and if Vci(t1) < Vqi for cavities with αi > 1 (b).

Some cavities will have a quenching gradient above the vector sum, others below. The no quenching condition can then be summarized by the following equations:
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(ii) 
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for Vqi > VS
The critical vector sum gradient will be reached when the cavities operating below the vector sum will reach their quenching limit at exactly t0, and then droop (αi <1) and when the cavities operating above the vector sum will keep increasing their voltage during the beam loading and reach their quenching limit at the very end of the beam loading (t1). This critical case is illustrated below.

Figure 5: critical vector sum scenario: Vci(t0) = Vqi for cavities with αi < 1 and Vci(t1) = Vqi for cavities with αi > 1.

From Eq.18 (i), we can find the critical conditions for no quenching for cavities operating below the vector sum (
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From Eq.18 (ii), we can find the critical conditions for no quenching for cavities operating above the vector sum (
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(20)
Figure 6 shows a plot of αi+ and αi- for cavities which quenching gradients range from 22 MV/m to 34 MV/m, for Ql = 3.0x106. 
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Figure 6: αi+ and αi- for 13 cavities with quenching gradients between 22 and 34 MV/m, for Ql = 3.0x106
Note that αi < 1 for cavities with Vqi < VS , αi > 1 for cavities with Vqi > VS , and the vector sum VS is exactly obtained when αi+ = αi- = 1. Hence choosing αi < αi- for cavities below VS and choosing αi < αi+ for cavities operating above VS is equivalent to always choosing the smaller of the two:
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Finally, we recall from the previous section that in order to achieve a flat vector sum when the beam is on, the αi’s need to verify Eq.10: 
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Then the normalized αi’s are expressed as:
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Assuming 
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With this choice of αi’s, the vector sum reached with beam is given by:
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SUMMARY:
1) we set all cavities to a given Ql
( this guaranties that all cavities will have the same ( = 2QL / (0 
2) we choose the fill time to last t0 = ( ln 2     (injection starts at t = t0 )
( this guaranties a flat top for all cavities (hence Vs) in the absence of beam
3) we distribute the generator current to individual cavities according to 
Igi = αi Ig0 = 2 αi Ib0 with 
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( this guaranties that no cavity will quench and that VS is flat with beam
In Eq.6, we found a flat vector sum when no beam is present: 
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. Comparing this with the value obtained for beam conditions in Eq.24, 
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, we verify that the flat vector sum is the same gradient with and without beam.
At this point, we have found a solution that will meet all requirements. 

· all cavities are set to the same Ql
· the vector sum is flat with and without beam

· the vector sum gradient is the same with and without beam

· no cavity quenches 

The last step consists of finding the Ql value that will yield the highest vector sum, while still honoring all of the above. This task seems complicated at first but looking more carefully into it, we can see that we have already solved this question. As long as 
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When 
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, each αi will be equal to the quenching limit
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meaning that the voltage of each cavity will reach its quenching limit either at the beginning of the beam loading (t0) for cavities operating below VS or at the end of the beam loading (t1) for cavities operating above VS. 
There isn’t an analytical expression for the maximum VS, but it can easily be obtained by numerical methods. Figure 7 below shows the variation of 
[image: image78.wmf]a

 as a function of Ql . The individual αi’s are indicated with ‘x’ markers. This plot was obtained for 13 cavities with quenching gradients equally distributed between 22 and 34 MV/m.


Figure 7: variations of 
[image: image79.wmf]a

as a function of Ql for 13 cavities with quenching limits equally distributed between 22 and 34 MV/m.

V – Conclusion
A method to calibrate N cavities with any gradient disparity is explained in this document. This method explains how to achieve the highest vector sum gradient for a given quenching limits distribution. Modeling limitations set aside, following this method guaranties that the vector sum will be flat under any beam or no beam condition, that the gradient during the flat top will remain unchanged whether beam is present or not, and that no cavity will quench during operation. The complete analytical derivation for this method is exposed and explained in details. This is a step forward toward the operability of the ILC (or other accelerator designs using the multiple cavity / single klystron scheme). The method of operation previously proposed [1, 2] does not work because it does not prevent cavities from quenching if the beam is lower than its nominal value. In contrast, the method presented here addresses this issue and takes it a step further by predicting the maximum gradient that can safely be achieved for any cavity distribution. A MATLAB cavity simulator has been developed to illustrate this method and is available upon request.
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