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A bit of history:  
Negative Mass Instability and J.C.Maxwel

Negative Mass Instability is the first predicted collective instability in ring 
accelerators.

It is illustrated and explained by Figure

Accidental local bulge of beam density 
(fluctuation) generates repulsive force 
which accelerates particles before the 
fluctuation and decelerates -- after it. 

fTherefore:
Below transition energy the angular velocity of the particles 

increases with acceleration, 
d d ith d l tiand decreases with deceleration

resulting a dissipation of fluctuation.
Above the transition, the situation is opposite (negative effective mass!!!), 

lti th f th fl t ti th t i i t bilitresulting growth of the fluctuation -- that is instability. 
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Negative Mass Instability effect is predicted by 2 groups of authors in 1959:

C. Nilsen,  A. Sessler,  K. Symon and      A. Kolomensky,  A. Lebedev. 

However, similar problem was considered 100 years before by J.~C.~Maxwell:
``On the Stability of the Motion of Saturn's Rings'' (1859).}

Applying Fig. to Saturn, we need to 
change the Beam by the Ring.g y g
Effective mass of particles in the ring 
is negative  (Kepler's low!)  but the 
forces between them are attractiveforces between them are attractive. 

Therefore, the fluctuation has to disperse (stability).
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Coasting beam (in)stability

State of a beam is described by distribution                                                    
function in longitudinal phase space:       

According to Liouville theorem, part of the space                                                   
ΔθΔp occupied by  ΔN particles does not                                                                 
change at motion of this sample:  

Because azimuth  θ and momentum  p
depend on time, total time derivative is:                                                            
where  dθ/dt = Ω(p) is angular velocity,  and  dp/dt = eE(θ) is electric force.

It results the kinetic equation (Vlasov):  

Electric field should be obtained by 
Maxwell equations with the beam current:
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Coasting beam is a partial solution of these equations: 

To investigate its stability, we consider a small perturbation

The small (in the beginning) addition  f satisfy the equation:    

where we neglected the second order term
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For continuous beam it is possible to get a solution of this 
linearized equation in the form 

“Electric” values include the same 
factor

Then it follows from the linearized  Vlasov equation 

=>

and corresponding addition to the beam current:

=>

Second linear relation of the variables follows 
from Maxwell equations and can be presented )()()(  kk JZE from Maxwell equations and can be presented 
in terms of  longitudinal beam coupling impedance: 

Its substitution to previous equation

)(
2

)(
 kk R

 )()(2 dFZigives the dispersion equation: 
( R is the  machine radius).   
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Longitudinal Instability for Zero Momentum Spread
For a beam without momentum spread:For a beam without momentum spread:
(N is total number of particles)

Then solutions of dispersion equation isp q
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Where  
η = - d (lnΩ)/d (lnp) =  1/2 is the slip-factor , and
correction to the frequency is sufficiently small:   Zk()  Zk(k0)  Zk

• For pure imaginary impedance and < 0 the frequency  is realFor pure imaginary impedance and < 0 the frequency, , is real 
and the motion is stable

• If the impedance has non-zero real part  has positive imaginary part
One frequency corresponds  to a damped motion
A th t t bl
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Negative Mass Instability
Smooth perfectly conducting beam pipe has purely imaginary                                     

h i dspace charge impedance:  

h Z 4 / 377 Oh d b th b d b i dii dwhere Z0=4π/c=377  Ohm, a and b are the beam and beam pipe radii, and 
factor ¼ comes due to averaging of longitudinal force across the beam.
For Gaussian beam and round chamber one can write

 )( bZZ

Thus for a zero spread beam we finally can write
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Thus, for a zero spread beam we finally can write

Below transition (η < 0): 
In the beam  frame there are two waves moving along and 
opposite to the beam velocity

Above transition (η > 0):Above transition   (η > 0): 
There are two waves: one - damped and another  - unstable



Landau Damping
Let’s normalize  the distribution function by rms momentum spread:y p

so that  x = p/p

=>
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 It can be obtained by solving the problem with initial boundary 
conditions using Laplace transform  (Landau’s rule)

 It creates the Landau damping 
 We solve the dispersion equation for  which in general case is
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 We solve the dispersion equation for  which, in general case, is 
a complex number



Stability Boundary
As a rule, the impedance is sufficiently small =>  The tune shift is small too

and one one can neglect a frequency correction in the impedance:and one one can neglect a frequency correction in the impedance: 
Zk(ω) = Zk(kΩ0)

That allows to find a stability boundary where Im()=0
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Stability Boundary (continue)

The beam is stable below transition 
(< 0) if only the space charge impedance 
is present (Z  i )
For |A| >> 1 even a small resistive impedance

0

3

For  |A| >> 1 even a small resistive impedance 
breaks the beam stability

For simple estimate: 
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Longitudinal Impedance at Low Energiesg p g

 The space charge impedance Zn/n is constant up to very high frequencies,  
f ~ b/c , and stability boundary does not depend on frequency

Both Landau damping and instability growth rates grows proportionally toBoth Landau damping and instability growth rates grows proportionally to
the frequency

 Space charge impedance 
For round beam & vacuum chamber 

100q f0

Space charge
with radius a

1
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 Resistive wall impedance
For round beam & vacuum chamber
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It is important to emphasize:

Th i t bilit d i if th h t f f ll t th fThe instability damping appears if the coherent frequency falls to the range of 
incoherent frequencies of the particles:

kΩmin < ω < kΩmaxmin max

Then phase velocity of the electromagnetic wave coincides with velocity 
of a group of particles.
Their intense interaction results in attenuation of the wave and coherent beamTheir intense interaction results in attenuation of the wave – and coherent beam 
perturbation.

This effect was predicted first by L. Landau for electromagnetic waves in plasma.This effect was predicted first by L. Landau for electromagnetic waves in plasma. 
Therefore, the term   Landau damping is used in accelerator physics as well.
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Growth Rates

 Well above the instability threshold the Landau damping can be neglected 
and the growth rates can be described by the model with zero momentumand the growth rates can be described by the model with zero momentum
spread.  
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 The rate is proportional to frequency of the harmonic and can be very fast 
 If momentum aperture is sufficiently large it does not kill the beam but 

results an increase of the momentum spread

 ncp02

results an increase of the momentum spread 
 If growth rates are larger than the synchrotron frequency the continuous 

beam theory can be used for the bunched beam
 Microwave instability
It can be damped by a damper at sufficiently low frequencies, < ~1 GHz, 

It is impossible to do at high frequencies, >~10 GHz



Bunched beam

Linearized Vlasov equation can be used 

for bunched beam as well, resulting in 

where total time derivative is calculated along equilibrium phase trajectories:

φ and  Ωs are phase and frequency of synchrotron oscillations.

Therefore at the functions ∞exp(-iωt) the equation of n-th bunch is:Therefore, at the functions  exp( iωt),  the equation of   n th bunch is:

E i f ∑ f (i ) lt iExpansion   fn =  ∑ fn,mexp (imω)  results in:
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Then the bunch current is:

Generally, field  E depends on all the bunches and combines them  in a series.

Its solution has two aspects: intra-bunch oscillations (``head-tail'' modes),

and bunch-to-bunch ones (``collective modes'').

Short-range (wide-band) impedance affects only on intra-bunch modes, and g ( ) p y ,

long-range (narrow-band) one -- both on intra-bunch and collective modes.

General solution of this problem is unknown (in contrast with coasting beam)General solution of this problem is unknown (in contrast with coasting beam).

However, there is an easier and practically important case of space 

charge dominated impedance and parabolic potential well.
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One can expect that it determines the instability threshold (like coasting beam).



Complications with Bunched Beam Theory
 There are additional complications omitted in the above picture which 

make the problem even harder
 Dependence of frequency on amplitude of synchrotron motionp q y p y
 Potential well distortions by wake-field of the bunch

 Landau damping for a given mode implies that the frequency of coherent 
motion is within frequencies of the incoherent motionq
 There is no tune spread in the parabolic potential well

=> Mode 1 (the motion of the bunch as whole) is intrinsically unstable



“Dancing bunches” at Tevatron

Signal of the Tevatron BCM is shown.
Three bunches  (from 28 uncoalesced
bunches at 150 GeV)  execute 
independent coherent oscillations 
with different amplitudes and phaseswith different amplitudes and phases.
There are about 2 periods in 42 ms.

More long picture is presented here
It is wonderful that the amplitude does
not change during 2  seconds, 
though estimated synchrotron frequency
spread is about 1 Hz in each bunch.spread is about 1 Hz in each bunch.
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Measured positions of 5 bunch centers 
during 15 min are recreated in the picture.

There are strong grounds to believe 
that the oscillations do not decay at all.

Bunches are weakly coupled resulting 
energy exchange between bunches at
difference frequencies 
(~ 2-5 min while Ts ~ 30 ms)
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FFT of an oscillating proton 
bunch centroid.



At frequencies of interest 200 MHz Im(Z) >> Re(Z)At frequencies of interest, ~200 MHz, Im(Z) >> Re(Z)



Inductive impedance (BPMs, discontinuities) can cause the total depression of the 
decoherence.  

The effective voltage induced by long. 
impedance ~100 kV is comparable 
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Comparing it to the synchrotron tune spread 
We obtain instability threshold N ~  5
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For the Tevatron, corresponding condition is: 
(N is number particles per bunch,  2Δφ is 
the bunch total length in RF radians) 

Experimental data: 
Nthreshold=1010 at Δφ=0.2-0.3

Taking into account strong dependence of the criterion on the bunch length, 
is would be very hard to hope for better agreement.



Numerical modeling 

Bunch current  considered

with unknown time-dependent parameters  φ0 and  Δφ.

Its electric field is calculated as above, and external field is taken  ∞sin φ.

Below: the bunch evolution at: Jmax 0 initial sizes φ Δφ 0 5Below:  the bunch  evolution  at: Jmax = 0,   initial sizes   φ0 = Δφ = 0.5,   

Lamination after 50
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The bunch evolution:   red φ0 blue  Δφ.
Lamination after 50 
synchrotron periods



So  space-charge-like impedance can explain why the bunch 
oscillations do not damped 

But it is not quite clearly why they do not grow?

It is apparently that the impedance has real part which should 
provoke an instability above the thresholdprovoke an instability above the threshold.

Possibly, it can be explained by very strong dependence of 
the threshold on the bunch length – Nthresh ∞ Δφ5the threshold on the bunch length  Nthresh  Δφ .

Then the bunch lengthening at the instability brings the bunch 
to the threshold stopping the instability. 
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Above the threshold:  no damping, no lamination

The bunch profile:  3 limit positions  The bunch evolution:   red φ0 blue  Δφ.
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Phase space:  left – in the beginning,  right -- after 50 synchrotron periods



Backup viewgraphs



Bunched beam instability
We consider this case more tightly 
writing for shortness Z = i kZwriting for shortness  Zk= i kZ.
It is really short-range impedance:
Therefore series brakes up into a set of independent equations.

The problem is simplified if only 
one term gives a major contribution. 
It is the term  m=1 if field  En(θ)
is about constant in the bunchis about constant in the bunch.

After rearrangement, 
it givesit gives 

It is exact  relation 
if  J is an eigen-function.

But it is rather well approximation 
ith l t t i l f ti
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with relevant  trial function:
J = θ at  |θ| <Δθ:



If synchrotron frequency does 
not depend on amplitudenot depend on amplitude

More generally, one can solve 
the equation graphically likethe equation graphically, like 
coasting beam problem. 
Threshold maps are plotted 
for the distribution function:

According them, instability threshold is  (Δp and ΔΩs are maximal spreads):

Undamped oscillations are possible at these conditions at real  Z (that is at 
purely imaginary impedance  Zk ), and instability is possible if there is a small 
imaginary addition to Z (real addition to Z )
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imaginary addition to  Z (real addition to  Zk ). 


