Analytical insight of a delayed up and down conversion

INTRODUCTION

This study is motivated by the need for a better understanding of the impact of the 8/9n
mode present in the cavity probe signal. This document presents the detailed derivations
of a standard RF operation, from a mathematical view point, both in time and frequency
domain.

The starting point is an RF signal A(t) = Acos(wg:t + ¢,) with a random phase ¢p. This

signal is down converted to an intermediate frequency ar . To keep this derivation as
generic as possible, the signal used for the down conversion has a random phase ¢, with
respect to the input signal. Then, the down converted signal is delayed in time (t-ty)
before the final up conversion step. The LO signal used for the up conversion also shows
some phase shift ¢, with respect to the IF signal. All simpler cases (such as ¢ =0, or
¢=qy) are particular cases of this generic derivation. Figure 1 illustrates the RF
operation. For consistency, the subscript 1 corresponds to the down converted signal, the
subscript 2 to the time delayed signal, the subscript 3 to the up converted signal.
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Figure 1: diagram of delayed down conversion followed by an up conversion

In section 1), the expression of (I3 , Q1), (I2, Q2) and (I3, Q3) are derived in the time
domain. The same derivation is performed in section 2) in the frequency domain.

Section 3) deals with the special case of an input signal with two components at different
frequencies, which corresponds to an RF signal with a 8/9r mode content. Each section
starts with some mathematical refreshers, useful for subsequent derivations.

Note to the reader:
Although the derivations are conceptually simple, they involve heavy calculations, which
are not always trivial to follow. | tried to make this document as complete as possible, not

skipping intermediate steps in the derivations, and yet tried to keep them as concise as
possible.
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1) In the time domain

a. analytical overview

Down converting A(wg:t) to owith the upper side band (oo =g + @) IS
equivalent to multiplying by xe!“""%) \where ¢ is an arbitrary phase:

1 (t) = cos(@ ot +¢,) x Al@get)
Q(t) =sin(@w ot + ¢,) x A(wget)

Up converting A(@,:t) to wge with the upper side band (o, , = @ + @, ) is equivalent
to multiplying by xe!(™e"*2) where ¢, is an arbitrary phase. In terms of | and Q, we have:

I (t) = cos(@iot +¢,) x | (o)
Q(t) =sin(@ ot + ¢,) x Q)

A time delay corresponds to substituting t with t—t, (i.e. t—>t—t;) in all time-
dependent factors.

b. down conversion

Starting with a single frequency input signal with a random phase delay ¢,
A(t) = Acos(wget + ¢,)

Making use of the following trigonometric identity
cos(a)cos(b) = %[cos(a +b)+cos(a—b)],

the down converted signal is now

@0

—
I,(t) = cos| (wpe + o )t+ @ | ¥ A(L)

= COS((@ge + @y U+ ) X ACOS(@Wget + 5 )
%/_/

a b

A
= E[COS{(O)RF + O )L+ + 0t + %} + CO{(WRF + 0 )1+ — (gt + %)]:l

a b a b

A
= E[COS((ZQ)RF +op U+, + @, )+ Cos(a)lFt nal 2 2 )]

Julien Branlard 11/13/2009



3

And after filtering out the higher frequency term in 2w, + @, , the down converted
signal is:

A
I (t)= Ecos(a)lFt to - (00)

For Q, we make use of the following trigonometric identity
sin(a) cos(b) = %[sin(a +b)+sin(a—b)]

and we obtain

Q1) = Sin{(a)RF +op)t+ (PlJX A(t)

=SiN((@ge + @ )t + @) x ACOS(wpet + ;)
%/_/

a b

a b a b

Al . )

= E{Sm[(wm: + O U+ @) + et + ¢0J + Sln[(wRF + O U+ @, — (gt + ¢0)J]
Ar. )

= E[Sm((szF +oe)t+o + §0o)+sm(w|Ft T, — ¢, )]

And after filtering out the higher frequency term in 2w, + o, , the expression for Q is
now :

Q,(t) = ?Sin(a)n:t +o _(Po)

c. time delay

To account for any time delay tq taking place at the down converted stage, the | and Q
expressions are translated in time by t-ty:

L) =1,(t-t,) =§[COS(&)IF (t-ty)+ o _(Po)]

Q, (1) =Q,(t-ty) :g[sm(wu: t-t)+o _(Po)]

d. up conversion

The new expressions after the up conversion are obtained by multiplying | and Q by
cos(w ot+@,) and sin(wt+¢@,) respectively, where ¢, is an arbitrary phase that can
be adjusted to compensate for prior time delays.
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Here again, we make use of the identity: ~ cos(a)cos(b) = %[cos(a +b)+cos(a-b)],

@0

——
I5(t) = cos| (wpe + @)t + ¢, |x1,(t)

A
=COS((wge + @ )t + @) ><Ecos(co,F (t-t))+o, —o,)
a b

A
= Z{COS((&)RF +oO N+, +op(t-t)+o - %J + COS[(&)RF +o)t+o, — (0 t-ty)+@ — %)J]

a b a b

A
= Z[COS(((ORF +20 )t -0ty + 9, + o _(00)"' COS(wRFt + Oty + 0, -0 + ¢, )]

And after filtering out the higher frequency term in g + 20,

A
I, (t) = Z[COS(wRFt Oty + 0, -0+, )]

The phase term ¢, can be adjusted to compensate for prior time delays by choosing

P, =Py — Py — Oty
Then the final expression for I is

I5(t) = %COS(QRFt)

Following the same approach, we up-convert the Q term by using the following
trigonometric identity:

sin(a)sin(b) = %[cos(a —b)-cos(a+b)]

we obtain:

@0

Qs (t) =sin| (wge + @ )t + ¢, [xQ,(1)

) A .
=SiN((wge + @ )t +9,) XESIn(wIF (t-t))+o —9)
a b

a b a b

A
= Z[COS[((ORF +op )t + o, _(a)IF (t—t))+o,— o, )} _Co{(wRF to)t+o, +o(t-t)+¢ - %}]

A
= Z[COS(wRFt + Oty + 0, — o+ %)_ COS(((ORF 20 )t — oty + 9, + 0 — @, )]
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And after filtering out the higher frequency term in g + 20,

A
Q;(t) = Z[COS(CORFt T Ol 0, — 0+, )]

Applying the same choice of ¢, =@, — @, —o,:t,, the expression for Q simplifies to

Q,(t) = %cos(a)RFt)

The first conclusion from this derivation is that the up-converted signal does not
depend on the choice of intermediate frequency. Further more, the phase of the LO
signal used at the up and down conversion can be adjusted to compensate for delays

occurring in previous stages (¢, = ¢, —@, — oty ), i.e. before the down conversion and
during the down converted stage.

Filtering the IF after the down conversion and filtering the RF after the up conversion
results in a degradation of the signal amplitude by a factor of 2 at every step. So the
reconstructed signal has an amplitude that is 4 times smaller than the original signal.

2) In the frequency domain
The same conclusions can be derived in the frequency domain

a. analytical overview

First, listed below are a few common time domain signals and their frequency domain
counterparts:

f (t) = cos(w,t) F(w) =7[d(0—w,) +o(w+ w,)]
f (t) =sin(w,t) F(®) :%[5(0)_0)0)_5@)"'@0)]
f(t)=el F(w) = 276 (0w - w,)

A time shift in the time domain tr>t-t, translates as F(w)— F(w)e '™ in the
frequency domain:

f(t—t,) F(w) -~ F(w)e ™

f(t+t,) F(w) — F(o)e" ™

So the Fourier transform of Acos(wget +¢,) = Acos[a)RF (t +&)] is

RF
i %o

A(@) = 7[6(0 — e ) + S (@ + wge )6
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Similarly, the frequency equivalent of cos(w  t+¢,) = cos[a)Lo (t +&)j is
LO
jo-

rlo(w—w,,)+o(w+m)]e “°
A down conversion in the time domain is obtained by multiplying signals. In the
frequency domain, this translates into a convolution of the Fourier transformed signals.
1 j F(Q)G(0w—Q)dQ
27 -
Finally, here are two useful properties of the delta function:

o(QQ—-a)=05(a-Q)

f®g(t) %F(w)@e(wh

0

TF(Q)&(Q— a)dQ = F(a)

We’ll make use of these two properties in the following derivation. For a down
conversion in the time domain, the input component A(t) is multiplied by cos(ew, ot +¢,).
In the frequency domain:

'oc (@) :%A(a’)®7T[5(60—0)Lo)+5(a)+a)Lo)]ejw‘::l°

+o0 s
= 21 '[A(Q)ﬂ[5(a>—a)Lo —Q)+8(w+a, -l *°dQ
4 —o0

+00 (- )ﬂ +o0 (o )&
:% JA©e ) “’L°5(Q—(w—wLo))dQ+% [ A’ Moo 5(Q— (0+ 0,0))HOQ

1 i) 2 ] i(o~(o+ao) -
= EA(a)—a)Lo)e Lo +§A(a)+ )8 Lo
1

=3 Aw-aw,,)e'” +% Alw+o,)e '

As expected, a down conversion corresponds to a frequency shift by ay and its image -ax
The down converted imaginary part is obtained in the time domain through a
multiplication by sin(e ot +¢,) . In the frequency domain, this corresponds to
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(%)

Que (0) = A0) © 2 10(0-00) ~6(0 040 e e

w-Q) 2\

il 204Q)

L (M@ (50— 00 -0) - 80+ 0y~
2 ?, J

12 j(w—Q)w& 1" j(w—g)w&
=25 [ A *0(Q—(0-00)MQ -7 JA@e "5(Q-(0+m,)HR

j(o~(0-010)) 2 j(o~(oro0) 2
) w0

= i Alw—-m)e

1
2] —Z—jA(a)+a)Lo)e

1 - 1 i
:Z_J.'A\(U‘)_Q)Lo)eml _Z_jA(a)+a)LO)e g6

The same formula can be derived for the up conversion but this time convoluting 1(w)
and Q(w) by cos(w, ot+@,) and sin(w .t +@,) respectively

luc (@) = % (@~ m)e"™ +% Ho+o,)e

Que(0) = Q-0 — 0w+ e
J 2]

After these mathematical refreshers, we can now derive the equations for the whole
signal chain.

b. down conversion
We start from the same input function A(t) = Acos(mget +¢,) . Its Fourier transform is:

A@) = Az[6(0 - )+ 5@+ )le O

As we’ve seen before, a down conversion with an arbitrary phase ¢ will yield:

I, (@) = % Alw—w,,)e'” +% Ao+, )e "

Aﬂ' j(w*wLo)& .
=T[5(0)_0)RF_@L0)+5(@+0)RF —a)LO)]e e g 121
Alo-ao)
A j(oroo) ™
+T[§(a)—a)RF+a)LO)+5(a)+a)RF+a)LO)]e “RF @7 1%
Alo+og)
Aﬂ' J.(W—CULo)ﬂ .
=2 [5(0— 205 — 0 )+ 50—, ) Je e gl
A j(a)+a)|_o);i N
+T[§(a)+a),F)+5(a)+2a)RF+co,F)]e RE I
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Just like in the time domain, the down conversion produces harmonics at higher
frequencies (2arr+@ir and its image -2are - ang) Which can be filtered out:

l,(w) =

% S(w-w)e

o
Fel? 4 5(w+ o )e

i(o-a

(o) 2
WRF e*l¢’1
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Similarly, for Q(w):

Q(0) = ZijA(w—wLo)em —zij A+ o0)e

Aﬂ' j(a)_wLO)& .
Y [5(5‘) e — B 0) +0(O+ O — 0 )]e Che
J Alo-a)
A7Z' T
" [0(0— 0 + @) + S0+ wpe +a)LO)]e “re gl
Alo+ag)
A;z' Jo-a0)— %
[5(60 200 — )+ 6 (00— a’u:)] SCle
Arx J(w+w|_o)a:p
—T[5(a)+a),F)+5(a)+2a)RF +o,. )k e gTin
J

And after filtering out the higher frequency terms:

o)
el —S(w+w)e

J(meo) %
Fe J‘/’l

As a quick check, we inverse transform these two expressions to see their time domain
counterparts. Let’s rearrange the terms to evidence some standard Fourier expressions:

A (oo, o)a()’i ; i(oteo)—- o
I, () = o(w—w.)e el 4+ 5(w+ o )e orF g~ lor
Arx i %00 | jo
= olw-—w)e e +5(w+m)e ™ e e ™
i _ i ORptOF i ORp T u&
Aﬂ- , 0 o ! o, —-ie o
:T olw—wg)e ™ e*+o(w+op)e i g o
A i ~JE g, Rl jo 2o
— 2 5(0) a)”:)e Wrr e J(POeJ(/’l + 5(a)+ a)”: )e WRF eJ(pOe i e WRp
A7Z' jw& _ i OF a)ﬂ i OF

5(0) a)”:)e PRE @ ORF eJ(‘/’l ‘/’0)_+_

2

constant

Julien Branlard
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We’ve seen that F(w) = 276(w - w,) corresponds to f (t) = e’ and that multiplying by
a complex exponential is equivalent to a time shift, hence:

P jo 2 1 doe _ .
E&(a)—a),F)e o= Ze  in the time domain
and
T jw;i 1 —J'fUu:(t‘*'w&) A A B
E§(w+ wg)e > Ze * in the time domain
A dop M) Siffe A clere ) (e
SO, |1(0)) 9 Il(t)z_e RF @ RF ej(/)l P +—e RF @ WRr e Iz
%,—/ |
4 constant 4 constant

Rearranging terms and making use of the trigonometric identity cos(a) = %[eja + e‘ja],
we have

) o, . o,
J(WFHQHFLO -5 ¢O+¢’1_¢0) A —J[wlF“fUmLo - %‘*‘%“Po]
WRF WRE +—e WRF WRF

NORES:

_A

I:ej(wlFt+¢’l_(/’0) n e—J’(wuptm—%)]
4

A
= Ecos(a)u:t +¢ - %)

This is identical to the expression found in the time domain
For the imaginary part, following the same steps as for I1(w):

Ax j(o-o0) i(oro) 2
Qo) =" (-0 )e e — 50+ wp)e “re I
]
i, 20 i DI o

Arx Jo—— —]—""—@py . A jo TRy

:_5(60—60”:)8 R e R el(f/’l ) ___5(0)4'0)”:)6 WRe e R e j(o—2)
—_ N —
2 constant 2 J constant

The inverse Fourier and the identity sin(a) = %[eja - e’ja] yield:
J

A optroe 2~ g, A i optrae 20— P prp g,
Q (t) =_¢ WRF WRF —— ¢ WRF ORE
ST 4] 4]
— A ej(‘”mto“ﬂr‘/}o) _e*j(a’mt*‘/’r%)]
4]

A .
= ESIH(&)”:'[O o _%)

This is identical to the expression found in the time domain
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c. phase shift

Any time delay ty that takes place at the intermediate frequency ar corresponds to a
phase shift in the frequency domain (xe %),

I, (@) =1 (w)xe ™"

A;Z' w—w,_o)& . j(a)+wLo)—
> S(w— a),F)e w4 S(w+ o, )e e gIn | gl

and

Q,(w) = Q,(®) x e I

A7z
S 2j

j(0-o0) - i(wror0) T "
o(w— a)lF)e Frel” —S5(w+ o )e eI g

For completeness, we inverse Fourier transform these expressions:

Py | e jo| P, | j2E,
o ) Vo P Litaee) , AT ome ") o 0w ™ - (-00)
I (a))_—cS(co , )e e e +—0(w+w,)e e e
IF —_ 2 IF —_
constant constant

becomes in the time domain:

A J[wmt‘*'a’m 7 _wIFtd_i(pO"'@l (/’0] A —J[W|F1+0’|F oty —wIT%‘*‘(/’l %]
L= w e o

4
A j(wt—zu’[+— ) —'(zu t—oyety+o— )
= __|ell\erF Irlg+P—9o +el \rl—oly +o -9y

4

A
= Ecos(a)IF (t—t)+o—9)

And for Q
[% td] O, A jw[ﬂ,t J o
o T d| I/ .
Qz(a)) ——5((0 a)”:)e @re g @ alla-n) ——_5(60"1‘60”:)@ “rF e % g lla-m)
%,—/ %,—J
-l constant 2 J constant

becomes in the time domain:

) o o ) o o,
l(wmt"'a)u:*o —oety——5 </’0+(P1—¢70] A —J(@Ft"'a)mfo —opty ——5 %‘W’l‘%j
WRF ORF WRF WRF

A
Q,(1) _4_je 4_J

A [e (opt-oety+o-0) e_j(wlFt_a)lFtd +o— )]

4j
A .
:ESII’]((O”: (t_td)+¢l_¢0)

Note that the expressions indeed do correspond to the ones obtained in the time domain.
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d. up conversion
The last step consists of performing an up conversion back to the RF frequency. The
phase ¢, associated with the up converting signal is purposely kept different from ¢, to
keep this calculation as generic as possible. In reality, this phase parameter can be
adjusted to compensate for delays occurring before the down conversion, and during the
intermediate frequency stage, as we will show.

As seen before, the up conversion is obtained using these formulas:

lyc (@) = % (- o,,)e'” +% | (0 +o,,)e

Que(0) = -0 )0 — Q0+ wy)e ™
J 2]

For |
I (a))——l (w— a)LO)e”"2+%I (w+w,)e 102

Substituting the expression of I, in the formula above, we get:

j(0-2010) 2 jo . o
3(a))— 5(0) O —0,)e w eIt L S(w+ o —o,)e e g0l y gl

15 (0-a0)

A;[ jwﬂ . o+2a0)— % t
+T Olw—op +m,)e e +o(w+op +0,)e g In |gTl @0l o gmie

Iy (0+ay0)

After filtering out the higher frequency terms, the expression simplifies to
020 A P
I ( )_ 5((0 a)RF)e wRFe i |g-ilo-o0)ty ( giee | T2 i §(a)+a)RF)e wRFle/a g l(@raolly o a-ie

This can be rearranged as

j [ﬂ—tdj ) jo(2 )
I ( ) _ [5(60 O )e O eJ(fﬂr‘/’l*wLotd) + 5((0+ Onp )e OpE e*l(fﬂr‘/’l*wl.otd)

Following the same step for Q, we have

1 ; 1 i
Q;(w) = 2—J_Q2(a)—a)|_o)em2 _2_jQ2 (0+w)e e
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Substituting the expression of Q in the formula above:

Q(w) = %% (-0, - a)Lo)ej(w_szO)“%em —S(w+o, - a)Lo)ejw“%e‘m g (@ ol gle:
] 4]
| Q0 010)
_2%2_7][ S(o-op + a)Lo)ejw“%em ~S(w+ o + a)Lo)ej(MwLO)ﬁe‘m g J(@rolls x g7Ie
| Q(@roro)

After filtering out the higher frequency terms, the expression simplifies to

Arx jo 0 - O Ax jofo . _
QS(a))z_T _5(a)_a)RF)e ‘URFe_J(ﬂl e_](a)—wLO)td Xelfﬂz +T 5(a)+a)RF)e wRFeJ‘/’l e_J(aH'wLO)td Xe—lfﬂz

This can be rearranged into

P4 i 20

A jw“’ ! i(p2=pr+ooty) (w ) — (g~ +aroty)
Q3(60)=T 5(a)—a)RF)e RF gllP2-ataioly +5(a)+a}RF)e RF g Jemataroly

To validate this result, we can inverse Fourier transform to compare with the expression
obtained in the time domain:

- 9 . 9
( ) A J(‘URFH'(URF wio —opely +@2—P1+ ooty ] J[_wRFt_wRF wio'*'a)RFtd P+ p1—O 1oty ]
I,(t)=—|¢e RF +e RF
’ 8

_A
8

[e (opet+ oty +p—pi+0p) +e” j(opet+ ety +@o-p1+0q) ]

A
= ZCOS(Q)RFt+a)IFtd TQ, - +¢o)

And for Q

; [% ; [
J[’URFH‘URF — — ety *4"2*%*0{0%] J[*WRFF‘URF Dt apety —pr+p-ooty ]
WRF WRF

Q3(t):§ e +e

_A
8

[e i(oret+orety+o-otpy) +e” i(oret+oety+o -t ep) ]

A
= ZCOS(a)RFt + C()”:td + D, — P + ¢O)
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Here too, if the up conversion process allows for tuning the phase, we can choose ¢, to
cancel out previous delays: (p =0, — Py — Okt

1, (t) == cos(a)RFt)
Q,(t)y=— cos(a)RFt)

In the frequency domain

j(o[ﬂ —ty ] Jw(& “t4) .
| ( )_ 5(({) Oe )e R eJ( Potorety) +5(a)+a)RF )e Ope e—J(—(/’0+0)RFtu)
Q@) =" &( ) o oty 5( ) Bl ) ppranty)
— w— o, e RF e 0 RFd + a)_;’_a) e RF e_ ~—%0 RF 'd
3 RF RF
And at w = RF
| (a)RF) — Ar ej[¢o_(0RFtd_¢O+wRFtd] — Ar
4
Q3 (a)RF) — Az ej[(Po_wRFtd_¢70+wRFtd] — Az
4 4

These two derivations 1) and 2) are essentially the same. There is no surprise in that they
yield the same results and the same conclusions.

3) With a dual input frequency signal

We now consider the case of an input signal with dual frequency content:
Acos(wgt +@f) + Bcos(wst+ o)

We can write
A A
W = Wi Py =Py

O = O +AO = O + A0 P = @0 +Ap =@ +Ag

The expression for the input signal becomes:

ACOS(wget + @) + BCos((wne +A)t + (g, + Ap))

For simplicity, this will case be only be derived in the time domain.
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a. down conversion

At the down conversion stage, the input signal is multiplied by cos(ew ct+¢,) and
sin(m ot + ¢,) for I and Q respectively:

1,(t) = cos(e ot +¢) x [ACOS(wRFt +¢,)+B COS((a)RF +Aw)t+ (¢, + A¢))]
Q,(t) = sin(w, ot + ¢,) x [ACOS(@get + @) + B COS((wgr + A)t + (@5 + Ap))]

Solving for I4(t), and using the identity cos(a)cos(b) = %[cos(a +b)+ cos(a - b)] , We get

1,(t) = Acos(m ot + ¢,) COS(@ee t + @) + B COS(@, ot + ) COS((@er + A)t + (@, + A))

a b a b

= A[Cos[a)wt +@ + a)RFt + (/)OJ + COS(COLOt + @ — (a)RFt + (pO)J]

+E CoS| @ ot + @ + (g + AD) + (@ + A@) |+COS| @ ot + ¢, — (Wgr + AD) + (@, + A@))
2 a b a b
A
= E COS| (@ o + e )t + @y + @ |+COS| (@ — D )L+, —
— —

20gg +o D

B
+E cos| (v o + W + AN+ @, + @y + A |+COS| (0, o — Vs — AN+ @, — @, —Ap
%/—/ %/—/

20pp O +A® o —Aw

Assuming Aw << o, We can legitimately assume that the term in 2w, + @ +Aw Qets
filtered out with the term in2wy + o, . Hence, after filtering the IF, the remaining
expression for | is

A B
I (t) = ECOS(CU”:t +o - ¢o)+ ECOS((wIF —Ao)t+ ¢ — @, - A¢)
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Similarly, for Q and using the identity sin(a) cos(b) = [sm(a+ b)+ sm(a b)] we have

Q,(t) = Asin(@_ot + @) COS(@Wget + ) + Bsin(w ot + @) cos((a)RF +Ao)t+ (9, + Ap))

_A {Sln[a)wt + @+ Ot + (pOJ + SIn{a)Lot + @ — (et + (pO)J]

a b

[SIn(mLot + @, + (0 + A0)t + (9, + A(p)} + SIn(a)Lot + @, — (O + A0+ (@, + A(p))ﬂ
%,—/ %,—/

b a b

Al . .
= _!sm[(a)m + e U+ @, + %} + Sln((a)w — e )t + ¢, — (00]]
2 —_——

20pe +oyE

| Sy
2R +O +A®

[SIn{(a)LO + W + AON+ @, + @y + A(p] +sin[(a}Lo — g —AON+ ¢, — @, — Agoﬂ
| S

o -Aw

After filtering the higher frequency terms:

B .
QM) =— Sln(a)lFt+(/71 (Po)""zsm((ww _Aw)t+¢1_¢o_A¢)

As a quick check, we notice that if B = 0, we get the expressions derived in part 1).
Also, if Aw=0and A¢ = 0, then we have twice the same signal.

b. time delay

The time delayed expressions are simply obtained by substituting t with t - t4:

1, () =— Cos(wlp(t ty)+o - ¢0)+%COS((0)IF_Aa))(t_td)+¢1_¢0_A¢)

Q)=+ Sln(a)lF(t ty)+o - (/70)+%Sin((ww_Aw)(t_td)‘*‘(ol_%_A(P)

C. up conversion

For the final step, we multiply I,(t) and Q(t) by cos(w ot +¢,) and sin(ow ot +¢,)

respectively and make use of cos(a)cos(b) = [cos(a +b)+ cos(a—b)] twice.
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I3(t) = cos(a ot + 9,)1,(t)

A B
= 5 cos(w ot + ¢,) Cos(a)lF (t—t))+o - %)"‘ ) cos(w ot + ¢,) COS((a)IF —Ao)t—-t)+o— @, — A(”)

A
=—[ €08 (@ + Ot — ety + @, + @ — @y | +COS| (B¢ — Ot + Oty + 0, — 0 + ¢,
4 e —

2ape+oE ORr

cos| (oo + W — ANt — (0 —AON, + @, + @ — @, — A
%/—/

20 +OF —A®

+C0s| (00 — @ + AN+ (0 — A, + @, — 0, + @y + Ap
e

g +A®

Filtering out the terms in o, +® —A®w and in o ,+ o, (assumingAw << o), the
expression above simplifies to:

A B
I,(t) = ZCOS(C‘)RFt T O+, - + %)"‘ ZCOS((CORF +Aolt+ (0 — Aoty + 0, — @ + @y + A(”)

For Qs(t), we multiply Qa(t) by sin(w, ot + ¢,) and use the following identity twice:
sin(a)sin(b) = %[cos(a —b)—cos(a+b)]
Q;(t) =sin(@ ot + 9,)Q, (1)

A . . B . .
:ESIn(a)LOt+¢2)Sm(a)IF (t-t)+o _¢O)+ESIH(wLOt+¢2)S|n((a)lF —Ao)(t-t)+¢ - o, —A(p)

A
=—|C0S| (0o — W)t + Oty + @, — o+ @y |=COS| (0 + O )t — Oty + @, + 0 — @,
4 R — ——

Wrp 20pp +OF

cos| (w, o — o + AN+ (0 —AO), + 0, —@, + @, + A
-

Re +A®

—CO8| (0o + W —ADN — (@ — Ay + 0, +@, — @y —Ap
%,—J

20 —A®

Filtering out the terms in o, + @ —A® and in o, + o, (assumingAw << o, ), the
expression above simplifies to:

A B
Q;(t) = ZCOS(CORFt t Oty +0, —o + (00)"‘ ZCOS((wRF +Aot + (0 — Aoty + 0, — @ + @y + A(P)
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As explained earlier, we can choose ¢, to cancel out previous delays: ¢, = @, — @, — o4

1,(t) = %cos(wRFt)+ %cos((wRF +Aw)t — Aoty + Ap)

Note that the value for ¢, chosen here is identical to the one used in part 1). Similarly,
this value will simplify Qs(t):

Q,(t) = %sin(wRFt)+ %sin((a)RF +Ao)t—Aat, +Ap)

We can easily check that if B = 0, we get the expressions derived in part 1) and Aw =0
and Ao = 0, then we have twice the same signal.

CONCLUSION

The document has shown the complete derivation of a single frequency input signal,
going through the process of a down conversion, experiencing some delay at the
intermediate frequency stage, and being up converted back to the RF frequency. The
analysis was carried both in the time and in the frequency domain.

The same derivation was performed for a dual frequency input signal.

This analysis clearly shows that the output signal is independent of the choice of
intermediate frequency after up conversion in the dual frequency case, as in the case
of a single frequency input signal.

This also shows that a phase shift that occurs at the nominal operating frequency axe due
to system delay can be compensated for at the time of the up conversion by a single phase
adjustment.

In the dual frequency case, while the nominal frequency signal can be phase adjusted, the
second component (g +Aw) will show a phase shift —Aw t,inversely proportional to

the frequency offset (Aw) of the input signal.
So, for a calibrated system, in the case of a cavity signal with some 8/9% content, the

phase shift of the 8/97 mode is only a function of its frequency offset (Aw@) and of
the delay ( t;) but is independent of the choice of IF.
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