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Abstract

Bunch width compression can be accomplished by rf rotating an elongated bunch
with minimal energy spread. The formation of tails at the two bunch ends produces
disconnected regions in many time-advance slices. The stability limits of longitudinal
microwave growth for each time-advance slice of the beam will be affected. This effect
is studied and the Keil-Schnell stability limits for such time-advance slices are derived.
Application is made to the bunch-width compression in the Fermilab Compressor Ring,
destined for pion and subsequently muon production.
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1 Introduction

The proton source for the muon collider or neutral factory at Fermilab consists of accumulat-

ing four bunches each of intensity Nb = 0.525×1014 in the Accumulator (AC) using 2.5-MHz

rf. They are compressed to a final rms fractional energy spread of σE = 5.2 × 10−4 and rms

bunch length στ = 29.2 ns by lowering the rf voltage adiabatically. These four bunches are

then transferred to the Compressor Ring (CR) one at a time for the neutrino factory or all

at the same time for the muon collider. Inside the CR, these bunches are rotated by the

CR rf with a voltage of 240 kV so as to create bunches as narrow as rms width στ = 3.2 ns.

The question to answer here is whether the bunches will develop longitudinal microwave

instabilities during the bunch rotation.

Section 2 deals with rotation with a linear rf. The result is that the beam will become

more stable against longitudinal microwave instability than its initial configuration as the

rotation proceeds. At each moment of the rotation, the center time-advance slice has the

most stringent stability limit.

Section 3 answers the same question when the nonlinearity of the rf waveform is taken

into account. Because of the tight rf bucket, tails develop at the two ends of the bunch. This

affects the energy distribution of the beam and therefore the stability limits. It turns out,

however, that the beam is still more stable against longitudinal microwave instability than

its initial configuration.

2 Linear RF

The Boussard-modified Keil-Schnell criterion [1, 2] for longitudinal microwave instability is∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ � 2πηEσ2
E

eIpkβ2
, (2.1)

where Z
‖
0/n is the coupling longitudinal impedance of the accelerator ring at revolution

harmonic n, E is the nominal energy of the beam particles, β is the nominal velocity of

the beam particles with respect to the velocity of light, η is the slip parameter, and Ipk is

the local peak current of the beam. In above, Gaussian distribution of the energy spread of

the beam has been assumed. If we assume also Gaussian distribution of the bunch in linear



2

distribution, [3] local peak current of the beam depends on the rms bunch length στ as

Ipk =
eNb√
2πστ

, (2.2)

where Nb is the number of protons in the bunch. The Boussard-modified Keil-Schnell crite-

rion can then be rewritten as ∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ � (2π)3/2ηEστσ
2
E

eNbβ2
. (2.3)

During bunch rotation the bunch area, which is proportional to στσE , remains constant.

The bunch is therefore more stable against longitudinal microwave instability as the energy

spread increases. In other words, the bunch is most susceptible to longitudinal microwave

instability before the rf rotation when its fractional energy spread is compressed adiabatically

to the minimum value of σE = 5.2 × 10−4. It will becomes more stable as soon as the rf

rotation raises its energy spread and squeezes its longitudinal width. To demonstrate this

more clearly, we rotate rotate a bunch by a linear rf waveform and determine the instability

limit stated in Eq. (2.1) at any instance of the rotation.

2.1 Linear distribution and energy spread during rotation

Start with a bunch with bi-Gaussian distribution in the longitudinal phase space. The rf

rotates the bunch by 90◦. We wish to compute the local linear density and its corresponding

energy spread at each moment of the rotation.

To simplify the derivation, the energy coordinate y is first scaled to the time coordinate

x, so that the tips of the bunch rotate in a circle (instead of an ellipse) in the longitudinal

phase space. The initial phase space distribution is

f0(x, y) =
1

2πab
exp

[
− x2

2a2
− y2

2b2

]
, (2.4)

where a = στ0, the initial rms time spread and b is proportional to the initial rms energy

spread. For simplicity we just identify b = σE0. The rf rotation is just the rotation of the

x-y coordinates by the angle θ. This is accomplished by the substitution,(
x

y

)
→
(

cos θ − sin θ

sin θ cos θ

)(
x

y

)
. (2.5)
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At the rotation angle θ, the phase-space distribution is therefore

fθ(x, y) =
1

2πab
exp

[
− x2 b2 cos2 θ + a2 sin2 θ

2a2b2
− y2 b2 sin2 θ + a2 cos2 θ

2a2b2

− 2xy
(a2 − b2) sin θ cos θ

2a2b2

]
. (2.6)

The linear distribution is obtained by integrating over y. We perform the integration

I =

∫
dy exp

[
− y2 b2 sin2 θ + a2 cos2 θ

2a2b2
− 2xy

(a2 − b2) sin θ cos θ

2a2b2

]

=

∫
dy exp

[
− y2

2p2
− 2qxy

]

=

∫
dy exp

[
− (y + 2p2qx)2

2p2
+ 2p2q2x2

]
=

√
2πpe2p2q2x2

, (2.7)

where

p2 =
a2b2

b2 sin2 θ + a2 cos2 θ
and q =

(a2 − b2) sin θ cos θ

2a2b2
. (2.8)

It is obvious that p is the rms energy spread at x = 0, or the center time-advance slice of

the bunch. The linear distribution is

λθ(x) =

√
2πp

2πab
exp

[
− x2

2a2b2
(b2 cos2 θ + a2 sin2 θ) + 2p2q2x2

]
. (2.9)

The exponent becomes

[ ]
= − x2

2a2b2

[
(b2 cos2 θ + a2 sin2 θ) − 4a2b2p2q

]
= − x2

2a2b2

[
(b2 cos2 θ + a2 sin2 θ) − 4a2b2 a2b2

b2 sin2 θ + a2 cos2 θ

(a2 − b2)2 sin2 θ cos2 θ

4a4b4

]

= −x2
[
(b4 + a4) sin2 θ cos2 θ + a2b2(sin4 θ + cos4 θ) − (a2 − b2)2 sin2 θ cos2 θ

]
2a2b2(b2 sin2 θ + a2 cos2 θ)

= − x2

2(b2 sin2 θ + a2 cos2 θ)
. (2.10)

Or the linear distribution at angle θ is

λθ(x) =
1√

2πστθ

e−x2/2σ2
τθ , (2.11)

with the rms time spread of

στθ =
√

b2 sin2 θ + a2 cos2 θ, (2.12)
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which reduces to a and b, respectively, at θ = 0 and π/2, as expected.

The rms energy spread is obtained by taking the second moment of the phase-space

distribution in the y-direction, or

σ2
Eθ(x) =

∫
dy y2fθ(x, y)∫
dy fθ(x, y)

. (2.13)

With ỹ = y + 2p2qx, this becomes

σ2
Eθ(x) =

∫
dỹ (ỹ − 2p2qx)2e−ỹ2/2p2+2p2q2x2

∫
dỹ e−ỹ2/2p2+2p2q2x2

=
1√
2πp

∫
dỹ (ỹ2 + 4p4q2x2)e−ỹ2/2p2

= p2
[
1 + 4p2q2x2

]
=

a2b2

b2 sin2 θ + a2 cos2 θ

[
1 +

(a2 − b2)2 sin2 θ cos2 θ

b2 sin2 θ + a2 cos2 θ
x2

]
. (2.14)

2.2 Keil-Schnell Criterion

Keil-Schnell criterion for microwave stability is∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ ≤ 2π|η|Eσ2
Eθ

eNbλθ
. (2.15)

In other words, the stability limit is determined by the ratio

σ2
Eθ

λθ
=

√
2πστθp

2
[
1 + 4p2q2x2

]
ex2/2σ2

τθ . (2.16)

We find that, for any θ, the rms energy spread is the smallest and the linear density is the

highest when x = 0. It is clear that the stability limit will be first reached when x = 0 or at

the center of the bunch, and this is true at any stage of the bunch rotation. In other words,

during the bunch rotation by the rf, we need to pay attention only at the center of the bunch

or only at x = 0. Keil-Schnell criterion for microwave stability for the rotating bunch then

becomes ∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ ≤ (2π)3/2|η|E
eNb

στθp
2 =

(2π)3/2|η|E
eNb

a2b2

√
b2 sin2 θ + a2 cos2 θ

. (2.17)
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The above can also be rewritten as∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ ≤
∣∣∣∣∣Z

‖
0

n

∣∣∣∣∣
θ=0

1√
b2

a2 sin2 θ + cos2 θ
. (2.18)

Since b/a � 1, it is obvious the stability increases as θ increases. The last factor equals 1 at

θ = 0 and increases to a/b when θ = π/2.

3 Rotation with Nonlinear RF Waveform

The rf waveform is sinusoidal and therefore nonlinear. The ends of the bunch will be rotated

at a much slower rate than the bunch center, resulting in tail formation at the two ends of

the rotated bunch. A simulation is performed starting with a bi-Gaussian distributed bunch

of rms time advance spread στ0 = 29.2 ns and rms fraction energy spread σE0 = 5.2×10−4 in

the CR, displayed as black dots in Fig. 1. The bunch configuration after 640 turns is shown

in red. The small-amplitude synchrotron tune is νs = 4.16 × 10−4 and the corresponding

period is Ts = 2403 turns. Because of the formation of the tails at the ends of the bunch,

the energy spread is less than what we expect in a linear rf. We select all particles between

time advance ±1 ns. There are 29352 particles with rms energy spread σE = 5.73 × 10−3,

out of a total of a hundred thousand macroparticles employed in the simulation. If the rf

waveform were linear, the energy spread after a π/2 rotation would have been

σE =
β2νsf0στ0

|η| = 7.37 × 10−3, (3.19)

where f0 = 0.967 MHz is the CR nominal revolution frequency and the momentum com-

paction factor α = 0.001 has been used. We also try to sample particles between ±0.7 ns.

There are 19168 macroparticles in this 0-ns time-advance slice. The rms fractional energy

spread is 5.71×10−3, not much different from the sampling of ±1 ns. The Boussard-modified

Keil-Schnell criterion of Eq. (2.1) can be interpreted as∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ ∼ σE

particle density
. (3.20)

Liouville theorem tells us that the local particle density in the longitudinal phase space

remains unchanged for the core of the bunch. Thus the stability limit is proportional to

the energy spread. The above analysis says that the stability limit provided by a realistic
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Figure 1: (Color) A bunch in the CR initially bi-Gaussian distributed with στ0 = 29.2 ns and
σE0 = 5.2× 10−4 is shown in black dots. It is rotated by a 2.5-MHz rf of peak voltage 240 kV. Red
dots show the bunch rotation after 640 turns. Small-amplitude synchrotron period is 2403 turns. .

sinusoidal rf waveform would be smaller than that provided by a linear rf waveform, because

of the smaller energy spread of the center slice after rotation. Nevertheless, this limit is much

larger than that before the bunch rotation. Numerically, we find the local current at the

0-ns time-advance slice to be Ipk = 1155 A, and the Boussard-modified Keil-Schnell stability

limit is ∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣ � 16.9 Ω. (3.21)

The rms bunch length during the rotation is shown in Fig. 2. The black curve is the bunch

rms width w hen the whole bunch including the end tails is taken into account. The minimum

is στ = 4.89 ns. However, if the tails are excluded, the beam width is much narrower. The

red curve includes only beam particles with fractional energy offset within ±0.0025. The

minimum is στ = 2.29 ns at turn 639. Actually the width of this energy-offset slice does not

change much from turn 550 to turn 675.
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Figure 2: (Color) Rms bunch length during the rf rotation. Black: The whole bunch including
tails is taken into account. Red: Only an energy-offset slice ±0.0025 is included in the rms bunch
length computation .

3.1 Overlapped beams

The purpose of rf bunch rotation is to obtain a bunch of short duration to hit the target

in the generation of pions and subsequently muons. Because of the development of tails by

the sinusoidal rf waveform, sometimes one may like to rotate a little more π/2 so that more

beam particles will be included in the later truncated narrow bunch. Figure 3 shows the

result of the rotation after 660 turns. The longitudinal microwave stability limit for the 0-ns

time-advance slice remains as |Z‖
0/n| � 16.9 Ω, the same as when the rotation was 640 turns.

We would like to study the longitudinal microwave instability limit for each time-advance

slice of the beam. Here we wish to study a slice at time-advance τ = 5.5 ns, which is shown by

the blue vertical line in Fig. 1. This line intersects the beam in two energy-offset-disconnected

regions, the one close to the core has mean energy offset of ΔE1 = −0.00571 while the one

near the tail has mean energy offset of ΔE2 = 0.0133. We designate the region near the core
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Figure 3: (Color) A bunch in the CR initially bi-Gaussian distributed with στ0 = 29.2 ns and
σE0 = 5.2 × 10−4 is shown in black dots. It is rotated by a 2.5-MHz rf of peak voltage 240 kV.
Red dots show the bunch rotation after 660 turns in order to include more particles in the later
truncated narrow bunch. Small-amplitude synchrotron period is 2403 turns. The vertical blue line
is at 5.5 ns cut the beam at two regions that are disconnected in energy offset. .

as region 1 and the one near the tail as region 2. Again we sample particles within the slice

5.5 ± 0.7 ns. There are 3210 macroparticles in region 1 and 861 macroparticles in region

2. The fractional energy spread in the two regions are, respectively, σE1 = 2.64 × 10−3 and

σE2 = 1.15 × 10−3. The deviation and fractional spread in energy lead to the deviation and

spread in angular revolution frequency according to

Δω0i = −ηω̄0

β2
ΔEi (3.22)

and

σω0i
=

|η|ω̄0

β2
σEi, (3.23)

where ω̄0 is the nominal angular revolution frequency of the whole beam. These numbers

are summarized and listed in Table I. We need to answer the question, what energy spread
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we should insert into the Boussard-modified Keil-Schnell criterion for the time-advance slice

at 5.5 ns?

Table I: Properties of the two disconnected regions of the 5.5-ns
time-advance slice.

Region 1 Region 2

Slice fraction αi 0.887 0.113

Mean energy offset ΔEi −5.71 × 10−3 1.33 × 10−2

Rms energy spread σEi 2.64 × 10−3 1.15 × 10−3

Mean angular rev. freq. Δω0i −355 s−1 825 s−1

Rms angular rev. freq. spread σω0i
165 s−1 71.3 s−1

3.2 Dispersion relation for overlapped beams

The dispersion relation describing longitudinal microwave instability can be expressed as [4]

1 = −
(

ΔΩ0

n

)2 ∫
C

dΔω0
f ′(Δω0)

ΔΩ
n

− Δω0

, (3.24)

where Δω0 = ω0 − ω̄0 is the angular revolution frequency of a particle relative to the mean

angular revolution frequency ω̄0 of the whole beam, and ΔΩ/n = Ω/n− ω̄0 with Ω being the

collective frequency of the disturbance which drives the longitudinal microwave growth of the

whole beam. The contour of integration C runs below the pole Δω0 = ΔΩ/n. In the numera-

tor of the integrand, f(Δω0) is the revolution frequency distribution of the slice of beam under

investigation. Obviously, when there is no revolution frequency spread, f(Δω0) = δ(Δω0).

Therefore (ΔΩ)0 represents the shift of the nth harmonics of the angular revolution frequency

driven by coupling impedance Z
‖
0 of the vacuum chamber in the absence of Landau damping.

In fact, it can be easily shown that(
ΔΩ0

n

)2

=
ieηω̄2

0It

2πβ2E

Z
‖
0

n
, (3.25)

where It is the total local current at that time-advance slice including all the disconnected

regions. Then the local current for the ith disconnected region will be Ii = αiIt.

We assume that each of the m disconnected regions are Gaussian distributed in angular

revolution frequency with mean Δω0i and rms spread σω0i
. Then the revolution frequency
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distribution can be approximated as

f(Δω0) =
m∑

i=1

αi√
2πσω0i

e−(Δω0−Δω0i)2/2σ2
ω0i , (3.26)

where the ith region has mean angular revolution frequency Δω0i and rms fractional angular-

revolution-frequency spread σω0i
. Just as for one connected region, this frequency distribution

is normalized to unity when integrated over Δω0. Thus
∑

i αi = 1, where αi is fraction of

particles in this time-advance slice residing in the ith disconnected region. The integral in

the dispersion relation of Eq.(3.24) can now be integrated in the closed form to give

(
ΔΩ0

n

)−2

= −
m∑
i

αi

σ2
ω0i

[
1 + i

√
πuiw(ui)

]
, (3.27)

where

ui =
ΔΩ/n − Δω0i√

2σω0i

(3.28)

and w(ui) is the complex error function. The stability contour can then we mapped out by

letting ΔΩ/n be real and vary it from −∞ to +∞. Before doing that let us extract the

simplified stability limit or the so-call Boussard-modified Keil-Schnell limit. The method is

to choose a particular value for Re ΔΩ/n so that the dispersion relation can be easily solved.

For region j, this is the point when

Re uj = Re
ΔΩ/n − Δω0j√

2σω0j

= 0 (3.29)

Here, there are m such points. For example, if we take the point Re uj = 0, the term

involving i = j in Eq. (3.27) vanishes. But when i �= j, we have

ui =
Δωj − ωi√

2σω0i

	 1, (3.30)

because of regions i and j are well separated. The complex error function can be expanded

asymptotically using

uiw(ui) =
i√
π

[
1 +

1

2u2
i

+ O
(

1

|ui|4
)]

(3.31)

Substitution into Eq. (3.27) gives

(
ΔΩ0

n

)−2

= − αj

σ2
ω0j

+
∑
i�=j

αi

(Δωj − Δωi)2
. (3.32)
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Since (Δωj −Δωi)
2 	 σ2

ω0j
, if all the αi’s are of comparable magnitude, all the terms in the

summation for i �= j can be neglected, leaving behind the simple expression(
ΔΩ0

n

)−2

= − αj

σ2
ω0j

. (3.33)

We next make substitution from Eqs. (3.23) and (3.25) to arrive at

−i sgn(η)
Z

‖
0

n
=

2π|η|E
eIiβ2

σ2
Ei, (3.34)

where Ii = αiIt is the local current of the ith region in the time-advance slice. This is just the

Boussard-modified Keil-Schnell stability limit for the ith beam region of the time-advance

slice, as if all other disconnected regions are absent. Below transition (η < 0), this limited

impedance is inductive as speculated.

The above result can also be visualized as follows. Consider m coasting beams, the ith

one has mean revolution frequencies ω0 + Δω0i and rms spread σω0i
. They are separated in

the longitudinal phase space. Imagine a small perturbing current wave of the form einθ−iΩt,

where θ is the azimuthal angle around the accelerator ring. If the coherent frequency is

Ω ∼ n(ω0 + Δωi), it will set the particles in the ith beam to oscillate near harmonic n

and eventually lead to a growth if σω0i
is not large enough to destroy the coherency. If

σω0i
� |Δω0j − ω0i|, i �= j, the particle in the ith beam will not be affected. Thus the

stability criterion applies to each beam individually as if the others are not present.

Let us now apply the derivation to the two disconnected regions in the time-advance

τ = 5.5-ns slice. The results are listed in Table II. From the table, we learn that the

center slice of the beam has the most stringent stability limit. This is in agreement with the

investigation using linear rf waveform.

3.3 Stability Curve

We let ΔΩ have an infinitesimal positive imaginary part in the dispersion relation, Eq. (3.27).

For each value of Re ΔΩ/n, (ΔΩ0/n)2 is computed. The locus of (ΔΩ0/n)2 is the stability

contour. Actually, we plot the stability contour in the complex W -plane, where

W = −i
sgn(η)∑

i σ
2
ω0i

(
ΔΩ0

n

)2

. (3.35)
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Table II: Local currents and Keil-Schnell stability limits for discon-
nected regions of the 5.5-ns slice. Those for the 0-ns slice after and
before rotation are also shown for comparison.

Local current Keil-Schnell Limit

Ii |Z‖
0/n|

After rotation

5.5-ns slice core region 130 A 36.3 Ω

5.5-ns slice tail region 30.4 A 27.1 Ω

0-ns slice 1145 A 16.9 Ω

Before rotation

0-ns slice 115 A 1.3 Ω

The reason of such a choice is three-fold: it is dimensionless, it is directly proportional∗ to

Z
‖
0/n, and it is symmetric with respect to all the disconnected regions, (see Eq. (3.25)).

Our application is for the time-advance slice at 5.5 ns, which consists of two disconnected

regions: region 1 represents the core and region 2 represents the tail. All the inputs are taken

from Table I. The stability contour for this time-advance slice is shown in red in Fig. 4. Three

points of interest are marked by black dots. The W -space consists of two Riemann sheets

with the positive Im W -axis serving as the Riemann cut. The stability contour starts from

the first quadrant of the W -space with Re ΔΩ/(n
√

2σω01) ≈ −4.6. As Re ΔΩ/(n
√

2σω01)

increases, the contour progresses in the direction of the arrows wrapping around Point A,

going upwards to reach Point B. It then crosses the Riemann cut and goes into the second

Riemann sheet. There, it reverses direction at Point B going downwards and wraps around

Point C. The first Riemann sheet is for the disconnected core region and Point A corresponds

to the Keil-Schnell limit for that region. The second Riemann sheet is for the disconnected

tail region and point B corresponds to the Keil-Schnell limit for that region. The stability

contour clearly tells us that the stability limit for the tail region is larger than that in the

core region. Numerically, these Keil-Schnell limits are listed in Table II.

We plot alongside in Fig. 4 in blue the stability contour of the time-advance slice at

0 ns, which consists of only one connected Gaussian distributed region.† It is well known

∗Here, the proportionality constant is real and positive, so that the stability contour in the complex
Z

‖
0/n-plane will look exactly the same.
†The bell-bottom point of this blue curve is in between points A and C. But this does not imply the
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Figure 4: (Color) Red: Stability contour for the 5.5-ns time-advance slice in the complex W -
plane, where W is proportional to Z

‖
0/n (see Eq. (3.35)). This time-advance slice consists of two

disconnected regions: region 1 the core and region 2 the tail. Their properties are listed in Table I.
Points A and C correspond, respectively, to the Keil-Schnell limits for the core region and the tail
region. The positive ImW -axis is a Riemann cut separating two Riemann sheets, one for the core
region and one for the tail region. Blue: Stability contour for the time-advance slice at 0 ns, which
consists of only one connected Gaussian distributed region.
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that the stability area enclosed by the stability contour can accommodate infinite capacitive

Z
‖
0/n provided that Re Z

‖
0/n = 0. This is quite different when there are disconnected regions

in the time-advance slice. In our application, there is Point C on the Riemann cut, which

separates the two Riemann sheets. The finite value of Im W (Point C) indicates that only

finite capacitive Z
‖
0/n can be inside the stability contour. However, the difference may be

of academic interest only, because Point C corresponds to Im W = 12.4 or a capacitive

impedance of Z
‖
0/n ≈ i430 Ω, which may be too big to stir any worry.

4 Conclusions

Intense proton bunches each of intensity 0.525×1014 and rms length 29.2 ns are compressed

to a narrow width of στ ∼ 3.2 ns in the CR by an rf voltage of 240 kV. We studied in

this article the longitudinal microwave stability limit during the rf rotation. Nonlinear rf

waveform leads to tail formation in the rotated beam. A time-advance slice may contain

regions disconnected in energy offset. The stability limits of such disconnected regions were

also investigated. Our analysis shows that as for longitudinal microwave instability, the beam

will become more stable as the rf rotation progresses. The stability limit of the original pre-

rotated lengthy beam of small energy spread will be studied in another article.
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