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Motivation

 V. Danilov’s proposal: using an electron beam in a proton machine as 

an non-linear focusing element

 Can RR + Ecool be considered as a model?

• Can the life time in the present configuration be reasonable?

 Curiosity: why the proton life time is so short when e-beam is on?

 Can it be used for scaling the effect to pbars?

 Can the electron beam be used as a scraper?

 V. Shiltsev proposal: use a hollow, axially symmetrical electron beam to 

clean a proton halo in LHC 

• Electromagnetic field inside is zero, and the core particles should not be 

disturbed

• Outside, it is nonlinear and can be strong enough to kick out the halo particles

– The beam can be modulated near tune frequency

 In RR E-cooler, we can’t make a hollow beam. Can an electron beam 

travelling along a helix has a similar effect?

• What are the limitations for such scheme?
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E-beam configurations

 “On axis”

 Protons and electron travel along the same axis (within 0.1 mm)

 “Parallel shift”

 The electron beam moves in the cooling section parallel to protons with an 

offset up to 9 mm

• Main mode in regular operation with pbars

 Can we increase the area of a relatively constant electron current 

density? 

 Proton beam size is much large than electron’s

• Non-linear fields can be harmful

 Adjusting of magnetic fields and focusing may be able to do so, but with 

no easily available tools for e-beam profiling has been proved to be 

difficult

• May require adjusting of all 200 CS correctors as well

 That is for s straightforward case of parallel electron trajectories. Do other 

option exist?
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Effective electron density of e-beam

 If the electron trajectories deviate significantly from straight lines, a 

proton feels the integral of  the electron density distribution over its 

trajectory inside the interaction section. 

 The simplest model:

 Beta-function in the interaction section is much larger than the section 

length

• Integral can be taken over straight lines parallel to the axis

 Electron trajectories are perfect helixes with a whole number of turns

 Current distribution inside the electron beam is parabolic
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Effective density for focusing and dipole kicks

 Focusing kick decreases the area with relatively constant effective 

density

 Helical trajectory creates a nearly flat central distribution at ρ =0.85.
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Creating helix

 Helical trajectory is created by kicking the beam with correctors 

upstraem of the cooling section
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E-beam in a helix as a scraper

 If one can make a good helix, the total kick on protons with small 

betatron amplitudes (less than the helix radius) can be much smaller 

than for the tail particles

 Scraping with no mechanical parts!

 Perfect helix: 

 an integer number of turns 

 the wavelength much shorter than the proton beta-function

 Recycler cooling section is quite far from that, but can we observe an 

effect?
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Helical trajectory (example of 5mm radius)

 In the interaction section, the e-beam makes two full turns + ~90°

 Parts of the trajectory outside of boundary BPMs are not included

• ~ 1m each

• At the exit of the cooling section, the e-beam is likely crossing the axis

• The length of the cooling section (immersed into 105G longitudinal magnetic 

field) is 20 m; the entire length where electrons and protons interact is ~23.5 m

• Average beta-functions in the CS are ~30 m
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Study

 Two attempts to make measurements in the protons + e-beam 

configuration of RR

 January 28-29, 2010 – 7 hrs

 February 9, 2010 - 1hr

 Typical measurement:

 Inject (5 – 15)E10 and keep them in four 2.5MHz buckets

• Schottky emittance of the injected bunch ~13/18 π 95%n (H/V)

• Rms momentum spread ~3 MeV/c (dp/p = 3.5·10-4)

 Turn on e-beam in a specific configuration and measure the life time

• Optional scraping 
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Tools

 No specially calibrated diagnostics was prepared

 In part, Flying Wires were not tuned for protons

 Available tools:

 Total number of particles from DCCT (R:BEAM)

• Allows to measure the life time

• Almost all information reported here is just the life time at various conditions

 Schottky emittances (not calibrated recently)

• 3 min interval between measurements was too long to use

 “Fast” emittances

• Power of the Schottky noise from the same 1.7 GHz Schottky detectors is 

integrated by an analog circuit and divided by the number of particles (DCCT  

R:BEAM)

– Poor behavior at low intensities

 Scrapers

• Scrapes were impaired by jerky motion of scrapers and by beam motion due to 

MI ramps

• Sometime, Loss monitors could be used
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E-beam on axis

 Turning on the e-beam decreases the life time from 20 hrs to ~20 sec

 standard configuration: 

• on axis, 0.1A, 140 V modulation  (23 mA ptp) at 32 kHz

– Betatron frequency is ~42 kHz

 The vertical tune shifts up by ~0.005 (from 24.468)

 Horizontal tune signal is too noisy

• 5 sec averaging
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Degradation of proton time after turning e-

beam. February 9, 2010. 

Green – number of pbars, 5E10/box

Blue – vertical tune, 0.02/box

Yellow – horizontal tune/, 0.02box

Red – electron beam current, 0.125 A/box

~0.005



Observations: Np; parallel shift

 The life time does not depend on the number of protons

 The decay fits well with an exponent

• With preliminary scraping, after first ~10% of the intensity drop

 Reproducible at various intensities within 10%

 The life time improves if the electron beam is shifted parallel to axis

 From 20 sec on axis to 600 sec at 9 mm offset
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Observations: f(Ie)

 The life time decreases starting 

with low e-beam currents

 Ie = 9mA decreases the life time by 

~10 times

 The curve may be affected by the 

changing current density 

distribution in the e-beam

• Which becomes flatter at Ie > 150mA

 Statistical error of the fits (with e-

beam) is probably <10%

 Based on fits to different parts of 

the same data set

 The life time stays constant within 

the scatter between the jumps of e-

beam current (3 -8 hrs)
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Observations: effect of working point

 The horizontal tune scan was done with e-beam shifted parallel to 9 

mm. No reliable effect on the life time was found in the range of 

δνx=0.024.

 May be not representative for the case with e-beam on axis
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Life time as a function of the 
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Observations: e-beam modulation

 Life time with 5 mm helix (0.1A e-beam)

 Standard modulation (23 mA ptp, 32 kHz) – 470 sec

 Modulation close to the betatron  frequency- 60 sec

• 42 kHz , 23 mA ptp

 Modulation is off – 700 sec

 The spectrum of the current modulation has never been measured

 A component at betatron frequency may exist
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Helix vs parallel shift

 Life time for interaction with a helix is significantly higher than for a 

e-beam shifted parallel by the amount equal to the helix radius

 For 5 mm, the ratio is 10 times

 The life time might be determined by an effect of parts of the interaction 

section outside of  helix’s 4π
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Scraping after working with helix

 Vertical scrapes do not show any 

“scraping” effect from staying with 

the helix

 Scrapes were made many seconds 

after turning the e-beam off

• The relaxation time seems to be 

much faster
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Possible indication of “scraping”

 E-beam in a helix configuration seems to be kicking out the high-

amplitude particles faster than the core ones
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Comparison of  “fast” emittances dynamics while interacting with electron beam in the 5-

mm helix configuration (left) and on axis (right).  

February 9, 2010.  Green – number of pbars, 5E10/box; Blue – electron beam current, 0.1A/box

Yellow – “fast” horizontal emittance  5 pi/box;  Red – “fast” horizontal emittance  5 pi/box. Emittances 

are 95% normalized. Total time for the plot sis 30 min (left) and 10 min (right).



Estimation: single kick

 Angle that a proton flying at the edge of an electron beam receives 

after passing the interaction section is

 For parameters

• E-beam current Ie = 0.1A

• I0 = mec
3/e = 17 kA

• Mp/me = 1836 – proton-to-electron mass ratio

• Length of interaction section Lcs =  23 m

• E-beam radius ae = 2.5 mm

• Electron and proton relativistic factors

 The angle is 12 µrad 

 Admittance recalculated to the proton angle in the cooling section is 

~150 µrad
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Estimation: tune shift 

 Estimation of the tune shift for a proton near the center of the electron 

beam

• βf=  30 m – beta function in the cooling section

• ae = 1.8 mm is calculated by the peak current density, 0.96 A/cm2

 This shift means that for central protons the tune is (25.486, 24.490)

• Quite close to half-integer

 The measurement of the coherent tune shift gave ~0.005

• No explanation for desrepancy

 Tune scatter due to chromaticity ξ = 6: 

 Δν=0.002 (rms)
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Why the proton life time becomes so short?

 Incoherent tune shift moves 

central particles close to half-

integer resonance

 … but the scan of the 

horizontal tune did not 

show any strong 

dependence

• … but it was done with a 

large e-beam offset

 Note that for pbars the shift 

is in opposite direction 

(negative)

• …and much smaller
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Why the proton life time becomes so short? (cont.)

 Single pass kick is large

 If there is a noise in the e-beam current, it can drive protons out

• Turning the modulation off increases the life time significantly

– Life time does depend on the modulation frequency

• There are no measurements of the noise with modulation off

 Dependence of the life time on the parallel beam shift and e-beam current 

doesn’t contradict to this explanation

 …but this effect should be scalable to pbars as the amplitude of the kick

• The ratio is 2γ2 = 180

• Proton life time of 20 sec should translate into ~1 hr for pbars  

– Had down to 30 hrs running without stochastic cooling

 Excitation of resonances by the non-linear fields outside the e-beam?

 Life time for aligned beams is slightly higher than at 1 mm parallel offset

 Collective instabilities?

 Life time doesn’t seem to be dependent on the number of protons

• More likely, a single-particle effect
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Summary

 Life time of protons in presence of an electron beam is short

 No cohesive explanation was found

 Likely is a combination of effects

• Kicking protons out related to e-beam current modulation or noise is one 

 In this configuration, e-beam doesn’t look promising to be used as a 

focusing element

 Life time improves considerably if the e-beam moves along a helical 

trajectory (in comparison with a parallel shift equal to the helix radius)

 “Fast emittance” data indicate that this configuration kicks out high-

amplitude protons faster than the core ones

• “scraping”

– Supports feasibility of  axially symmetrical “hollow e-beam scraper”

 Part of the life time degradation may be coming from the parts of the 

interaction sections where the beams are merged

• Also, the total helix angle differed from 2·π·(integer)

– If such configuration were for operation, one could look at 32 kHz component in a 

dipole motion of protons 90° from the interaction section and minimize it by 

adjusting the e-beam trajectory
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