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Motivation

•Each element in each of the 48 
magnet packages is independently 
controllable

•Correctors now have ample strength 
to control the beam tune and position, 
but they’re still being used much as 
the old correctors were

•One new use for the correctors is to 
measure and manipulate the beta 
function

New corrector magnet packages in the Booster each contain x and y 
dipole, normal and skew quad, and normal and skew sextupole elements.
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Particle Dynamics Review:
Motion of a Particle Through a Strong Focusing 

Lattice
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Particle position on multiple turns, modeled from the Booster’s design values for 
quadrupole magnet strengths and magnet and drift lengths.
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The Beta Function

))(()(2)( φψβ += sSinsJsx
Equation of motion for a single particle: 

The beta function is proportional to the beam size envelope at a
given point in the lattice. Beam size is determined by both the beta 

function and the emittance (average J for all particles).
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Particles with the same J and different φ lie 
on an ellipse in x x’ phase space.
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Motion of a particle between two locations on a lattice 
can be described as deformations and a rotation of the 
phase space ellipse:
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Beta Function Distortion

Imperfections in the lattice cause distortions in the beta functions, 
which affects the physical size of the beam and may cause losses.  

Deviation in the beta function caused by a 
quadrupole error δq at location s0: ( )πνψψ
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Measuring the Beta Function

• If we add a weak thin quadrupole element to a ring, the change 
to the one-turn transfer matrix gives the change to the tune:

• If δq=1/f is small enough, the above expression can be 
simplified and the resulting tune shift is proportional to the 
beta function at the location of the quad error:
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Measuring the Tune
When the beam is kicked transversely, it performs 
betatron oscillations around the closed orbit.  A Fourier 
transform of the beam position at a given location on 
successive turns shows the betatron tune.
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Tune Shift Measurement Results

Figure shows the change in x and y tunes due to a single quad error in a 
particular short section drift period.  For an uncoupled machine, the tune shift 
should have a different sign in each plane; coupling in the Booster is large 
enough to cause the low-beta-plane tune to move in the wrong direction.
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Eigentunes When Error Skew Quad 
Fields are Present

• They derive an expression for observable eigentunes 
in terms of unperturbed tunes and resonance width κ:
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• Willeke and Ripken (Methods of Beam Optics, 2000) 
treat unintentional skew quad fields as a perturbation 
on the uncoupled motion

• The constants of integration are allowed to vary:
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Exchange of emittance between planes is
so coupling effects are weaker when tunes are further apart

Change to eigentunes as horizontal tune is 
varied and vertical tune is held constant:
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Measurements of resonance width/
minimum tune separation

Measured eigentunes as x tune is varied and y tune 
is held constant.  I made these measurements every 
500 turns for the first 7000 turns of the acceleration 

cycle.
Hyperbolic fit to the difference between the 
measured eigentunes, which is used to 
determine minimum tune separation.



14Result of similar study by 
Y. Alexahin; |C-| ~ κ

Im C-

Re 

C- Solid markers show minimum tune separation through the early 
part of the acceleration cycle, found by fitting a hyperbola to the 
eigentune separation as a function of x tune.  (Each color is from a 
data set with a tune bump put in for a few thousand turns.)  
Outlined markers are from Y. Alexahin.

My measurements

From Y. Alexahin
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Calculating Betas using coupled 
expression

We know how the eigentunes relate to the unperturbed tunes, 
so we can find how the eigentunes change when a small quad 
bump is introduced: 
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(This reduces to the familiar uncoupled expressions when κ=0.)
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Calculated Beta Functions at Each Short Section Corrector Location

Horizontal beta
Vertical beta

Beta functions calculated using the measured minimum tune separation and the relationship 
between eigentune shifts, uncoupled tunes, and beta functions given above.  The dashed lines show 
the design value of the beta functions at the location of the short section corrector magnets.
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Uncertainty in the Beta Function 
Measurements

• Sources of error:
– Determination of “average” (unmodified) tune (significant error 

source, since tune wanders over the course of hours or days) 

– Measurement of shifted tune

– Measurement of minimum tune separation κ

– Small fluctuations in quad magnet strength

• Uncertainty in beta measurements is ~2.7 m

• Much of the apparent variation that I see in the beta 
function is really due to random fluctuations in the tune; 
I’ll need to make many measurements of each tune shift 
to get a better statistical average value for beta.
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Correcting the Beta Function
The change to the beta function at location s, caused by small quad errors δqi at 

locations si, is approximately linear in δqi:

The change in beta at multiple locations caused by quad errors at those 
locations  can be expressed as a matrix equation:
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This expression can be inverted to solve for a set of quadrupole strengths that will cancel out 
the beta errors. We decided to only use the 24 high-beta correctors in each plane in this 
calculation (ie solve for the settings that would correct the vertical beta function in the 24 
long sections using the long section quads, and separately solve for the settings that would 
correct the horizontal beta function in the short sections using the 24 short section quads).
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Calculated quadrupole strength changes needed to correct the beta function errors, 
based on three measurements of beta at each point.  For reasons discussed on the next 
slide, we decided to scale these currents by 1/5 to partially correct the beta function, 

then repeat the process.
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Correcting the Beta Function
Problems with this method:
1. Uncertainty in beta leads to large uncertainty in the correction

2. The corrections found are generally too large for “small δq” linearizing 
approximations to hold

To get an idea of the uncertainty in the correcting current, I calculated corrections 20 times as I added 
20 different sets of random errors to the measured beta functions.  The uncertainty in current is large;  

I’d get better results if I measured the beta function many times and averaged the results
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Beta function measured after “correcting” quad current offset was added; no significant reduction 
in beta beat is apparent.  This is not too surprising considering that I didn’t take enough 
measurements of the original beta function to get an accurate average value, and the correcting 
quad currents were only ~1/5 of what would be required to fully correct the beta function.
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Future Plans

• Automate the beta function measurement process using ACL 
so that more data can be collected, giving a more accurate 
value for beta

• Correct beta beating using an iterative process of partial 
corrections

• Measure beam losses when the beta function irregularities 
have been corrected to see if efficiency is improved

• Try to reduce losses in sensitive areas of the ring and steer 
lossed towards collimators using local beta bumps
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