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1) Amplitude Modulation
Carrier signal x,(t)=Ccos(w,t+D,)
Modulation signal x™M(t) =M cos(w,t+ D, )

For simplicity, we can assume ®_ =®, =0
Then, the modulated signal is given by:

. (0) =[C+ 2, (£)]cos(e,)
=[C + M cos(w, t)]cos(w,t)
= Ccos(w,t)+ M cos(w, t) cos(w,t)

m

Making use of the trigonometric identity cosacosb = %(cos(a +b)+cos(a—b)), we get

3, (1) = Ceos(e,) + %cos((a)m o))+ %cos((a)m — o))

We see the carrier component @, and the two side bands, o, +®, and o, —w, . Because

the sign of the amplitude of each sign band is the same, we refer to this modulation as an
even function.
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2) Frequency Modulation

Carrier signal x,(t)=Ccos(w,t+D,)
Modulation signal x™M () = M cos(w, t + D)
For simplicity, we can assume ®_ =® =0

Then, the modulated signal is given by:
Y () = CCOS j [, + x™ (f)]df]
0
=(Ccos j[a)c +M COS(a)mr)]dr]
0

=(Ccos J.a)cdr +M j COS(a)mr)dr]
0 0

c
,

m

=(Ccos| HM—sm(a}mt)J

M is the frequency deviation and @, is the modulation frequency. The modulation index
is then defined as follows:

M 2n-Af A

o, 21-f, /.

h:

The modulated signal can now be expressed as y(t) = Ccos(w,t + hsin(w, ) )

In our case, we are interested by small frequency deviations (e.g. several hundred mHz at
a modulation frequency of several hundred Hz). This case (Af << f,, or h<<1)Iis

referred to as narrow band FM. The expression of the modulated signal can be further
expanded using the following trigonometric identity: cos(a +5) = cosacosb —sinasinb

Yy (£) = Ccos(a,t)cos(hsin(w, t) ) - Csin(a,t)sin(ksin(w, t))

-1 —hsin(aw,t)

For h<<1, cos(hsin(w,t))~1and sin(hsin(w,t))=~ hsin(w,t), so y() becomes to the
first order approximation:

Yy (£) = Ccos(w,t) — Csin(w,t)hsin(w, t)



Using another trigonometric identity: sinasinb = %(cos(a —b)—cos(a+b)), we

have:

o () = Ccos(a)ct)—%hsin((a)c —a)m)t)+%hsin((a)c ro,))

We clearly see the carrier with amplitude A, the lower side band with amplitude %h and

a negative sign (i.e. 180° phase offset), and the upper side band with amplitude %h as

illustrated below. Because the two secondary side bands have opposite phase, this
modulation scheme is often referred to as an odd function.
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Carson’s theorem states that 98% of the power of the FM signal is in the bandwidth
defined as:

B, :Z(Af+fm):2fm(jAf—f+1):2fm(h+1)

m

So in the case of narrow band FM, the modulation bandwidth is given by B, =2f,



3) Phase Modulation

We will demonstrate here that phase modulation is a special case of frequency
modulation, in which the frequency modulation is given by the time derivative of the
phase modulation.

Carrier signal x,(2)=Csin(w,t+®,)
Modulation signal x™ () = M sin(w,t+®,)
For simplicity, we can assume ®_ =® =0

Then, the modulated signal is expressed as:

Ve (1) = Csinfe,2 + ™ (1))
= Csin(w,t + M sin(w,t))

The argument of the sine function can be expressed with the following integral form:

t t
ot+Msin(w,t) = ja)cdr +MwmICOS(wmr)dr
0 0

(0, + M, cos(w,7))d 7

O —

The modulated signal becomes:

Vo (£) = Csin(j(a}c + Mo, cos(w,))d rj ,

As seen in section 2), this expression of yp(t) is equivalent to a frequency modulated
signal with modulation:

(1) = M, cos(a, ) = - [M sin(w, )] = %X;M )

dr

So, a phase modulation is a special case of a frequency modulation which modulation

signal is the time derivative of the phase modulation, i.e.[x"" (¢) =dixnfM (7).
t




