Higgs Bosons at the Tevatron and at a Future Muon Collider

Marc Buehler
University of Virginia

Outline

- DZero Detector Overview:
 - Triggering
 - Central Track Trigger (CTT)
- Higgs at the Tevatron
 - $H \rightarrow WW \rightarrow l\nu jj$
 - Higgs Combinations
- Higgs at a Muon Collider
Tevatron Collider in Run II

- Highest energy proton-antiproton collider
- Colliding protons and antiprotons at $\sqrt{s}=1.96$ TeV
- Delivers a dataset equal to Run I (~100 pb$^{-1}$) every 2 weeks per detector
- Total delivered integrated luminosity for Run II is ~11 fb$^{-1}$ per detector
The DZero Detector

Muon system (70k channels)

Solenoid (2T)

Silicon (5 layers, 700K channels)

Uranium/Liquid Argon Calorimeter (50k channels)

Fiber Tracker (16 layers, 100K channels)
The DZero Detector

Central Tracking System

Central Calorimeter
Solenoidal Magnet
Central Fiber Tracker
Central Preshower Detector
Silicon Microstrip Tracker

Intercryostat Detector
Forward Preshower Detector
Luminosity Monitor
DØ Beam Pipe
End Calorimeter

~2.4m
High Luminosity Challenges

The Trigger does not determine which physics model is right. The Trigger only determines which physics model is left.”

DZero three-tier trigger system:
- **L1:** Fast/coarse filtering. Hardware & firmware implementation
- **L2:** Forms simple physics objects using dedicated SBCs
- **L3:** Uses full detector readout and event reconstruction on a filter farm

Trigger system is crucial when dealing with high instantaneous luminosities
Trigger Strategy

- Object oriented:
 - Muons, electrons, taus, jets, MET, …

- General purpose triggers shared among physics groups
 - Each group gets their ”fair share” of the bandwidth

- High efficiency and redundancy
 - Various combinations of tight and loose conditions

- Keep high p_T “core” triggers unprescaled at high luminosities
 - Most B physics and QCD triggers prescaled at high luminosity
 - B physics and looser versions of core triggers turn on as luminosity drops during a store

- Rate “guidelines”
 - Keep L1/L2/L3 rates below their technically allowed values with room to spare:
 - L1/L2 < 1800/900Hz
 - Rate to tape kept at a store average value of 100Hz (up to 250Hz at high instantaneous luminosities)
The DZero RunIIb Trigger

Detector (MHz)
- Calorimeter
- Pre-shower
- Central Fiber Tracker (CFT)
- Silicon Micro-strip Tracker (SMT)
- Muon

Level 1 (2 kHz)
- L1Cal
- L1PS
- L1CTT
- L1Mu

Level 2 (1 kHz)
- L2Cal
- L2PS
- L2CTT
- L2STT
- L2Mu

Level 3 (300 Hz)
Fast event reconstruction on 300 node PC farm

L2 Global
The DZero RunIIb Trigger

Detector (MHz)
- Calorimeter
- Pre-shower
- Central Fiber Tracker (CFT)
- Silicon Micro-strip Tracker (SMT)
- Muon

Level 1 (2 kHz)
- L1Cal
- L1PS
- L1CTT
- L1Mu

Level 2 (1 kHz)
- L2Cal
- L2PS
- L2CTT
- L2STT
- L2Mu

Level 3 (300 Hz)
Fast event reconstruction on 300 node PC farm

L2 Global
Central Fiber Tracker (CFT)

- Provides inputs to Central Track Trigger (CTT)
- Located between silicon tracker and 2T solenoid
- Surrounded by pre-shower detectors
- Covering $|\eta|<1.7$
- Length ~2.4m
- 76,800 fibers in 8 axial and stereo doublet layers with radii from 20 to 52 cm
- Light from scintillating fibers converted into electrical signals by Visible Light Photon Counters (VLPC)
- AFEIIt boards generate discriminator inputs for CTT

VLPC: solid state photodetector with 8 input pixels 1mm in diameter each
Central Track Trigger (CTT)

- Hardware trigger at level 1 (L1) running at 7.6MHz (132ns/decision)
- Uses hit patterns from CFT axial layers to find tracks in azimuthal plane with 4 different p_T thresholds: 1.5, 3, 5, 10 GeV
- All probable CFT hit patterns consistent with tracks (track equations) are stored in FPGAs
- For triggering purposes the azimuthal plane is segmented into 80 4.5°-wide trigger sectors
- Provides additional information on isolation and & pre-shower match
- Provides outputs to multiple downstream trigger components:
 - L1 Muon
 - L1 CalTrack
 - L2 silicon track trigger
CTT System Overview

- CTT hardware is located in the collision hall underneath the detector ⇒ need reliable control and monitoring for remote operations
- Consists of >100 custom built processing cards distributed over multiple crates
- Communication path to the DZero control room via 1553/Gigabit Ethernet
- Signal processing chain for CTT track triggering:

 - **CFT Inputs**: Analog signals discriminated by AFE boards and sent via LVDS
 - **Mixer (Remapping)**: 20 boards
 - **DFEA2 (Track Finding)**: 40 boards
 - **CTOC (Data Collecting)**: 8 boards
 - **CTTT (Decision Maker)**: 1 board

 - Trigger Framework

- Upgrade for RunIIb
CTT Track Finding Upgrade

- Run IIa hardware limited number of fiber track equations
 - Combining 2 fibers into one doublet space-point
 - With increasing occupancy, the fake track rate dominates due to combinatorics
- For Run IIb the solution was to use the full granularity of the CFT using singlet fiber hits (≥ 8)
 - Increases number of track equations from 16k to 50k per sector
 - Needs larger FPGA with faster download for track equations
CTT Hardware Upgrade

- Track finding hardware (DFEA2)
 - 4 large Xilinx Virtex II FPGAs
 - Front panel designed to provide complete test and diagnostic information
 - Custom backplane
 - Processing two trigger sectors per board
 - 8 (4) x 1.5Mbps bus LVDS inputs (outputs)
 - Two 1-Gigabit coaxial copper outputs
 - Designed at Boston University
- New crate controller
 - Gigabit optical Ethernet connection
- Improved infrastructure
 - New redundant power distribution
 - New crate design to improve cable routing
Hardware Installation

• Installation of DFEA2 boards and cabling (lots of cabling ...) during the Spring 2006 Run IIb upgrade shutdown
Hardware Installation

- New crate design allows easy maintenance access to DFEA2 boards
- All I/O cabling is done through the backside of the crates
CTT Occupancy Veto Terms

At peak luminosities CFT occupancies reach levels where CTT track finding is dominated by fake tracks.
Use occupancy veto terms to select events with low CFT occupancies

L1 and L2 trigger rates for Di-Muon triggers
→ Previously turned off at 160E30 w/o occupancy vetoes
→ Now running up to 350E30 with occupancy vetoes
Light Yield vs Integrated Luminosity

- Fiber light yields decrease with accumulated radiation dose

- Options to boost CTT efficiencies:
 - Smarter track equations:
 - Improved algorithms
 - Better modeling
 - Firmware re-arrangement
 - Re-allocate more logic resources for high p_T tracks
 - Invest in better hardware
 - Develop entirely new hardware

- Were able to maintain efficient triggering

\[
\begin{align*}
\chi^2 / \text{ndf} & = 4.896 / 5 \\
g_E \text{ at 8fb}^{-1} (\text{PE/MeV}) & = 54.73 \pm 0.7317 \\
\text{LY degradation per 2.5fb}^{-1} & = 0.8717 \pm 0.009557
\end{align*}
\]

1200 similar plots

(G.Wilson)
A High Luminosity Store

Store 8315:
Initial Luminosity = 3×10^{30}
Highest FEB ~ 13%
DZero Data Taking

Run II Integrated Luminosity

19 April 2002 - 10 April 2011

Luminosity (fb)

- Delivered
- Recorded

10.68
9.55
DZero Data Taking

Running with high operating efficiency (>90%)
No operational issues anticipated until the end of Run II
Expect to have ~10fb⁻¹ on tape by the end of Run II
Higgs at the Tevatron
Higgs Introduction

- Higgs Mechanism predicts the existence of a new particle
- Generates Fermion masses through interaction with Higgs field
- Breaks electroweak symmetry (W/Z bosons acquire mass) through degrees of freedom of Higgs field
- We don't know exactly what the mass (m_H) of the Higgs boson is

Direct search at LEP found excess around 115GeV, but not statistically significant

- $M_H \geq 114.4$GeV @ 95% CL

M_W and M_t constraints and indirect constraints on M_H from global EW fits prefer a light Higgs boson:

- $M_H = 87^{+35}_{-26}$ GeV
- $M_H < 186$ GeV @ 95% CL
Low vs High Mass

Higgs production at the Tevatron:

\[\sigma(gg \to H) = 0.2 - 1 \text{ pb} \]

\[\sigma(q\bar{q} \to VH) = 0.01 - 0.3 \text{ pb} \]

\[\sigma(q\bar{q} \to q\bar{q}H) = 0.01 - 0.1 \text{ pb} \]

H \to WW* dominant for \(M_H > 135 \text{ GeV} \)

Tevatron definition of “High Mass”
H → WW* Final States

- “Leave no stone unturned”
- Hadron collider environment requires that at least one W decays leptonically
- Most sensitive channel is lνlν
- We recently included lνqq

- “All leptonic” final state (lνlν) has a small BR but provides a very clean signal: 2 high p_T leptons and missing E_T
- “Semi leptonic” final state (lνqq) has a large BR but much larger backgrounds which are more difficult to model
H→WW→lvjj Introduction

- **H→WW** is the most sensitive search channel at the Tevatron
- **DZero** has reached SM sensitivity
- Until recently only leptonic final states: H→WW→lvlv
- This analysis looks at semi-leptonic final states H→WW→lvjj (l=μ,e):
 - 5.4fb$^{-1}$ data set
 - H production via gluon-fusion
 - Large branching fraction for hadronic W decays
 - Factor of ~6 increase in xsection * BR
 - Large backgrounds from W+jets
- Use W mass constraint to reconstruct neutrino p_z^ν. For $m_H>160$GeV possible to extract the mass of Higgs
Signal & Background

<table>
<thead>
<tr>
<th>Channel</th>
<th>(gg \rightarrow H)</th>
<th>(qq \rightarrow qqH)</th>
<th>(WH)</th>
<th>(V+\text{jets})</th>
<th>Multijet</th>
<th>Top</th>
<th>VV</th>
<th>Total Background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>11.2/46.3/27.8</td>
<td>2.1/6.4/4.2</td>
<td>7.2/0/0</td>
<td>52158</td>
<td>11453</td>
<td>2433</td>
<td>1584</td>
<td>67627</td>
<td>67627</td>
</tr>
<tr>
<td>Muon</td>
<td>9.5/34.7/20.4</td>
<td>1.5/4.4/2.9</td>
<td>5.7/0/0</td>
<td>47970</td>
<td>2720</td>
<td>1598</td>
<td>1273</td>
<td>53562</td>
<td>53562</td>
</tr>
</tbody>
</table>

- **Signal Processes (PYTHIA):**
 - \(gg \rightarrow H \rightarrow WW \rightarrow e/\mu \nu jj \)
 - Dominates above \(m_H = 125 \text{GeV} \)
 - \(gg \rightarrow H \rightarrow WW \rightarrow \tau \nu jj \) & \(gg \rightarrow H \rightarrow ZZ \):
 - Contributes little after pre-selection
 - \(WH \rightarrow l \nu bb \):
 - Contributes at low mass
 - Different kinematic shape
 - Vector Boson Fusion \(qqH \rightarrow qqWW \):
 - Contributes at medium and high mass
 - Different kinematic shape

- **Backgrounds:**
 - W/Z+Jets: Alpgen
 - Multijet (“QCD”): derived from data
 - Di-bosons (WW, WZ, ZZ): Pythia
 - Top (ttbar, single-top): Alpgen, CompHEP

![Signal Yields for Combined Channels 5.4 fb-1](chart.png)
Event Selection

Triggers:
Electron channel: Single-Lep and Lep+Jets triggers, >90% efficiency
Muon channel: SingleMuon triggers, efficiency ~79%(74%) Run2a(b)

- **Leptons:**
 - $p_T > 15$ GeV
 - $e:|\eta_{\text{det}}| < 1.1$, $\mu:|\eta_{\text{det}}| < 1.6$
- MET > 15 GeV
- Triangle Cut:
 - $M_{\text{trans } W} > 40 - \text{MET}/2$

- **Jets:**
 - ≥ 2 jets
 - Vertex-confirmation
 - JCCB
 - $p_T > 20$ GeV
 - $|\eta| < 2.5$
Analysis Strategy

- Very low S/\sqrt{B} ratios make it impossible to perform cut-based analysis, i.e., no counting experiment: $S/\sqrt{B} \sim 0.18$

- Requires the use of Multivariate Analysis Techniques (MVA) for signal extraction:
 - Random Forest (RF)
 - RF optimized for each sub-channel and Higgs mass hypothesis
 - Input parameters: event topology, kinematics, …
 - RF outputs are used as input to derive limits

- 4-step process:
 - Step 1: Use simple cuts (pre-selection) and optimize data modeling
 - Step 2: Select variables that show good signal vs background discrimination
 - Step 3: Feed variables into Random Forest to separate signal from background
 - Step 4: Use Random Forest outputs to set cross section limits
Data Modeling (1)

Scores of distributions were examined and after corrections to MC, generally excellent agreement is observed between data and background models.
Data Modeling (2)

Scores of distributions were examined and after corrections to MC, generally excellent agreement is observed between data and background models.
Selection of Distributions for Analysis

Variables satisfying a χ^2 probability requirement of 2% in data/MC comparisons are selected as possible discriminants.

Normalized signal shapes were compared to the dominant background from V+jets using a KS test.

Those variables with the largest KS distance were selected to use in constructing our MVA.

Roughly 30 variables were selected per channel (object and event kinematics, angular variables).

Large number of inputs reflects the fact that different distributions show sensitivity at different mass ranges and any single variable is a very weak classifier.
Random Forest Description

We use a Random Forest (RF) classifier to improve separation between signal and background.

RF is composed of a collection of (50) Decision Trees

Building a Decision Tree, Example:
- Start with one node containing entire training sample (signal + background)
- Find single variable cut that yields best separation between signal and background
- Now there are two nodes: repeat on each node
- A node becomes a leaf when a stopping criterion is reached: minimum number of signal/background events, or maximum tree depth
- Pass event to classify through tree, and assign purity from leaf

Boosting is used to reweight mis-classified events: self correcting

Combine multiple Decision Trees into a Random Forest:
For a given event the output of the forest is the combined average output of all trees
Random Forest Outputs

125 GeV: Muon Channel

165 GeV: Electron Channel

195 GeV: Muon Channel
Systematic Uncertainties

Can affect both shape and overall normalization of final discriminant

Uncertainties listed are relative changes in normalization

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Shape</th>
<th>W+jets</th>
<th>Z+jets</th>
<th>Top</th>
<th>Diboson</th>
<th>gg → H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>Y</td>
<td>shape only</td>
<td>shape only</td>
<td>±6.0</td>
<td>(±3.3)</td>
<td>(±3.3)</td>
</tr>
<tr>
<td>Jet identification</td>
<td>Y</td>
<td>shape only</td>
<td>shape only</td>
<td>±3.3</td>
<td>±1.3</td>
<td>±3.5</td>
</tr>
<tr>
<td>Jet resolution</td>
<td>Y</td>
<td>shape only</td>
<td>shape only</td>
<td>(±0.5)</td>
<td>(±1.0)</td>
<td>(±2.0)</td>
</tr>
<tr>
<td>Association of jets with PV</td>
<td>Y</td>
<td>shape only</td>
<td>shape only</td>
<td>±3.8</td>
<td>±3.8</td>
<td>±4.8</td>
</tr>
<tr>
<td>Luminosity</td>
<td>-</td>
<td>-</td>
<td>±6.1</td>
<td>±6.1</td>
<td>±6.1</td>
<td>±6.1</td>
</tr>
<tr>
<td>Muon trigger</td>
<td>Y</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.25</td>
<td>±0.25</td>
</tr>
<tr>
<td>Electron trigger</td>
<td>-</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
</tr>
<tr>
<td>Muon identification</td>
<td>-</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
</tr>
<tr>
<td>ALPGEN tuning</td>
<td>Y</td>
<td>shape only</td>
<td>shape only</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cross Section</td>
<td>-</td>
<td>±6.0</td>
<td>±6.0</td>
<td>±10.0</td>
<td>±7.0</td>
<td>±10.0</td>
</tr>
<tr>
<td>PDF</td>
<td>Y</td>
<td>(±3.5)</td>
<td>(±8.0)</td>
<td>(±2.3)</td>
<td>±0.25</td>
<td>(±1.8)</td>
</tr>
</tbody>
</table>

Multijet background

Electron channel | ±6.5 |
Muon channel | ±26.2 |

Background subtracted data (points), 1s.d. uncertainty on background (blue band), $M_H = 160$GeV signal x5 (red)
No significant excess of signal-like events is observed
RF outputs used to set exclusion limits at 95% CL
Combining electron and muon channel

<table>
<thead>
<tr>
<th>M_H (GeV)</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>28.5</td>
<td>20.4</td>
<td>32.8</td>
<td>36.6</td>
<td>33.0</td>
<td>33.7</td>
<td>23.1</td>
<td>17.1</td>
<td>8.3</td>
</tr>
<tr>
<td>Expected</td>
<td>19.5</td>
<td>23.4</td>
<td>26.4</td>
<td>28.4</td>
<td>25.7</td>
<td>19.7</td>
<td>13.7</td>
<td>10.4</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Accepted by PRL on March 24, 2011
DZero Combined Limits

Combined with all other high mass analysis channels (mainly $H \rightarrow WW \rightarrow l\nu l\nu$)

Single experiment exclusion:
SM Higgs excluded at 95%CL for $163 < m_H < 168$ GeV
Expected exclusion at 95%CL for $160 < m_H < 168$ GeV
SM Higgs excluded at 95%CL for $158 < m_H < 173$ GeV
Expected exclusion at 95%CL for $153 < m_H < 179$ GeV
Future Prospects

Projected expected limits for SM Higgs vs integrated luminosity
No extension of Tevatron RunIIb $\Rightarrow 10fb^{-1}$ will be our final data set
- $>2.4\sigma$ expected sensitivity across entire mass range
- 3σ at 115GeV
Higgs at a Muon Collider
The Case for a Muon Collider

- **Muons are fundamental particles**
 - Energy of interaction is the full energy of particle
 - At a hadron collider partons only carry a fraction of the hadron momenta
 - LHC @ 14 TeV → parton-parton collisions at ~2 TeV

- **Muons are heavier than electrons:** $m_\mu \sim 200 \times m_e$
 - For a lepton with mass m the radiative energy losses are $\sim 1/m^4$
 - Lost energy must be put back in via RF power (cost of operation)
 - Severely limits the COM energy achievable with a LEP-like collider
 - Solved by using heavy leptons
 - Size of a muon collider ring is much smaller

- **Physics advantages:**
 - Small radiative losses \rightarrow small beam-energy spread (as low as $\Delta p/p=0.003\%$)
 - Small beam-energy spread + precise COM energy determination allows precision measurements of new resonant states
 - Neutrinos from muon decays can be used for precision neutrino cross section measurements and long-baseline experiments (Neutrino Factory)
Comparison of High Energy Colliders

- **FNAL**
 - NLC e^+e^- (0.6–1 TeV)
 - $\mu^+\mu^- (0.4$ TeV)
 - $\mu^+\mu^- (3$ TeV)

- **LHC**
 - LHC 14 TeV pp (1.5 – 2.3 TeV)

- **SSC**
 - SSC 40 TeV pp (4.4 – 6.7 TeV)

- **VLHC**
 - VLHC 100 TeV pp (11 – 17 TeV)

- **BNL**
 - Pipetron 100 TeV pp (11 – 17 TeV)
Technical Feasibility

Some technical problems arise when dealing with muons:

- Need to **generate**, **accelerate** and **collide** muon bunches within the muon lifetime of 2.2µs

Muon cooling:

- Transform a diffuse muon cloud into a bright bunch with small longitudinal and transverse dimensions
- Must be done in a short time, i.e., stochastic cooling or electron cooling won't work
- Use ionization cooling

Backgrounds:

- Huge detector backgrounds from large flux of electrons produced in muon decays
- Loss of forward region and impact on physics potential

Polarization

- Should be studied
Higgs Bosons at a Muon Collider

- Expect a light SM(-like) Higgs Boson
- Possible to produce with high rates directly via s channel process:
 - Good energy resolution: few MeV
 - Little Bremsstrahlung
 - No Beamstrahlung smearing
 - Precise tuning of beam energy: $\Delta E \approx 10^{-6} E$
- Measure Higgs mass, width and BRs with high precision
 - Distinguish between SM Higgs and supersymmetric Higgs (MSSM)

Assuming Tevatron (unlikely) or LHC (more likely) discovered a light SM-like H: \(m_H \approx 110 \text{GeV} \)

Looking for \(\mu \mu \rightarrow H \rightarrow bb \)

Tune MC \(\sqrt{s} \) to \(m_H \) and perform scan

Assume gaussian beams with RMS energy resolution of \(R=0.003\% \)

Corresponding RMS spread in COM energy is \(\sim 2 \text{ MeV} \)

Need enough statistics for each scan point to have good \(S/\sqrt{B}=4 \)

Assuming MC delivers \(1.5 \times 10^3 \text{cm}^2\text{s}^{-1} \) (0.15 fb\(^{-1}\)/yr)

After one year of running we can measure the Higgs mass to an accuracy of \(\Delta m_H \sim 1 \text{ MeV} \)

MSSM Higgs Bosons

- Supersymmetric models can generate multiple physical Higgs bosons

- MSSM (Two Higgs Doublets):
 - h^0 couplings close to SM values (low mass)
 - Measure Higgs width with high accuracy to distinguish between h_{SM}^0 and h^0
 - Ratio $r=\text{BF}(WW)/\text{BF}(bb)$ is sensitive to m_{A0}
 - H^0, A^0 nearly degenerate in mass at high $\tan\beta$
 - H^0, A^0 widths are broader ($\Gamma \sim 30\text{MeV}$) than for h^0 → less challenging

- Can be done with s channel scan at a Muon Collider to disentangle

The next 20 years

- Muon Collider is probably not going to be operating within the next 20 years
- By then the LHC will have (hopefully) made basic discoveries
- Not a very strong case for a MC if we only find a low mass SM Higgs boson.
 - We want something exotic!
- LHC is a discovery machine
 - Hard to make precision measurements
 - Low signal/background
 - Many interactions per crossing
- A Muon Collider may be needed to complement LHC discoveries
Summary

• Showed an overview of the DZero detector
• Presented results from the DZero high mass SM Higgs searches
 • DZero has reached single-experiment SM sensitivity
• Possibilities for Higgs searches at a future Muon Collider
• Now waiting for the LHC to make discoveries
• Exciting times ahead!
Backup
Object Kinematics
Lepton energy \(E^\ell \)
Lepton/jet transverse momentum \(p_T^\ell, p_T^{j_1}, p_T^{j_2} \)

Angular Variables
Azimuthal angles
\(\Delta \phi(j_1, j_2), \Delta \phi(\ell, E_T), \Delta \phi(j_1, j_2), \min(\Delta \phi(\ell, j_1), \Delta \phi(\ell, j_2)) \)
\(\Delta \phi(\text{bisector of dijet pair, } E_T) \)
Polar angles
\(\Delta \eta(j_1, j_2) \)
3D angles
\(\Delta R(j_1, j_2), \max(\Delta R(\ell, j_1), \Delta R(\ell, j_2)), \min(\Delta R(E_T, j_1), \Delta R(E_T, j_2)) \)
\(\angle(j_1, j_2), \angle(j_1, W \rightarrow \ell \nu), \angle(\ell, \text{dijet system}) \)

Event Kinematics
Lorentz factor \(\beta(\text{dijet system}) \)
Transverse momentum sums
\(\hat{E}_T, p_T(\text{dijet system}), p_T(W \rightarrow \ell \nu) \)
vector
\(H_T(j_1, j_2), H_T(\text{all jets}), H_T(j_1, j_2, \ell), H_T(j_1, j_2, \ell, E_T) \)
scalar
\(\text{aplanarity}, \text{centrality}(\ell), \text{centrality}(\ell, j_1, j_2) \), \(\text{centrality}(\ell, \text{all jets}) \)
\(\text{sphericity}(\ell, j_1, j_2), \text{sphericity}(\ell, j_1, j_2, E_T)^a \)
N-body masses
\(M(j_1, j_2), M(j_1, j_2, \ell), M(WW), M(j_1, j_2, \ell, E_T) \)
Transverse masses
\(M_{T}(j_1, j_2), M_{T}(W \rightarrow \ell \nu), M_{T}(WW) \)
Ratio of jet energies
\(\frac{E^{j_2}}{E^{j_1}} \)
\(K_{T_{max/min}} \)
\(\Delta R(j_1/j_2) \times E_T(j_1/2)/(E_T^\ell + E_T) \)
Other combinations
\(\text{dot product of } E_T \text{ and angular bisector of dijet pair} \)
\(\Delta \phi(W^{lep}, \text{bisector of dijet system}) \)
Magnitude of \(p_T^{j_1} \) perpendicular to dijet system
\(\sum_{\text{all jets}} \left[\sqrt{E_T^i \sin(\theta^i) \cos(\Delta \phi(j_i, E_T))} \right]^2 \)

\(^a \text{For descriptions of the event shape variables see: V.D. Barger and R.J.N. Phillips, Collider Physics, Addison-Wesley, Reading, MA, 1987.} \)
4th Generation Interpretation

New heavy quark generation hypothesis
- ggH coupling is 3 times bigger than SM
- 9 times larger production cross section

SM analysis re-optimized for higher m_H ranges
Both experiments expect to exclude a SM Higgs in $\sim 130 < M_H < 460$ GeV w/ 1 fb$^{-1}$

With 5-10 fb$^{-1}$ at 8 TeV, exclude full mass range up to 600 GeV, or reach 5σ discovery if there is a SM Higgs in $130 < M_H < 500$ GeV

114-130 GeV is challenging
Limit Setting

Using the RF output for signal, background and data we have 2 hypotheses:
H0: The data includes only SM background processes
H1: The data includes both the SM backgrounds and a Higgs signal (parametrized by mass)

To test which hypothesis is more probable, we construct a likelihood ratio:

\[Q = \frac{e^{-(s+b)}(s+b)^d}{d!} \div \frac{e^{-b}b^d}{d!} \]

Results from different channels can be combined by multiplying:

\[Q' = \prod Q_i \]

Rewrite Q in the form of a Log Likelihood Ratio:

\[(LLR) = -2 \ln(Q) \]

Generate many pseudo-experiments for both H0 and H1
Plot the frequency of LLR values for each Higgs mass point

- \(CL_{s+b} \) is the fraction of H1 that is more background-like than data
- \(CL_b \) is the fraction of H0 that is more background-like than data

Define ratio:

\[CL_s = \frac{CL_{s+b}}{CL_b} \]

Increase rate of signal until

\[1-CL_s = 0.95 \]

to get limit at 95% CL
Search Channel Summary

<table>
<thead>
<tr>
<th>Channel</th>
<th>CDF Exp.</th>
<th>CDF Obs.</th>
<th>D0 Exp.</th>
<th>D0 Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_H = 165 \text{ GeV/c}^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{CDF}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS - 0 jet (5.9 \text{ fb}^{-1})</td>
<td>1.67</td>
<td>2.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS - 1 jet</td>
<td>2.35</td>
<td>2.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS - 2+ jets</td>
<td>3.16</td>
<td>6.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low (M_{\ell\ell})</td>
<td>11.2</td>
<td>7.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Sign</td>
<td>4.86</td>
<td>5.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trileptons (noZ)</td>
<td>7.37</td>
<td>7.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trileptons (Z - 1j)</td>
<td>31.8</td>
<td>36.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trileptons (Z - 2+j)</td>
<td>9.16</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hadronic (\tau)</td>
<td>14.5</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{D0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ee + \mu\mu + e\mu \text{ - 5.4 fb}^{-1})</td>
<td>1.36</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e\mu \text{ - 6.7 fb}^{-1})</td>
<td>1.93</td>
<td>1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Sign</td>
<td>7.0</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l\nu jj)</td>
<td>5.5</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I. Baseline parameters for high energy and low energy muon colliders. Higgs/yr assumes a cross section $\sigma = 5 \times 10^4$ fb; a Higgs width $\Gamma = 2.7$ MeV, 1 yr = 10^7 s.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COM energy (TeV)</td>
<td>3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>p energy (GeV)</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>p's/bunch</td>
<td>2.5×10^{13}</td>
<td>2.5×10^{13}</td>
<td>5×10^{13}</td>
<td>2.5×10^{13}</td>
<td>5×10^{13}</td>
</tr>
<tr>
<td>Bunches/fill</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rep. rate (Hz)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>p power (MW)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>μ/bunch</td>
<td>2×10^{12}</td>
<td>2×10^{12}</td>
<td>4×10^{12}</td>
<td>2×10^{12}</td>
<td>4×10^{12}</td>
</tr>
<tr>
<td>μ power (MW)</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wall power (MW)</td>
<td>204</td>
<td>120</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Collider circum. (m)</td>
<td>6000</td>
<td>1000</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Ave bending field (T)</td>
<td>5.2</td>
<td>4.7</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>rms $\Delta p/p$ (%)</td>
<td>0.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.01</td>
<td>0.003</td>
</tr>
<tr>
<td>6D $\epsilon_{6,N}$ (π nm mrad)3</td>
<td>1.7×10^{-10}</td>
</tr>
<tr>
<td>ϵ_n (π mm mrad)</td>
<td>50</td>
<td>50</td>
<td>85</td>
<td>195</td>
<td>290</td>
</tr>
<tr>
<td>β^* (cm)</td>
<td>0.3</td>
<td>2.6</td>
<td>4.1</td>
<td>9.4</td>
<td>14.1</td>
</tr>
<tr>
<td>σ_ϵ (cm)</td>
<td>0.3</td>
<td>2.6</td>
<td>4.1</td>
<td>9.4</td>
<td>14.1</td>
</tr>
<tr>
<td>σ_r spot (µm)</td>
<td>3.2</td>
<td>26</td>
<td>86</td>
<td>196</td>
<td>294</td>
</tr>
<tr>
<td>σ_0 IP (mrad)</td>
<td>1.1</td>
<td>1.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Tune shift</td>
<td>0.044</td>
<td>0.044</td>
<td>0.051</td>
<td>0.022</td>
<td>0.015</td>
</tr>
<tr>
<td>n_{turns} (effective)</td>
<td>785</td>
<td>700</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Luminosity (cm$^{-2}$ s$^{-1}$)</td>
<td>7×10^{34}</td>
<td>10^{33}</td>
<td>1.2×10^{32}</td>
<td>2.2×10^{31}</td>
<td>10^{31}</td>
</tr>
<tr>
<td>Higgs/yr</td>
<td>1.9×10^{3}</td>
<td>4×10^{3}</td>
<td>3.9×10^{3}</td>
<td>4×10^{3}</td>
<td>3.9×10^{3}</td>
</tr>
</tbody>
</table>