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Objectives of the SRF Test Accelerator at the New Muon LabObjectives of the SRF Test Accelerator at the New Muon Lab

• Test and operate a full ILC “RF unit” with “ILC beam intensity”.Test and operate a full ILC RF unit  with ILC beam intensity .  
• An RF unit consists of 3 ILC cryomodules driven by a single 10 MW 
klystron.  
• ILC beam intensity is 3.2 nC/bunch @ 3 MHz in a 1 msec long pulse (3000 
bunches), with a 5 Hz repetition rate.  The RMS bunch length is 300 m.      
(45 KW beam power.)

• Establish an advisory committee-reviewed, proposal-driven user beam facility to 
carry out advanced accelerator R&D by the accelerator physics community.carry out advanced accelerator R&D by the accelerator physics community.  
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Beamlines LayoutBeamlines Layout
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New tunnel extension
75 meters
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Injection Beamline and Low Energy Test Beamline LayoutInjection Beamline and Low Energy Test Beamline Layout
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• 1.5 cell, 1.3 GHz electron gun with Cs2Te photocathode; identical to DESY/PITZ design

• Two 9-cell 1 3 GHz superconducting booster cavities (one currently installed one from A0PI)• Two 9-cell 1.3 GHz superconducting booster cavities (one currently installed, one from A0PI)

• Superconducting 3.9 GHz cavity (eventually) for bunch linearization

• Three skew quadrupoles for flat beam transformation

• Chicane for bunch compression (R56 = 0.198)p ( 56 )

• 3.9 GHz, normal conducting deflecting mode cavity for longitudinal beam diagnostics (from A0PI)

• Vertical spectrometer dipole deflects beam 22.5° to dumps for beam energy measurement

• Test beamlines will be configured to suit experiments; example shown here is for emittance exchange
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• ~40 MeV beam energy
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Electron GunElectron Gun

• 1.3 GHz, normal conducting, 1.5 cell copper cavity (DESY/PITZ design)1.3 GHz, normal conducting, 1.5 cell copper cavity (DESY/PITZ design)
• Up to 45 MV/m accelerating field at the cathode; requires 5 MW klystron; 20 KW average power at 
full ILC pulse length and repetition rate
• Cs2Te photocathode excited by 263 nm UV laser
• 2 identical solenoids for emittance compensation2 identical solenoids for emittance compensation
• Coaxial RF waveguide coupler 
• 3 cavities have been fabricated; 1 additional under fabrication

• 1 by DESY – completed and shipped to Fermilab; 1st spare
• 3 by Fermilab 1 completed and shipped to KEK; 1 completed and to be commissioned at• 3 by Fermilab – 1 completed and shipped to KEK; 1 completed and to be commissioned at 
NML; 1 under fabrication as 2nd spare

• RF windows (from Thales) are currently being conditioned
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gun cavity solenoids RF coupler
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Cathode Prep, Transport, and Transfer SystemsCathode Prep, Transport, and Transfer Systems

• Cathode chambers were fabricated at INFN Milano under the direction of Daniele SertoreCathode chambers were fabricated at INFN Milano under the direction of Daniele Sertore
• Cathode prep chamber

• Used to prepare and coat cathodes;  installed at Lab 7 at the Fermilab Village; under 
vacuum; first cathodes have been coated in 4/11

• Cathode transport chamberp
• Used to transport prepared cathodes from the prep chamber to the transfer chamber 
attached to the gun

• Cathode transfer chamber
• Used to insert cathode into the gun;  installed at NML; first coated cathodes inserted in 
4/11
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cathode prep chamber at Lab 7 cathode transfer chamber at NML
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Booster CavitiesBooster Cavities

• 1 booster cavity installed and conditioned at NML1 booster cavity installed and conditioned at NML
• Conditioned at 24 MV/m

• 1 booster cavity in use at A0 photoinjector
• Currently operates at 12 MV/m
• At the end of the A0 photoinjector run, a new higher gradient cavity will be installed in 
the cryostat, tuner repaired, and HOM couplers made accessible from outside the cryostat
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booster cavity 2, installed at NML
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CryomodulesCryomodules

• Cryomodule 1 is installed at NML – type “TTF III+” – contains  8 9-cell cavitiesCryomodule 1 is installed at NML type TTF III  contains  8 9 cell cavities
• Klystron with 5 MW tube has been commissioned
• Cavity is at 2° K, and all 8 cavities have been tested at high gradient:  16 – 28 MV/m

• Cryomodule 2 (type TTF III+) to be delivered to NML in late 2011 
• It will replace cryomodule 1, and is expected to have acceleration gradient of  32 MV/m (250 
MeV total acceleration)

• Cryomodules 3 and 4 (type ILC IV) to be delivered to NML in 2013 - 2014
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Cryomodule 1 in NML cave
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Potential Downstream Beam Experimental AreasPotential Downstream Beam Experimental Areas
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• 3 experimental areas shown here: 8 meters, 8 meters, and 5 meters in length
• Can measure beam energy before and after experimental area 1
• Single beam dump alcove houses 3 separate 75 KW dump cores
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• Space for a 10 meter diameter strorage ring or an additional beamline
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StartStart--toto--End Simulation with ImpactEnd Simulation with Impact--Z  (single particle) Z  (single particle) (C. Prokop)(C. Prokop)
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Simulation tools:  ASTRA, Elegant, Impact-Z, CSRTrack



Beam ParametersBeam Parameters

NML will be capable of operating with a wide range of beam parameters.  As with all NML will be capable of operating with a wide range of beam parameters.  As with all 
photoinjectors, many beam parameters are coupled, especially to the bunch intensity, due to space 
charge effects.

parameter ILC RF unit 
t t

range comments
test

bunch charge 3.2 nC 10’s of pC to >20 nC minimum determined by diagnostics thresholds; 
maximum determined by cathode QE and laser power

bunch spacing 333 nsec <10 nsec to 10 sec lower laser power at minimum bunch spacing

bunch train  
length

1 msec 1 bunch to 1 msec maximum limited by modulator and klystron power

bunch train 
repetition rate

5 Hz 0.1 Hz to 5 Hz minimum may be determined by gun temperature 
regulation and other stability considerations

norm. transverse 
emittance

<20 mm-mrad <1 mm-mrad to >100 mm-
mrad

maximum limited by aperture and beam losses; without 
bunch compression emittance is ~5 mm-mrad @ 3.2 nC

RMS bunch 
length

1 ps ~10’s of fs to ~10’s of ps minimum obtained with Ti:Sa laser; maximum obtained 
with laser pulse stacking

peak bunch 4 kA > 10 kA (?) 4 kA based on Impact-Z simulations with low energypeak bunch 
current

4  kA > 10 kA (?) 4 kA based on Impact Z simulations with low energy 
bunch compressor

injection energy 40 MeV 5 MeV – 50 MeV may be difficult to transport 5 MeV to the dump; 
maximum is determined by booster cavity gradients

high energy 810 MeV 40 MeV – 1500 MeV radiation shielding issues limit the maximum
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Beam Experimental Proposals Solicited at 2 WorkshopsBeam Experimental Proposals Solicited at 2 Workshops

Experiment Energy proponent Motivation/ application

Emittance exchange experiments Low, high FNAL/ANL Proof-of-principle; applications to FELs 
and X-ray sources

Test of integrable beam optics high FNAL Proof-of-principle; future high current 
proton machines

-ray enhancement by crystal 
channeling

Low NIU/Vanderbilt/
FNAL

high intensity  source; e+ source

Microbunching investigations low, high ANL Beam physics; diagnostics

ODR instrumentation development high ANL Non-invasive emittance diagnostic

Microbunch generation low FNAL For wakefield acceleration

Photoproduction of muons @ 300 
MeV

high FNAL Homeland security; verify production 
model

Measure plasma wakes with long 
bunch trains

high USC Application to 2-beam plasma acceleration

6 D li hi h IIT P f f i i l f llid6-D muon cooling high IIT Proof-of-principle for muon collider

Optical stochastic cooling high IIT Proof-of-principle; muon collider

High gradient wakefield acceleration 
with dielectric structures

Low, high ANL/NIU Beyond-next-generation accelerators
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Integrable Optics Test Accelerator  Integrable Optics Test Accelerator  (A. Valishev, et al.,  PAC11)(A. Valishev, et al.,  PAC11)

 Recent theoretical calculations (Danilov, Nagaitsev, 

PRSTAB 13, 084002) indicate a solution using nonlinear 

focusing elements to produce a highly nonlinear lattice in a 

storage ring capable of supporting stable beam with tune 

spreads of ~50%.  (Linear  lattices typically have tune 

spreads of ~1%.)  The large tune spread provides sufficient 

Landau damping to support stable super intense beams.  
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Recent numerical simulations support these analytical 

calculations . 



Production of High Intensity XProduction of High Intensity X--rays from Channeling  rays from Channeling  (P. Piot, et al.)(P. Piot, et al.)

 Experiment to be installed in the 40 MeV beamline
 Requires high intensity electron pulse
 NIU/Vanderbilt/FNAL collaborationNIU/Vanderbilt/FNAL collaboration
 Addresses a DOD  challenge for high intensity x-ray beam

 1012 photons/sec/mm2/mrad2/0.1% BW
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Double Emittance Exchange Double Emittance Exchange (A. Zholents, ANL DWA Workshop)(A. Zholents, ANL DWA Workshop)
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Future PlansFuture Plans

• Start beam commissioning with a single cryomodule:  late 2012
• Some beam experiments possible:  2013
• Cryomodules 3,4  delivered and installed at NML:  2013 - 2014
• Start ILC RF string test with 3 full cryomodules and new refrigeration 
plant:  2014
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