PBAR NOTE 596 ATTENUATION OF WAVEGUIDE MODES WITH MULTI-LAYER ABSORBING WALLS
Dave McGinnis
July 15, 1998

INTRODUCTION

Microwave modes in the beam pipe of the $4-8 \mathrm{GHz}$ Debuncher Upgrade pickup and kicker arrays are attenuated with absorbing slabs placed on the sides of the beam pipe walls. Adding an additional layer of material with different microwave properties behind the absorbing slab can enhance the attenuation of the absorber. This note describes how to calculate the attenuation of rectangular waveguide modes with multi-layer absorbers placed on the top and side walls of the waveguide.

AbSORBER ON THE SIDE-WALLS OF THE WAVEGUIDE

The geometry of the problem is shown in Figure 1. Without the absorber, the dominant mode in the waveguide will be the Transverse Electric to $\mathrm{Z} 1,0$ mode ($\mathrm{TE}^{\mathrm{Z}}{ }_{10}$). With the introduction of the absorber, the waveguide modes can no longer be classified as transverse to $\mathrm{Z}\left(\mathrm{TE}^{\mathrm{Z}}, \mathrm{TM}^{\mathrm{Z}}\right)$ but can be classified as transverse to $\mathrm{X}\left(\mathrm{TE}^{\mathrm{X}}, \mathrm{TM}^{\mathrm{X}}\right) .{ }^{1}$ Since the $\mathrm{TE}^{\mathrm{X}}{ }_{10}$ mode is the same as the $\mathrm{TE}^{\mathrm{Z}}{ }_{10}$ mode in the absence of absorber, and the incident mode on the absorbing section of waveguide will be $\mathrm{TE}^{\mathrm{Z}}{ }_{10}$, we will consider TE^{X} modes which are even in X only. TE^{X} modes can be derived from a x -directed electric vector potential:

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\hat{\mathrm{x}} \mathrm{~F}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}) \mathrm{e}^{-\gamma \mathrm{z}} \tag{1}
\end{equation*}
$$

The electric field is given as:

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}=-\frac{1}{\varepsilon} \vec{\nabla} \times \overrightarrow{\mathrm{F}} \tag{2}
\end{equation*}
$$

The magnetic field is given as:

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}=-\frac{1}{j \omega \mu \varepsilon} \vec{\nabla} \times \overrightarrow{\mathrm{E}} \tag{3}
\end{equation*}
$$

From Equations 1-3, electric field is:

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}=\left(0 \hat{\mathrm{x}}+\frac{\gamma}{\varepsilon} \mathrm{F}_{\mathrm{x}} \hat{\mathrm{y}}+\frac{1}{\varepsilon} \frac{\partial \mathrm{~F}_{\mathrm{x}}}{\partial \mathrm{y}} \hat{\mathrm{z}}\right) \mathrm{e}^{-\gamma \mathrm{z}} \tag{4}
\end{equation*}
$$

The magnetic field is:

[^0]\[

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}=\frac{1}{j \omega \mu \varepsilon}\left(-\left(\frac{\partial^{2} \mathrm{~F}_{\mathrm{x}}}{\partial \mathrm{y}^{2}}+\gamma^{2} \mathrm{~F}_{\mathrm{x}}\right) \hat{\mathrm{x}}+\frac{\partial^{2} \mathrm{~F}_{\mathrm{x}}}{\partial \mathrm{x} \partial \mathrm{y}} \hat{\mathrm{y}}-\gamma \frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial \mathrm{x}} \hat{\mathrm{z}}\right) \mathrm{e}^{-\gamma z} \tag{5}
\end{equation*}
$$

\]

To meet the boundary conditions in Region I of Figure 1, the electric vector potential must be of the form:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{1} \cos \left(\mathrm{f}_{1} \mathrm{x}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{7}
\end{equation*}
$$

The electric field in Region I is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=0 \tag{8}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \cos \left(\mathrm{f}_{1} \mathrm{x}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{9}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \frac{\mathrm{k}_{\mathrm{y}}}{\gamma} \cos \left(\mathrm{f}_{1} \mathrm{x}\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{10}
\end{gather*}
$$

The magnetic field in Region I is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{j} \gamma}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{y}}^{2}}{\gamma^{2}} \cos \left(\mathrm{f}_{1} \mathrm{x}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{11}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{j} \gamma}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{1} \mathrm{k}_{\mathrm{y}}}{\gamma^{2}} \sin \left(\mathrm{f}_{1} \mathrm{x}\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{12}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{j} \mathrm{\gamma}}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{1}}{\gamma} \sin \left(\mathrm{f}_{1} \mathrm{x}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{13}
\end{gather*}
$$

To meet the boundary conditions in Region II of Figure 1, the electric vector potential must be of the form:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{2} \cos \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{14}
\end{equation*}
$$

The electric field in Region II is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=0 \tag{15}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \cos \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{16}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \frac{\mathrm{k}_{\mathrm{y}}}{\gamma} \cos \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{17}
\end{gather*}
$$

The magnetic field in Region II is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\left(\frac{\mu_{1}}{\mu_{2}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \gamma}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{y}}^{2}}{\gamma^{2}} \cos \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{18}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1}}{\mu_{2}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \gamma}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{2} \mathrm{k}_{\mathrm{y}}}{\gamma^{2}} \sin \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{19}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1}}{\mu_{2}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{2}}{\gamma} \sin \left(\mathrm{f}_{2} \mathrm{x}+\delta_{2}\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{20}
\end{gather*}
$$

To meet the boundary conditions in Region III of Figure 1, the electric vector potential must be of the form:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{3} \sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{21}
\end{equation*}
$$

The electric field in Region III is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=0 \tag{22}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\left(\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}\right) \frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{23}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}\right) \frac{\gamma \mathrm{F}_{1}}{\varepsilon_{1}} \frac{\mathrm{k}_{\mathrm{y}}}{\gamma} \sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{24}
\end{gather*}
$$

The magnetic field in Region III is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\left(\frac{\mu_{1}}{\mu_{3}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{y}}^{2}}{\gamma^{2}} \sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{25}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1}}{\mu_{3}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{3} \mathrm{k}_{\mathrm{y}}}{\gamma^{2}} \cos \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{26}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1}}{\mu_{3}}\right)\left(\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \mu_{1}} \frac{\gamma \mathrm{~F}_{1}}{\varepsilon_{1}} \frac{\mathrm{f}_{3}}{\gamma} \cos \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{x}\right)\right) \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{y}\right) \tag{27}
\end{gather*}
$$

For electric boundaries at both the top and bottom of the waveguide:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{y}}=\mathrm{n} \frac{\pi}{\mathrm{~b}} \tag{28}
\end{equation*}
$$

where n is an integer. For an electric boundary on the bottom of the waveguide and a magnetic boundary on the top of the waveguide:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{y}}=\left(\mathrm{n}+\frac{1}{2}\right) \frac{\pi}{\mathrm{b}} \tag{29}
\end{equation*}
$$

At the interface of $\mathrm{x}=\mathrm{a}_{1} \mathrm{E}_{\mathrm{y}}, \mathrm{E}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\cos \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)=\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \cos \left(\mathrm{f}_{2} \mathrm{a}_{1}+\delta_{2}\right) \tag{30}
\end{equation*}
$$

At the interface of $\mathrm{x}=\mathrm{a}_{1} \mathrm{H}_{\mathrm{y}}, \mathrm{H}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\mathrm{f}_{1} \sin \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)=\frac{\mu_{1}}{\mu_{2}}\left(\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}\right) \mathrm{f}_{2} \sin \left(\mathrm{f}_{2} \mathrm{a}_{1}+\delta_{2}\right) \tag{31}
\end{equation*}
$$

Dividing Equation 31 by Equation 30 results in:

$$
\begin{equation*}
\mathrm{f}_{1} \tan \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)=\frac{\mu_{1}}{\mu_{2}} \mathrm{f}_{2} \tan \left(\mathrm{f}_{2} \mathrm{a}_{1}+\delta_{2}\right) \tag{32}
\end{equation*}
$$

or:

$$
\begin{equation*}
\delta_{2}=\tan ^{-1}\left(\frac{\mu_{2}}{\mu_{1}} \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}} \tan \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)\right)-\mathrm{f}_{2} \mathrm{a}_{1} \tag{33}
\end{equation*}
$$

At the interface of $\mathrm{x}=\mathrm{a}_{2} \mathrm{E}_{\mathrm{y}}, \mathrm{E}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\frac{\mathrm{F}_{3}}{\varepsilon_{3}} \sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)=\frac{\mathrm{F}_{2}}{\varepsilon_{2}} \cos \left(\mathrm{f}_{2} \mathrm{a}_{2}+\delta_{2}\right) \tag{34}
\end{equation*}
$$

At the interface of $\mathrm{x}=\mathrm{a}_{2} \mathrm{H}_{\mathrm{y}}, \mathrm{H}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\frac{1}{\mu_{3}} \frac{\mathrm{~F}_{3}}{\varepsilon_{3}} \mathrm{f}_{3} \cos \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)=\frac{1}{\mu_{2}} \frac{\mathrm{~F}_{2}}{\varepsilon_{2}} \mathrm{f}_{2} \sin \left(\mathrm{f}_{2} \mathrm{a}_{2}+\delta_{2}\right) \tag{35}
\end{equation*}
$$

Dividing Equation 35 by Equation 34 results in:

$$
\begin{equation*}
\frac{\mathrm{f}_{3}}{\tan \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)}=\frac{\mu_{3}}{\mu_{2}} \mathrm{f}_{2} \tan \left(\mathrm{f}_{2} \mathrm{a}_{2}+\delta_{2}\right) \tag{36}
\end{equation*}
$$

or:

$$
\begin{equation*}
\delta_{2}=\tan ^{-1}\left(\frac{\mu_{2}}{\mu_{3}} \frac{\mathrm{f}_{3}}{\mathrm{f}_{2}} \frac{1}{\tan \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)}\right)-\mathrm{f}_{2} \mathrm{a}_{2} \tag{37}
\end{equation*}
$$

The solution to the Helmholtz wave equation requires:

$$
\begin{align*}
& \gamma^{2}-\mathrm{f}_{1}^{2}-\mathrm{k}_{\mathrm{y}}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}=0 \tag{38}\\
& \gamma^{2}-\mathrm{f}_{2}^{2}-\mathrm{k}_{\mathrm{y}}^{2}+\omega^{2} \mu_{2} \varepsilon_{2}=0 \tag{39}\\
& \gamma^{2}-\mathrm{f}_{3}^{2}-\mathrm{k}_{\mathrm{y}}^{2}+\omega^{2} \mu_{3} \varepsilon_{3}=0 \tag{40}
\end{align*}
$$

Subtracting Equation 38 from Equations 39 and 40 results in:

$$
\begin{align*}
& \mathrm{f}_{2}^{2}=\mathrm{f}_{1}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}\left(\frac{\mu_{2} \varepsilon_{2}}{\mu_{1} \varepsilon_{1}}-1\right)=0 \tag{41}\\
& \mathrm{f}_{3}^{2}=\mathrm{f}_{1}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}\left(\frac{\mu_{3} \varepsilon_{3}}{\mu_{1} \varepsilon_{1}}-1\right)=0 \tag{41}
\end{align*}
$$

Subtracting Equation 37 from Equation 33:

$$
\begin{equation*}
0=\tan ^{-1}\left(\frac{\mu_{2}}{\mu_{3}} \frac{\mathrm{f}_{3}}{\mathrm{f}_{2}} \frac{1}{\tan \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)}\right)-\tan ^{-1}\left(\frac{\mu_{2}}{\mu_{1}} \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}} \tan \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)\right)-\mathrm{f}_{2}\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) \tag{42}
\end{equation*}
$$

The attenuation is:

$$
\begin{equation*}
\alpha=\left|\operatorname{IM}\left(\sqrt{\omega^{2} \mu_{1} \varepsilon_{1}-\mathrm{k}_{\mathrm{y}}^{2}-\mathrm{f}_{1}^{2}}\right)\right| \tag{43}
\end{equation*}
$$

The ratios of the vector potential amplitudes are:

$$
\begin{gather*}
\frac{\varepsilon_{1} \mathrm{~F}_{2}}{\varepsilon_{2} \mathrm{~F}_{1}}=\frac{\cos \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)}{\cos \left(\mathrm{f}_{2} \mathrm{a}_{1}+\delta_{2}\right)} \tag{44}\\
\frac{\varepsilon_{1} \mathrm{~F}_{3}}{\varepsilon_{3} \mathrm{~F}_{1}}=\frac{\cos \left(\mathrm{f}_{1} \mathrm{a}_{1}\right)}{\cos \left(\mathrm{f}_{2} \mathrm{a}_{1}+\delta_{2}\right)} \frac{\cos \left(\mathrm{f}_{2} \mathrm{a}_{2}+\delta_{2}\right)}{\sin \left(\mathrm{f}_{3}\left(\mathrm{a}_{3}-\mathrm{a}_{2}\right)\right)} \tag{45}
\end{gather*}
$$

Figure 1. Geometry for sidebar absorbers.

AbSORBER ON THE TOP AND Bottom Walls of THE WAVEGUIDE

The geometry of the problem is shown in Figure 2. Without the absorber, the dominant mode in the waveguide will be the Transverse Electric to $\mathrm{Z} 1,0 \operatorname{mode}\left(\mathrm{TE}_{10}^{\mathrm{Z}}\right)$. With the introduction of the absorber, the waveguide modes can no longer be classified as transverse to $\mathrm{Z}\left(\mathrm{TE}^{\mathrm{Z}}, \mathrm{TM}^{\mathrm{Z}}\right)$ but can be classified as transverse to $\mathrm{Y}\left(\mathrm{TE}^{\mathrm{Y}}, \mathrm{TM}^{\mathrm{Y}}\right)$. Since
the $\mathrm{TM}^{\mathrm{Y}}{ }_{10}$ mode is the same as the $\mathrm{TE}^{\mathrm{Z}}{ }_{10}$ mode in the absence of absorber, and the incident mode on the absorbing section of waveguide will be $\mathrm{TE}^{\mathrm{Z}}{ }_{10}$, we will consider TM^{Y} modes which are even in Y only. TM^{Y} modes can be derived from a y-directed magnetic vector potential:

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\hat{y} \mathrm{~A}_{\mathrm{y}}(\mathrm{x}, \mathrm{y}) \mathrm{e}^{-\gamma \mathrm{z}} \tag{46}
\end{equation*}
$$

The magnetic field is given as:

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}=\frac{1}{\mu} \vec{\nabla} \times \overrightarrow{\mathrm{A}} \tag{47}
\end{equation*}
$$

The electric field is given as:

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}=\frac{1}{j \omega \mu \varepsilon} \vec{\nabla} \times \overrightarrow{\mathrm{H}} \tag{48}
\end{equation*}
$$

From Equations 46-48, magnetic field is:

$$
\begin{equation*}
\mathrm{H}=\left(\underline{\gamma}_{A_{y} \mathrm{x}}+0 \mathrm{y}+\frac{1}{\partial} \frac{\partial}{\partial \mathrm{x}} \wedge\right) \mathrm{e}^{-\mathrm{z}} \tag{49}
\end{equation*}
$$

The electric field is:

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2} \mathrm{~A}_{\mathrm{y}}}{\partial \mathrm{x} \partial \mathrm{y}} \hat{\mathrm{x}}-\left(\frac{\partial^{2} \mathrm{~A}_{\mathrm{y}}}{\partial \mathrm{x}^{2}}+\gamma^{2} \mathrm{~A}_{\mathrm{y}}\right) \hat{\mathrm{y}}-\gamma \frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial \mathrm{y}} \hat{\mathrm{z}}\right) e^{-\gamma z} \tag{50}
\end{equation*}
$$

Figure 2. Geometry for absorber on the top and bottom of the waveguide.

Electric Boundary at $\mathrm{y}=0$

If the array is operated in the difference mode for transverse cooling, the horizontal plane in the center of the aperture can be replaced with an electric conductor. To meet the boundary conditions in Region I of Figure 2 with an electric boundary for $y=0$, the magnetic vector potential must be of the form:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\mathrm{A}_{1} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{51}
\end{equation*}
$$

The magnetic field in Region I is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{52}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=0 \tag{53}\\
\mathrm{H}_{\mathrm{Z}}(\mathrm{x}, \mathrm{y})=-\frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \frac{\mathrm{k}_{\mathrm{x}}}{\gamma} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{54}
\end{gather*}
$$

The electric field in Region I is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{1} \mathrm{k}_{\mathrm{x}}}{\gamma^{2}} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{55}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{x}}^{2}}{\gamma^{2}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{56}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{1}}{\gamma} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{57}
\end{gather*}
$$

To meet the boundary conditions in Region II of Figure 2 with an electric boundary for $y=0$, the magnetic vector potential must be of the form:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\mathrm{A}_{2} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{58}
\end{equation*}
$$

The magnetic field in Region II is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{59}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=0 \tag{60}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \frac{\mathrm{k}_{\mathrm{x}}}{\gamma} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{61}
\end{gather*}
$$

The electric field in Region II is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{2} \mathrm{k}_{\mathrm{x}}}{\gamma^{2}} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{62}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{x}}^{2}}{\gamma^{2}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{63}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{2}}{\gamma} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{2} \mathrm{y}+\delta_{2}\right) \tag{64}
\end{gather*}
$$

To meet the boundary conditions in Region III of Figure 2 with an electric boundary for $\mathrm{y}=0$, the magnetic vector potential must be of the form:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\mathrm{A}_{3} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{65}
\end{equation*}
$$

The magnetic field in Region III is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{3} \mathrm{~A}_{1}}\right) \frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{66}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=0 \tag{67}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{3} \mathrm{~A}_{1}}\right) \frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \frac{\mathrm{k}_{\mathrm{x}}}{\gamma} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{68}
\end{gather*}
$$

The electric field in Region III is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1}}{\varepsilon_{3}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{3} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{3} \mathrm{k}_{\mathrm{x}}}{\gamma^{2}} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{69}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\left(\frac{\varepsilon_{1}}{\varepsilon_{3}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{3} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \mathrm{\gamma}}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{x}}^{2}}{\gamma^{2}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{70}\\
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\left(\frac{\varepsilon_{1}}{\varepsilon_{3}}\right)\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{3} \mathrm{~A}_{1}}\right) \frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{3}}{\gamma} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{3}\left(\mathrm{y}-\mathrm{b}_{3}\right)\right) \tag{71}
\end{gather*}
$$

At the interface of $y=b_{1} H_{x}, H_{z}$ must be continuous:

$$
\begin{equation*}
\cos \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)=\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{72}
\end{equation*}
$$

At the interface of $y=b_{1} E_{x}, E_{z}$ must be continuous:

$$
\begin{equation*}
\mathrm{a}_{1} \sin \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)=\frac{\varepsilon_{1}}{\varepsilon_{2}}\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \mathrm{a}_{2} \sin \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{73}
\end{equation*}
$$

Dividing Equation 73 by Equation 72 results in:

$$
\begin{equation*}
\mathrm{a}_{1} \tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)=\frac{\varepsilon_{1}}{\varepsilon_{2}} \mathrm{a}_{2} \tan \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{74}
\end{equation*}
$$

or:

$$
\begin{equation*}
\delta_{2}=\tan ^{-1}\left(\frac{\varepsilon_{2}}{\varepsilon_{1}} \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)\right)-\mathrm{a}_{2} \mathrm{~b}_{1} \tag{75}
\end{equation*}
$$

At the interface of $\mathrm{y}=\mathrm{b}_{2} \mathrm{H}_{\mathrm{x}}, \mathrm{H}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\frac{\mathrm{A}_{3}}{\mu_{3}} \cos \left(\mathrm{a}_{3}\left(\mathrm{~b}_{2}-\mathrm{b}_{3}\right)\right)=\frac{\mathrm{A}_{2}}{\mu_{2}} \cos \left(\mathrm{a}_{2} \mathrm{~b}_{2}+\delta_{2}\right) \tag{76}
\end{equation*}
$$

At the interface of $y=b_{2} E_{x}, E_{z}$ must be continuous:

$$
\begin{equation*}
\frac{1}{\varepsilon_{3}} \frac{\mathrm{~A}_{3}}{\mu_{3}} \mathrm{a}_{3} \sin \left(\mathrm{a}_{3}\left(\mathrm{~b}_{2}-\mathrm{b}_{3}\right)\right)=\frac{1}{\varepsilon_{2}} \frac{\mathrm{~A}_{2}}{\mu_{2}} \mathrm{a}_{2} \sin \left(\mathrm{a}_{2} \mathrm{~b}_{2}+\delta_{2}\right) \tag{77}
\end{equation*}
$$

Dividing Equation 77 by Equation 76 results in:

$$
\begin{equation*}
-\mathrm{a}_{3} \tan \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)=\frac{\varepsilon_{3}}{\varepsilon_{2}} \mathrm{a}_{2} \tan \left(\mathrm{a}_{2} \mathrm{~b}_{2}+\delta_{2}\right) \tag{78}
\end{equation*}
$$

or:

$$
\begin{equation*}
\delta_{2}=\tan ^{-1}\left(-\frac{\varepsilon_{2}}{\varepsilon_{3}} \frac{\mathrm{a}_{3}}{\mathrm{a}_{2}} \tan \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)\right)-\mathrm{a}_{2} \mathrm{~b}_{2} \tag{79}
\end{equation*}
$$

The solution to the Helmholtz wave equation requires:

$$
\begin{align*}
& \gamma^{2}-\mathrm{a}_{1}^{2}-\mathrm{k}_{\mathrm{x}}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}=0 \tag{80}\\
& \gamma^{2}-\mathrm{a}_{2}^{2}-\mathrm{k}_{\mathrm{x}}^{2}+\omega^{2} \mu_{2} \varepsilon_{2}=0 \tag{81}\\
& \gamma^{2}-\mathrm{a}_{3}^{2}-\mathrm{k}_{\mathrm{x}}^{2}+\omega^{2} \mu_{3} \varepsilon_{3}=0 \tag{82}
\end{align*}
$$

Subtracting Equation 80 from Equations 81 and 82 results in:

$$
\begin{align*}
& \mathrm{a}_{2}^{2}=\mathrm{a}_{1}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}\left(\frac{\mu_{2} \varepsilon_{2}}{\mu_{1} \varepsilon_{1}}-1\right)=0 \tag{83}\\
& \mathrm{a}_{3}^{2}=\mathrm{a}_{1}^{2}+\omega^{2} \mu_{1} \varepsilon_{1}\left(\frac{\mu_{3} \varepsilon_{3}}{\mu_{1} \varepsilon_{1}}-1\right)=0 \tag{84}
\end{align*}
$$

Subtracting Equation 79 from Equation 75:

$$
\begin{equation*}
0=\tan ^{-1}\left(-\frac{\varepsilon_{2}}{\varepsilon_{3}} \frac{\mathrm{a}_{3}}{\mathrm{a}_{2}} \tan \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)\right)-\tan ^{-1}\left(\frac{\varepsilon_{2}}{\varepsilon_{1}} \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)\right)-\mathrm{a}_{2}\left(\mathrm{~b}_{2}-\mathrm{b}_{1}\right) \tag{85}
\end{equation*}
$$

The attenuation is:

$$
\begin{equation*}
\alpha=\mid \operatorname{IM}\left(\sqrt{\omega^{2} \mu_{1} \varepsilon_{1}-\mathrm{k}_{\mathrm{x}}^{2}-\mathrm{a}_{1}^{2}}\right) \tag{86}
\end{equation*}
$$

To satisfy the boundary conditions that the E_{y}, E_{z} vanish at $x= \pm a / 2$ and H_{y}, H_{z} vanish at $\mathrm{x}=0$:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{x}}=(2 \mathrm{~m}+1) \frac{\pi}{\mathrm{a}} \tag{87}
\end{equation*}
$$

The ratios of the vector potential amplitudes are:

$$
\begin{gather*}
\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}=\frac{\cos \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right)} \tag{88}\\
\frac{\mu_{1} \mathrm{~A}_{3}}{\mu_{3} \mathrm{~A}_{1}}=\frac{\cos \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right)} \frac{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{2}+\delta_{2}\right)}{\cos \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)} \tag{89}
\end{gather*}
$$

Magnetic Boundary at $\mathrm{y}=0$

If the array is operated in the sum mode for longitudinal cooling, the horizontal plane in the center of the aperture can be replaced with a magnetic conductor. To meet the boundary conditions in Region I of Figure 2 with an magnetic boundary for $y=0$, the magnetic vector potential must be of the form:

$$
\begin{equation*}
A_{y}(x, y)=A_{1} \cos \left(k_{x} x\right) \sin \left(a_{1} y\right) \tag{90}
\end{equation*}
$$

The magnetic field in Region I is:

$$
\begin{gather*}
\mathrm{H}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{91}\\
\mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=0 \tag{92}\\
\mathrm{H}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=-\frac{\gamma \mathrm{A}_{1}}{\mu_{1}} \frac{\mathrm{k}_{\mathrm{x}}}{\gamma} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{93}
\end{gather*}
$$

The electric field in Region I is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{1} \mathrm{k}_{\mathrm{x}}}{\gamma^{2}} \sin \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{94}\\
\mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\gamma^{2}-\mathrm{k}_{\mathrm{x}}^{2}}{\gamma^{2}} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \sin \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{95}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{j} \gamma}{\omega \varepsilon_{1}} \frac{\gamma \mathrm{~A}_{1}}{\mu_{1}} \frac{\mathrm{a}_{1}}{\gamma} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{x}\right) \cos \left(\mathrm{a}_{1} \mathrm{y}\right) \tag{96}
\end{equation*}
$$

At the interface of $\mathrm{y}=\mathrm{b}_{1} \mathrm{H}_{\mathrm{x}}, \mathrm{H}_{\mathrm{z}}$ must be continuous:

$$
\begin{equation*}
\sin \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)=\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{97}
\end{equation*}
$$

At the interface of $y=b_{1} E_{X}, E_{z}$ must be continuous:

$$
\begin{equation*}
-\mathrm{a}_{1} \cos \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)=\frac{\varepsilon_{1}}{\varepsilon_{2}}\left(\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}\right) \mathrm{a}_{2} \sin \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{98}
\end{equation*}
$$

Dividing Equation 98 by Equation 97 results in:

$$
\begin{equation*}
-\frac{\mathrm{a}_{1}}{\tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}=\frac{\varepsilon_{1}}{\varepsilon_{2}} \mathrm{a}_{2} \tan \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right) \tag{99}
\end{equation*}
$$

or:

$$
\begin{equation*}
\delta_{2}=\tan ^{-1}\left(-\frac{\varepsilon_{2}}{\varepsilon_{1}} \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \frac{1}{\tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}\right)-\mathrm{a}_{2} \mathrm{~b}_{1} \tag{100}
\end{equation*}
$$

Subtracting Equation 100 from Equation 75:

$$
\begin{equation*}
0=\tan ^{-1}\left(-\frac{\varepsilon_{2}}{\varepsilon_{3}} \frac{\mathrm{a}_{3}}{\mathrm{a}_{2}} \tan \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)\right)-\tan ^{-1}\left(-\frac{\varepsilon_{2}}{\varepsilon_{1}} \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \frac{1}{\tan \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}\right)-\mathrm{a}_{2}\left(\mathrm{~b}_{2}-\mathrm{b}_{1}\right) \tag{101}
\end{equation*}
$$

The ratios of the vector potential amplitudes are:

$$
\begin{gather*}
\frac{\mu_{1} \mathrm{~A}_{2}}{\mu_{2} \mathrm{~A}_{1}}=\frac{\sin \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right)} \tag{102}\\
\frac{\mu_{1} \mathrm{~A}_{3}}{\mu_{3} \mathrm{~A}_{1}}=\frac{\sin \left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)}{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{1}+\delta_{2}\right)} \frac{\cos \left(\mathrm{a}_{2} \mathrm{~b}_{2}+\delta_{2}\right)}{\cos \left(\mathrm{a}_{3}\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\right)} \tag{103}
\end{gather*}
$$

A SAmple Design

The design parameters of a sidebar waveguide absorber (as shown in Figure 1) operating between $5-7 \mathrm{GHz}$ in the difference mode will be explored in this section. The width of Region I is 40 mm . The material in Region II is a ferrite from Trans-Tech called TT2-111R ${ }^{2}$. The material in Region III is alumina with a dielectric constant of 10. Figures 3-5 are contour plots of the attenuation as a function of the thickness of Regions II and III at 5,6 , and 7 GHz , respectively. Figure 6 shows the product at 5,6 , and 7 GHz of the attenuation as a function of absorber thickness.

[^1]The average attenuation in the band is defined as:

$$
\begin{equation*}
\langle\mathrm{L}\rangle=\frac{1}{3}\left(\operatorname{loss}_{5 \mathrm{GHz}}+\operatorname{loss}_{6 \mathrm{GHz}}+\operatorname{loss}_{7 \mathrm{GHz}}\right) \tag{104}
\end{equation*}
$$

To design an absorber that has flat attenuation over a wide bandwidth, the following function is defined:

$$
\begin{equation*}
\chi=\frac{3\langle\mathrm{~L}\rangle}{\sqrt{\left(\operatorname{loss}_{5 \mathrm{GHz}}-\langle\mathrm{L}\rangle\right)^{2}+\left(\operatorname{loss}_{6 \mathrm{GHz}}-\langle\mathrm{L}\rangle\right)^{2}+\left(\operatorname{loss}_{7 \mathrm{GHz}}-\langle\mathrm{L}\rangle\right)^{2}}} \tag{105}
\end{equation*}
$$

This function is plotted in Figure 7.

- Comparing Figure 6 and Figure 7, the best set of parameters for large attenuation and wide bandwidth is to have the thickness in Region II to be 1.9 mm and Region III to be 1.6 mm .
- If Region II and Region III both consist of TT2-111R, the optimum combined thickness for maximum attenuation at 6 GHz is 2.8 mm .
- To have the maximum attenuation at 6 GHz , Region II should be 1.86 mm and Region III should be 2.3 mm .

Figure 8 is the attenuation as a function of frequency for the three different absorber designs. Figures 9 through 11 are the electromagnetic fields at 6 GHz as a function of position in the waveguide.

Figure 3. Attenuation at 5 GHz for a TT2-111R/Alumina sidebar absorber as a function of material thickness. Dimensions are in mm.

Figure 4. Attenuation at 6 GHz for a TT2-111R/Alumina sidebar absorber as a function of material thickness. Dimensions are in mm.

Figure 5. Attenuation at 7 GHz for a TT2-111R/Alumina sidebar absorber as a function of material thickness. Dimensions are in mm.

Figure 6. Product of the attenuation at 5,6, \& 7 GHz for a TT2-111R/Alumina sidebar absorber as a function of material thickness. Dimensions are in mm .

Figure 7. Equation 105 as a function of material thickness. Dimensions are in mm.

Figure 8. Attenuation as a function of frequency for three different sidebar absorber designs.

Figure 9. Magnitude of the electric field in the y direction at 6 GHz as a function of position in the waveguide. $X=0$ is the center of Region I.

Figure 10. Magnitude of the magnetic field in the x direction at 6 GHz as a function of position in the waveguide. $X=0$ is the center of Region I.

Figure 11. Magnitude of the magnetic field in the z direction at 6 GHz as a function of position in the waveguide. $X=0$ is the center of Region I.

[^0]: ${ }^{1}$ Time Harmonic Electromagnetic Fields, R.F. Harrington, McGraw-Hill, Inc., 1961, pg. 158

[^1]: ${ }^{2}$ PBAR Note 594, "Analysis of Microwave Properties for Various Absorbing Materials", Dave McGinnis, June 30,1998

