MFC DSP Software Outline

This document provides a description of the DSP software provided on the MFC board
and some tips and guidelines to add more functionality or to make changes to the existing
software. An overview of the main components on the MFC board is shown in Fig. 1. The
primary functions carried out by the DSP software is the initialization of the board at powerup,
processing tasks from the slotO controller such as data acquisition, parameter scaling, user
interface support through its UART and various data transfer operations to and from the FPGA
through its parallel port and serial ports. The description is based on a template software
project “mfctestdsp.pjt” that is used for testing the various hardware components on the MFC
board.

The source files in the Analog Devices VisualDSP project “mfctestdsp.pjt” are listed in
Table 1.

Assembly files C files Header files Other Files
mfctest.asm mfctest_main.c mfctest.h mfctest.ldf
mfctest_isr.asm mfctest_init.c mfctest_c.h

mfctest_rth.asm

mfctest_initDAl.c

mfctest_initDPl.c

mfctest_initPLL.c

mfctest_SPl.c

mfctest_SPORT.c

Linker Description File

Table 1 Source files in DSP project “mfctestdsp.pjt”

The linker description file “mfctest.ldf” specifies the locations for the various code and

data segments within the four blocks of the DSP internal memory. This is shown graphically in
Fig. 3. The DSP has a total of 2 Mb of SRAM memory addressable as 16, 32 or 48-bit words. DSP
instructions are 48-bits long. All code segments are placed in BlockO. The segments for program

memory data and data memory data are placed in separate blocks (2 and 3) to make

computations faster in the dual processing elements. There are separate address and data

buses for program and data memory which allows for simultaneous access of dual data

elements. The filter coefficients of an FIR filter could be placed in data memory data and the

m>Dwn

- 00<~

Jlrewsyds 1oMod
} Sa
suI-1eH 10}03UU0D S[eubiS 0015 | s nduj 07
BuneH E Xe0o-IUIN sfeubis jonuoy —— SAAT # 00 wgp 0T-0
—eA 8T sOQv dzT Buren sfeubls ssaippy —— 5 | otseav VIS
. >
—®A0S Oavart 5 Sfeubls ereq (S/aW 00T) dS dSa SOWOAT
L eAse 1S1A NI sreufis ereq [elles ——— @ SUI-eH
uonnquisig [(SONOAT) B18q [eUsS o (S/AN 009) 2dS VOdH SAA1
. H . YV -
— -~ JeMO0d | —ppA0§ oSN) b juil-reH
AOS L A EE 18ung IXA J (/AW 009) TdS VOdd Sanl
—PAEE SvOdd SOWD ddnT Aull-reH
—PAET OMVHS [k S0 XNV
— PA ST Oav act sa reuondo
— PAZ'T QUOPAD) & po | ooz m:__%wm
. 7 P
[PASC WVHAS sng uoneiqied [euss 4 5 S Z 3]
b Y Y ZHN 092 | JoreINpO 0L
(SAAT) ereq [eUas S/aN 009 7 g s ki3
- p : 4 ova F4
W N
SOWDAT z 4 SOWD/LL 18661 XNV
S/QN 002 v v v S/AON ereq [eus ‘ 19661
e1eq [eUss — } — AB 002 (SOWOAT) ereq [euss) SOWD/TLL b sav v Ul ues |
193ysereq Lsvod russ s 4 ain 79 N_._wo m
— - an 9T AYNAS , N S0T 2 o
> — 1 wnvyas 7~ w941 S
| = oreuews . \ A / vy | | | Vi 2av -3
v € et S | @REEISE H
>|n
oul E v v 20e)Io)U| [elaS 37)= mo>w Sd ZHW 00T d1 [4
ZHIN S9
ZHW oOY Z onewsyds | / i . wep v
diN 9T < 7 uq 21T
69€TZAY DUVHS HSv4 193ysered 8 | oav |8 A 8 3t 9
—] ¢ onewsyos |
1 |z = 103dAT H
TOYLNOD >0 = »LSd ZHIN 00T d]
\ 3|5 T olewayd SAAT | zHw 59
viva—Zs ” m. s < #— wzr [NWN = WM + wap v
ﬂ SS34Aav > E # 8 | oav |8 8 8
@ 4
190ySEled deWwaydS sng |s|rered zyi €€T T03dAT H
»t_Sd ZHW 00T d11
== weibelq 4ooig SAAT| ZHW S9
= < 7#— wazt IMINWNI\I WM + wapy
9SO TVLX = M ‘ 8 | oav - 8 8
ZHN vC'1E |—> _ 9p02 _ 103N v Z H_H
sa
uolrelinbyuod » 3
- {esiu] XA 3) SAAT | zHIN 59 =
Tm olv e) S Y 802.940.02d3 4 gt % e wm » wap v
{te-0la VOd4 1l BUOPAD ISy g | osav |8 8 8

+>><— nCOXo 22U

weibeig xo01g O4IN T 614

CORE PROCESSOR

[uracTesT & EMuLATION |

4 BLOCKS OF

'ngigﬁTE'o" ON-CHIP MEMORY
FLAGS4-15
j[j[3245817 2M BIT RAM
I 1 ity j
= 22
DAG1 DAG2
PROGRAM ADDR DATA
sxax32| [8x4x32 SEQUENCER EXTERNAL PORT- DATA

CONTROLLER @

o

z PMADDRESSBUS 32 ASYNCHRONOUS 2k >
DN ADDRESSBUS 32 | ST MEMORY INTERFACE| E CONTROL
5]
P oaTaBUS 8¢ | RN SHARED MEMORY o 4
7S - =1 INTERFACE ngb
ADDRESS
][][DM DATA BUS 64 10A(24) 10D(32) =
PROCESSING | | PROCESSING | [PX FIEGISTEH' IOP REGISTER (MEMORY MAPPED) DA
ELEMENT ELEMENT CONTROL, STATUS, AND DATA BUFFERS CONTROLLER
PEX) (PEY) 34 CHANNELS MEMORY-TO- [(|
! MEMORY DMA (2)

ey

¢ [apio FLacs:
| IRQ/TIMEXP
m®

PRECISION CLOCK

SPDIF (Rw/Tx) —

DIGITAL AUDIO INTERFACE

SRC (8 CHANNELS)

GENERATORS (4)

DAI ROUTING UNIT

A
u

. INPUT DATA PORT/ .

SERIAL PORTS (8) K——

SPIPORT (2)

PDAP

)

DPIROUTING UNIT

TWOWIRE
INTERFACE

DIGITAL PERIPHERAL INTERFACE

c=4 UART (2}
o e |

—

1/0 PROCESSOR

Fig. 2 ADSP-21369 Functional Block Diagram

Block 0 (0.75 Mb)

Block 1 (0.75 Mb)

Block 2 (0.25 Mb)

Block 3 (0.25 Mb)

seg_rth (256)

ftp_data (32)

seg_pm_jmp_tbl(128)

seg_init (256)

wfm_data

seg_init_code(208)

seg_init_code
(15,568)

(4,096)

seg_pmda
(8,064)

seg_dmda
(12,256)

stack (256)

seg_stak
(7,936)

seg_heap
(8,192)

48-bit
(16,384 Words)

32-bit
(24.576 Words)

32-bit
(8,192 Words)

Fig. 3 DSP SRAM memory allocation

32-bit
(8,192 Words)

array of past input data values could be placed in program memory data. The 128 word
segment “seg-pm_jmp_tbl” is used to store pointers to vector interrupt (VIRPT) functions which
are used for DSP tasks initiated at interrupt priority from the slot0 and could be used for a
variety of time critical and housekeeping tasks.

mfctest.asm

This file is used to locate any assembly functions in the project such as initialization
routines. The DSP has four memory select lines which allow it to access the FPGA, its dedicated
SDRAM memory, the Flash memory used for code storage and the Maxll VXI interface chip. Any
variables placed in these memory segments may be used in programs like any other variable in
the DSP internal memory — however it is necessary to use the NO_INIT option which allows the
bootloader program to load the DSP memory from Flash without initialization of the external
memory elements which could cause the loading process to hang. For example, in the powerup
sequence for the MFC board, the FPGA is configured only after the DSP is running and therefore
cannot be initialized when the code first starts executing. Initialzation can proceed after it is
known that the devices are configured and therefore will respond to writes.

mfctest_isr.asm

Interrupt service routines in assembly for vector interrupts and other interrupts are
placed here. IRQQ is a hardware interrupt connected to the Maxll chip along with three flag
lines IRQMux0,1 and 2 whose level indicates one of 8 possible interrupts, 5 of which are used
presently. Two are used for bus control between the DSP and the MaxIl. When slot0 is
accessing the FPGA or the Flash chip, the DSP needs to relinquish bus control. This causes the
DSP to disable its external port. When the data access is completed a second interrupt signals
the DSP to resume bus mastership. Two more interrupts are used for read/writes to addresses
in the DSP internal memory or the SDRAM dedicated to the DSP. In this case, both data and
address are provided by the Maxll and the DSP completes the access by writing the data to the
requested location or fetching the data and writing it to the Maxll for transfer to the slot0
controller. The last interrupt is dedicated to the VIRPT interrupts where any function from the
VIRPT jump table may be called by the slotO controller. Eight message registers are provided in
the Maxll for passing arguments or reading results. Four VIRPT functions are provided with this
project. The first is a test adder routine that returns the sum of the two integer inputs — this
function is used as a basic check that the DSP is running and responding to requests. Two
routines are provided to read and write the SPI addressable registers of the four ADC’s (9222)
and the AD9510 clock chip. The FPGADataAcquire() function is used to initiate a data

acquisition process of the requested channel. In the present implementation, the DSP sends a
trigger to start acquisition of 65k points, reads them in from the FPGA, formats it as 32 bit
integers and stores it in its SDRAM for retrieval by the slotO controller. This program, along
with a Labview program running with backdoor access to the backplane, is used for testing all
the 33 input channels of the MFC board.

mfctest_rth.asm

The run time header initializes the C — environment, sets up the interrupt vector table
and calls the main() routine. Four instructions are provided for each interrupt in the table.
These are used to push the status stack, switch context and jump to the ISR routine. ISR
routines may be written in assembly or C. Depending upon which interrupt function is used in
the C run time environment there could be considerable overhead in the ISR’s written in C. The
context switching function in the DSP core registers can be exploited to speed up the transfer of
control during the interrupt handling and minimize the overhead. The approach used in this
project is to have all assembly ISR’s switch context to the alternate context. It is important to
note that the C runtime environment knows nothing about the alternate context. Any assembly
routines called from C could still use the primary context that the C environment is using. This
makes it simple to pass arguments and read results in the core registers designated for this
purpose (r4 —first parameter, r8 — second parameter, r12 — third parameter, stack for rest of
parameters, r0 — 1 word return value, r1 — address of block with remaining results). When
assembly routines are called from C, the stack operation must be handled by the called
routine. This is done by using the “entry” and “exit” macros or the “leaf_entry” and “leaf_exit”
macros at the beginning and end of the assembly routine.

For assembly ISR’s use the “push sts” (status stack) at the beginning and the “pop sts”
macros at the end to restore the context at the end of the interrupt. This is done automatically
for the IRQO,1,2 and the high priority timer interrupt TMZHI. For all other interrupts, it must be
done manually. Context switching is done by setting the bits in the “model” register. IRQ1
interrupt is tied to the start trigger input of the MFC which can be used to run DSP tasks from
an external hardware trigger.

mfctest_main.c

The function main() calls all the initialization routines by invoking the function
initMFCBoard(). The function init_ ASM_Stack() defines the stack area for assembly code. The
final function called is the init_SPI_Devices() routine which loads the ADC and clock chip

registers with the user selected parameters. When all DSP initialization code has been
completed, a flag is pulled low to indicate to the MaxlIl that the DSP is loaded and the
configuration of the FPGA may proceed. Both the DSP program and the FPGA configuration is
stored in the Flash and has to be retrieved over the shared parallel bus which makes it
necessary to stagger the bootup of these devices.

mfctest_init.c

The DSP clkin input is connected to a 31.24 MHz crystal. The function initPLL_SDRAM()
sets up the clk multiply and divide ratios to arrive at the core clock frequency. In the current
project the core clock is set to 328 MHz. It is important to note that when choosing multiply and
divide factors for the internal PLL, the PLL frequency should not exceed 800 MHz. The DSP may
be run at 400 MHz core clock if the power supply to the DSP core is adjusted to 1.4 volts. The
frequency for the SDRAM clock is set by a ratio of the core clock. A ratio of 2.5 sets this
frequency to around 130 MHz. All external port transfers including the SDRAM and the
asynchronous memory interface (AMI) are conducted with this clock which can go to a
maximium of a 166 MHz. The parameters such as number of wait states, data bus width etc. are
set here for the three AMI ports connected to the FPGA, Maxll and the Flash chip. The functions
initDAI() and initDPI() are used to connect the desired DSP peripherals, such as serial ports, SPI
ports, UARTS etc. to specific pins using the SRU macro. If a serial port needs to be changed
from a transmitter to a receiver for example, the changes would be made here. These functions
are expected to be run only during initialization. initSPI() and initSPORT() initialize the SPI ports
and the serial ports.

Programming the Flash with DSP code

The MFC board can be used for development in a non-vxi environment by storing the
FPGA code in the onboard serial configuration device and the DSP code in the Flash chip. Both
can be loaded independent of each other in this configuration. The “MFCProgFlash” project
takes a specified DSP loader file and writes it to the Flash. The loader file can be created by
compiling the desired project in VisualDSP using the “MFCBootKernel.dxe “ as the user
provided boot kernel which is customized for the MFC board. In the Project Options under the
load tab the options to be specified are “boot type — Parallel”, “format — Include” and “width —
16 bit”. Slot 0 functions are available for writing DSP loaders and FPGA configuration files to the
Flash which is useful for remote downloads.

