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Abstract

Bunch-width compression can be accomplished by rf rotating an elongated bunch
with minimal energy spread. The longitudinal space-charge force counteracts the rf
force. When it is larger than the rf force, the focusing effect of the rf will be lost
completely. This possibility is studied with analytic formulas as well as simulations.
The transverse space-charge force can drive quadrupole breathing modes in the beam.
If the frequencies of these modes fall into the stopbands of parametric resonances,
especially the half-integer resonances, emittances will increase. Application is made to
the bunch-width compression in the Fermilab Compressor Ring proposed by Alexahin
and Neuffer [1], destined for pion and subsequently muon production.
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1 Introduction

The proton source for the muon collider or neutral factory at Fermilab consists of accu-

mulating four bunches each of intensity Nb = 0.525 × 1014 in the Accumulator Ring (AR)

using the 3.87-MHz rf [1]. They are compressed to a final rms fractional energy spread of

σE = 5.2×10−4 and rms bunch length στi = 29.2 ns by lowering the rf voltage adiabatically.

These four bunches are then transferred to the Compressor Ring (CR) one at a time for the

neutrino factory or all at the same time for the muon collider. Inside the CR, these bunches

are rotated by the CR 3.87-MHz rf with a voltage of Vrf = 240 kV and harmonic h = 4

hoping to create bunches as narrow as rms width στf = 3.2 ns. The question to answer here

is whether the space-charge effects of these intense narrow bunches are significant or not. If

yes, would they cause any adverse effects to the bunch rotation?

In section 2, we study the longitudinal space-charge effects. We first assume that the

linear beam distribution is Gaussian turn after turn. The space-charge induced defocusing

force is estimated and compared with the bunching rf force. Then numerical simulations are

described by computing the longitudinal space-charge force numerically. Our computation

shows that at the present bunch intensity the space-charge distortion of the rf potential,

although not small, is still insignificant in causing disastrous effects to the beam narrowing.

In section 3, the transverse space-charge forces are computed and the transverse incoher-

ent space-charge tune shifts are derived. Since the coherent dipole space-charge tune shifts

vanish, we need to compute the coherent quadrupole coherent space-charge tune shifts of

the breathing modes. This requires the solution of the envelope equation. Our computation

shows that the coherent quadrupole coherent space-charge tune shifts are ∼ 2 × 0.06 hori-

zontally and vertically, which will not be large enough to shift the betatron tunes into the

half-integer stopbands. Conclusions are given in Sec. 4.

2 Longitudinal Space-Charge Effects During Rotation

2.1 Estimation

Consider a bunch of longitudinal linear distribution λ(τ), normalized to unity when inte-

grated over the time advance τ . Due to the variation of the linear distribution, a particle in
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the bunch at the beam axis sees a longitudinal space-charge force

eEspch(τ) =
e2g0NbZ0

4πγ2β2c

dλ(τ)

dτ
, (2.1)

where Nb is the number of particles in the bunch, e is the proton charge,

g0 = 1 + 2 ln
b

a
(2.2)

is the geometric factor, with a and b being the effective beam radius and effective vacuum-

chamber radius, γ and β are the relativistic factors, c is the velocity of light, and Z0 ≈ 376.6 Ω

is the free-space impedance. In one turn, the particle at time-advance τ gains an energy of

ΔEspch = 2πReEspch(τ).

For a Gaussian bunch of rms length στ , the linear density is

λ(τ) =
1√

2πστ

e−(τ−τ0)2/2σ2
τ , (2.3)

where τ0 is the time-advance of the center of the bunch. The gradient of the linear density

is
dλ(τ)

dτ
= − τ − τ0√

2πσ3
τ

e−(τ−τ0)2/2σ2
τ . (2.4)

Thus the simplest approximate way to incorporate longitudinal space-charge is to assume

the bunch to have a Gaussian distribution at the end of turn, compute the στ , and use

the above expression to compute the increase in energy due to the space-charge force. This

energy increase is to be compared with the energy increase coming from the rf voltage wave

ΔErf = eVrf sin
2πτ

τb
, (2.5)

where τb = T0/h is the bucket width at the rf harmonic h, T0 = 2π/ω0 is the revolution

period of the ring, and Vrf is the rf voltage. The ratio of the two energy increases is

R =
ΔEspch

ΔErf
. (2.6)

Using the expressions in Eqs. (2.1), (2.4), (2.5), and limiting the derivation to region close

to the longitudinal center of the bunch, we obtain

R =
1

2(2π)5/2

eg0NbZ0T
2
0

γ2βσ3
τVrfh

. (2.7)

Actually, R denotes the ratio of the gradients of the two forces. Now the CR parameters

listed in Table I are substituted [1]. With the space-charge geometric parameter g0 = 5 and
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Table I: Some parameters of the CR and its bunches

Circumference (m) 308.23

Momentum compaction 0.0010

Kinetic beam energy (GeV) 8.0

Revolution frequency f0 (MHz) 0.9673

RF harmonic h 4

RF voltage (kV) 240

Slippage factor η −1.002 × 10−2

Synchrotron tune νs 4.161 × 10−4

Initial rms bunch width στi (ns) 29.2

Initial rms energy spread ΔE/E 5.2 × 10−4

Rms unnormalized vertical/horizontal emittance εy,x (πμm) 5

Betatron bare tunes ν0y/ν0x 6.76/8.44

final rms beam width στf = 3.2 ns at the end of rotation, this space-charge-to-rf-force ratio

is R = 29.5. In other words, the space-charge force dominates over the rf force at the center

of the rotated beam, and beam rotation can become impossible. To draw a conclusion,

however, we must recognize the followings:

1. The final rms bunch length of στf = 3.2 ns quoted in Ref. [1] probably comes from

extracting the central part of the rotated bunch. There are tails on both sides of

the bunch because the initial bunch before rotation is of rms width στi = 29.2 ns,

which is quite long. The rf bucket width is τb = 258.46 ns. The space-charge force is

proportional to the gradient of the beam including the tails. Thus in Eq. (2.7), the rms

width of the whole beam should be used instead. In Fig. 2 below, simulation shows

that the rms width of the whole beam after rotation is στf ∼ 5.0 ns. Using this ratio,

the space-charge force ratio reduces to R = 7.73, which is 3.8 times smaller.

2. During bunch rotation, the bunch width contracts and assumes a minimum only at

the end of the rotation. The force ratio, according to above, is

R ∝ 1

σ3
τ

=
1(

σ2
τf sin2 ωst+ σ2

τi cos2 ωst
)3/2

. (2.8)

The variation of the space-charge force ratio R during the rotation process is depicted

in Fig. 1. We see that the ratio increases from R = 0.0388 at start to 7.727 at the end
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Figure 1: The ratio R of the space-charge force to the rf force as a function of time is shown. The
ratio increases from R = 0.0388 at start to 7.727 at the end of the rotation.

of the rotation. Note that R > 1 and increases sharply for only 20% of the time near

the end of the rotation. The small-amplitude synchrotron tune is νs = 4.16 × 10−4,

or the rotation takes place for about 600 turns. Thus the total force, space-charge

plus rf, is defocusing at the center of the bunch for about 120 turns only. It is hard

to determine whether how badly the bunch shape will be distorted and how long the

bunch will be lengthened.

2.2 Numerical Gradient Computation

The more accurate method, of course, is to compute the gradient of the beam density numer-

ically. First divide the bucket into n bins each of width Δτ = τb/n. Next the time advance

τi of the ith particle is translated to Si, which ranges from 0 to n from the right side of the

bucket to the left, or

Si = τi
n

τb
. (2.9)

In this way, this particle will be placed into the ki
th bin, where

ki = int(Si) + 1, (2.10)
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with int(Si) denoting the integer part of Si. After the placement into bins, the number of

particles in the kth bin is mk, with
∑

k mk = Nb. The linear distribution is now

gk =
mk

Nb
, (2.11)

with
∑

k gk = 1. Now define for each particle

si = Si −
(
ki − 1

2

)
, (2.12)

where si is measured with respect to ki − 1
2
, which is the center of the ki

th bin where ith

particle resides. This definition leads to |si| < 1
2
. The contribution of this particle to the

gradient of the linear distribution at ki
th bin is, according to the three-point differentiation

rule [2],

dλ

dτ
=
dgki

dτ
=

1

τ 2
b

∑
all in
bin ki

[(
si − 1

2

)
gki−1 − 2sigki

+

(
si +

1

2

)
gki+1

]
, (2.13)

where the summation over i is over all particles in the ki
th bin. In above, λ(τ) is the linear

distribution, which is normalized to unity when integrated over τ . Thus

λ(τ)dτ = gkdk or λ(τ) = gk
dk

dτ
=

gk

Δτ
. (2.14)

2.3 Simulations

The width of the rf bucket in the CR is τb = 258.5 ns. We divide it into n = 100 equal bins,

so that the bin width is Δτ = τb/n = 2.585 ns. The rotated beam is expected to have an rms

width of στ ∼ 3 ns. Thus the beam occupies about 5.7 bins. The beam at start of rotation is

populated randomly in the longitudinal phase space in a bi-Gaussian way with στi = 29.2 ns

and fraction energy offset σEi = 5.20 × 10−4. One million macroparticles are employed in

each simulation, so that there will on the average 10000 macroparticles in each bin. The

statistical error will be ∼ 1%, and will be much smaller in the central part of the beam.

So many macroparticles are needed in each bin because the linear density gradient is to be

computed. We consider this choice of binning parameters is reasonable in the simulations.

To support this claim, we have tried (1) to increase the number of bins to 150, and (2) to

decrease the number of macroparticles by a factor of two. There are no significant changes

in the outcome.
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Figure 2: Left: Rotated bunch in the longitudinal phase space with space-charge turned off (g0 =
0). One million macroparticles are used. Right: Beam rms width στ versus rotation turn number
is shown in black when all beam particles are taken into account, and is shown in red when only
an energy-offset portion (depicted as the red box on the left plot) is considered.

The first simulation depicted in Fig. 2 is for the situation when space-charge is turned off

(g0 = 0). The left plot shows the particle distribution in the longitudinal phase space after

rotation, at turn 640. The rms bunch length at each turn is shown in black in the right plot.

The minimum is 4.73 ns at turn 660. This computation of the rms bunch length includes the

tails on both sides of the beam core. Also shown in the plot is the rms width of beam core,

which is defined here as energy offset between ΔE/E = ±0.003 and time advance between

τ = ±35 ns, depicted as the red box in the left plot of Fig. 2. The minimum rms bunch

width is 2.09 ns at turn 601. This value can be different from the rms beam width extracted,

for example, the value quoted by Ref. [1] in Table I. However, it serves here as a measure of

how narrow the beam core becomes after rotation. For the initial rms fractional energy offset

σEi = 5.20 × 10−4, the bunch rotated by an rf voltage of 240 kV should have an rms width

of στf = |η|σEi/(β
2ωs) = 2.08 ns, where we have used synchrotron frequency ωs/2π = νsf0,

with synchrotron tune νs = 4.162 × 10−4, revolution frequency f0 = 0.9673 MHz, and slip

factor η = −1.0019 × 10−2. The agreement with simulation has been remarkable.

Now space-charge is turned on. The left and right plots in Fig. 3 are simulations using

space-charge geometric factors g0 = 2.5 and 5, respectively. The total voltage, space-charge

and rf, in the middle plots show defocusing effects at the bunch center at turn 640. Compared

with the phase-space plot in Fig. 2, we can see from the first row of Fig. 3 a slight distortion of

the beam shape coming from space-charge when g0 = 2.5 and a more pronounced distortion
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Figure 3: Left column is for space-charge geometric parameter g0 = 2.5 and right column is for
g0 = 5. First row: Rotated bunch in the longitudinal phase space. One million macroparticles are
used. Second row: Total voltage in red, space-charge and rf, encountered by beam particles at turn
640. The rf voltage is in black. Third row: Beam rms width στ versus rotation turn number is
shown in black when all beam particles are taken into account, and is shown in red when only the
beam core, |ΔE/E| < 0.003 and |τ | < 35 ns, is included.
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when g = 5. The rms width of the core grows to 2.36 ns when g0 = 2.5 and 2.65 ns when

g0 = 5. Notice that in Eq. (2.1), for example, g0Nb goes together. In other words, increasing

g0 is the same as increasing the beam intensity.

Figure 4 is the same as Fig. 3, but with the space-charge geometrical parameter increases

to g0 = 10 and g0 = 20. Now the effects of the space-charge force are very much more

pronounced. The rms bunch width after rotation increases to στf = 3.24 and 4.49 ns,

respectively.

2.4 Comments

The space-charge geometrical parameter g0 is usually between 3 and 5. Even if g0 = 5,

for the present beam intensity, the longitudinal space-charge does plays some role in the

bunch rotation. In the presence of space-charge, the rms width of the beam core increases

by (2.65 − 2.09)/2.09 = 27%. In the future, if the beam intensity is doubled (g0 = 5), the

increase in bunch width will increase by (3.24 − 2.09)/2.09 = 55%. A quadruple increase

in beam intensity will have the rotated bunch width more than doubled. The rms widths

of the bunch core, defined by |ΔE/E| < 0.003 and |Δτ | < 35 ns, for various space-charge

factor g0 are shown in Fig. 5.

3 Transverse Space-Charge Effects

As the bunch narrowing proceeds, the space-charge tune shifts increase. We wish to investi-

gate whether the changes in tune shifts will be so large that the beam encounters the integer

stopband, half-integer stopband, or some important nonlinear resonances, resulting in the

increase of the transverse emittances.

3.1 Inocherent Space-Charge Tune Shifts

The horizontal and vertical space-charge tune shifts at the center of the beam are

Δνspch
x,y =

Nbr0R

2πγ3β2νx,y

〈
1

σx,y(σx + σy)

〉
Ipk

Iav
, (3.15)
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Figure 4: Left column is for space-charge geometric parameter g0 = 10 and right column is for
g0 = 20. First row: Rotated bunch in the longitudinal phase space. One million macroparticles
are used. Second row: Total voltage in red, space-charge and rf, encountered by beam particles at
turn 640. The rf voltage is in black. Third row: Beam rms width στ versus rotation turn number
is shown in black when all beam particles are taken into account, and is shown in red when only
the beam core, |ΔE/E| < 0.003 and |τ | < 35 ns, is included.
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Figure 5: Rms width of the bunch core after rotation at various space-charge geometrical factor g0,
but with bunch intensity fixed at Nb = 0.525× 1014. The bunch core is defined as |ΔE/E| < 0.003
and |Δτ | < 35 ns, depicted as the red box in the left plot of Fig. 2.

where Ipk and Iav are the peak and average beam current,

r0 =
e2

4πεomc2
=

e2Z0c

4πmpc2
(3.16)

is the classical proton radius, and mpc
2 is the proton rest energy. The horizontal and vertical

rms beam radii are denoted by σx,y and 〈· · · 〉 implies the averaging around the accelerator

ring. Since the CR is composed of an ordinary FODO lattice without exotic low-beta and/or

high-beta regions, we may employ the smooth approach by using average betatron functions

β̄x,y =
R

νx,y

. (3.17)

and average rms beam radii. The average vertical rms beam radius is given by

σy =
√
β̄yεy, (3.18)

where εx,y denote the unnormalized rms horizontal and vertical emittances of the beam.

Since the horizontal beam size receives contribution also from the dispersion, the average

horizontal rms beam radius takes the form

σx =
√
β̄xεx + (σ

E
D̄)2, (3.19)
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Figure 6: Maximum space-charge tune shifts of the beam in the CR during rotation with bunch
intensity Nb = 0.525 × 1014.

where σ
E

is the rms momentum spread and D̄ is the average dispersion, which is approxi-

mately 0.4 m.

For the beam injected into the CR, the unnormalized horizontal and vertical rms emit-

tances are both equal to εx,y = 5 πμm. The maximum space-charge tune shift occurs in the

time slice where the local current peaks. The space-charge tune shifts are at maximum at

turn 660. At that moment the rms energy spread is at a maximum of σ
E

= 5.86 × 10−3.

The transverse beam sizes are σx = 6.46 mm and σy = 5.39 mm. For bunch intensity

Nb = 0.525 × 1014, the evolution of the incoherent space-charge tune shifts during rotation

are shown in Fig. 6. The maxima are Δνspch
x = 0.190 and Δνspch

y = 0.183.

The numerical results in Fig. 6 are different from Δνspch
x,y = 0.14/0.16 quoted in Ref. [1].

The first difference is the rather lower tune-shift values than the simulation made in Fig. 6.

This may come about because we have been smoothing the CR lattice by introducing average

beam radii and average betatron functions. The second difference is the smaller horizontal

tune shift than the vertical. Notice that the incoherent space-charge tune shifts scale as

Δνspch
x

Δνspch
y

=
ν0yσy

ν0xσx

, (3.20)
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where ν0x,0y are the bare betatron tunes. If the dispersion is not included, this becomes

Δνspch
x

Δνspch
y

=

√
ν0yεy
ν0xεx

. (3.21)

Thus when the horizontal and vertical emittances are equal, larger betatron tune implies

smaller incoherent space-charge tune shift. The horizontal and vertical bare betatron tunes

are quoted in Ref. [1] as ν0x = 6.76 and ν0y = 8.44. Thus the horizontal incoherent space-

charge tune shift should be larger than the vertical. It will be the dispersion function that

can change this around. So far we have been using an average dispersion of D̄ = 0.4 m,

and the horizontal incoherent space-charge tune shift is larger than the vertical. We need

to raise it to 0.5 m to produce equal maximum incoherent space-charge tune shift for the

horizontal and vertical, and D̄ = 0.6 m for the vertical to be ∼ 4 % larger than the vertical.

But the lattice in Fig. 4 of Ref. [1] does not depict dispersion function of this large size. In

the discussion below, however, we will use the results Δνspch
x,y = 0.14/0.16 quoted in Ref. [1].

This is because we believe that the detailed CR lattice has been taken into account there;

the results should be more accurate than our approximate computation here.

3.1.1 Interpretation

The maximum space-charge tune shifts are experienced by those particles at the center of

the central transverse slice of the beam. The gradient of the transverse space-charge force

decreases away from the center of the bunch and reverses sign roughly at one sigma of the

beam. If we make a rough model by assuming those particles within one sigma of the beam

core to have the maximum tune shifts in all transverse directions, while those outside do not

experience any space-charge force, the average space-charge tune shift will be reduced by the

factor of 1 − e−1/2 = 0.393 from the maxima to
(
Δνspch

x

)
av

= 0.055 and
(
Δνspch

y

)
av

= 0.063.

This estimation, however, is for the transverse slice where the peak local current or linear

density is maximum. We can extend the above model to the longitudinal direction as well;

i.e., particles residing in one sigma in the transverse and longitudinal direction will experience

the maximum space-charge tune shift, while particles outside one sigma does not experience

anything. The fractional particle number within the 3-D one sigma is

1

(2π)3/2

∫ 1

0

e−r2/2r2drdΩ = erf

(
1

2

)
−

√
2

π
e−1/2 = 0.199, (3.22)

where erf(x) is the error function. Thus in this model, the average space-charge tune shifts

at the end of the bunch rotation are
(
Δνspch

x )av = 0.028 and
(
Δνspch

y )av = 0.032. What
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we want to point out is that there is not a unique way to quote the incoherent space-

charge tune shifts of a bi-Gaussian or tri-Gaussian distributed bunch. However, it has been

shown repeatedly in the literature that the incoherent space-charge tune shifts alone do

not determine the encountering of parametric resonances [3, 4, 5]. It is the coherent space-

charge tune shifts that determine when a parametric resonance is encountered. The theory

behind this statement is reviewed below. After that the coherent space-charge tune shifts

are computed.

3.2 The Integer and Half-Integer Resonances

For simplicity, we work in the Floquet space. The Floquet horizontal displacement X and

phase ψx are defined as

X =
x√
βx

and ψx =

∫ s

0

ds

ν0xβx(s)
, (3.23)

where x is the particle horizontal displacement at location s along the designed closed orbit,

βx(s) is the horizontal betatron function, and ν0x is the bare horizontal betatron tune. The

equation of motion governing the ith particle in the horizontal direction is

d2Xi

dψ2
x

+ ν2
0xXi =

∑
j

′
Fij + F ext

x (ψx), (3.24)

where Fij is horizontal component of the force the jth particle acting on the ith particle,

and
∑′

j implies the summation over j but with j = i excluded. Thus,
∑′

j Fij is just the

horizontal space-charge force from all other particles acting on the ith particle. The external

transverse force F ext
x (ψx) comes from lattice error or imperfection around the ring. We now

take the average of Eq. (3.24) by summing over i, giving exactly

d2〈X〉
dψ2

x

+ ν2
0x〈X〉 = F ext

x (ψx). (3.25)

This result is obtained because of Newton’s third law: Fij = −Fji when i �= j. Subtracting

Eq. (3.25) from Eq. (3.24), we arrive at the incoherent equation

d2

dψ2
x

(X − 〈X〉) + ν2
0x (Xi − 〈X〉) =

∑
j

′
Fij . (3.26)

If the space-charge force
∑

j
′Fij on the right-hand side is linearized, it will give rise to an

incoherent space-charge tune shift for particle i. We learn from Eq. (3.25) that the external
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force from the lattice F ext
x will drive the center of the beam into resonance if the bare tune

ν0x is an integer. However, this external force is absent in Eq. (3.26) and therefore will not

drive any integer resonance no matter how big the incoherent space-charge tune shift is.

We try to study the half-integer resonance in a similar way. The equation of transverse

motion for a particle with an external quadrupole-error force XF (ψx) is

d2X

dψ2
x

+ ν2
0xX = −2ν0xΔν

spch
x (X − 〈X〉) +XF (ψx), (3.27)

where a linear space-charge force −2ν0xΔν
spch
x (X−〈X〉) has been assumed. Coherent motion

is obtained by averaging Eq. (3.27),

d2〈X〉
dψ2

x

+ ν2
0x〈X〉 = 〈X〉F (ψx), (3.28)

and the difference gives the incoherent motion,

d2

dψ2
x

(X − 〈X〉) +
(
ν2

0x + 2ν0xΔν
spch
x

)
(X − 〈X〉) = (X − 〈X〉)F (ψx). (3.29)

Equation (3.28) does show that the external quadrupole-error force acts on the center of the

bunch and a half-integer resonance will be encountered if the bare tune ν0x is at a half integer.

However, Eq. (3.29) shows that the incoherent motion is driven by the quadrupole-error force

as well. But we should remember that a quadrupole in the lattice will change the size of

the particle beam and so will the quadrupole-error force. The incoherent space-charge tune

shift depends on the beam size, which is a function of the quadrupole error force XF (ψx).

Actually, the effect of the quadrupole-error force inside the incoherent space-charge tune

shift just cancels the quadrupole-error force on the right side of Eq. (3.29), leaving behind

an incoherent motion not affected by the quadrupole-error force [7].

So far we have shown that the dipole coherent space-charge tune shifts vanish, because

the field pattern moves with the beam. Thus to study the transverse space-charge effects

on the beam, we need to derive the coherent quadrupole space-charge tune shifts. Since

the space-charge force couples the horizontal and vertical phase spaces, we need to go to

the two-dimensional envelope equation and study the collective modes of oscillation that are

nonrigid.
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3.3 Sacherer Envelope Equations

Sacherer [6] showed that the rms horizontal width x̃ =
√〈(x− 〈x〉)2〉 and rms vertical width

ỹ =
√〈(y − 〈y〉)2〉 of a beam that has the elliptical symmetrical distribution of the form

n(x, y; s) = n

(
x2

a2
+
y2

b2
; s

)
, (3.30)

satisfy the two-dimension envelope equation:

x̃ ′′ +Kx(s)x̃− ε2x
x̃3

− r0λ

γ3β2

1

x̃+ ỹ
= 0,

ỹ ′′ +Ky(s)ỹ −
ε2y
ỹ3

− r0λ

γ3β2

1

x̃+ ỹ
= 0. (3.31)

In above, Kx(s) and Ky(s) are the horizontal and vertical quadrupole force constants,

εx =
√
〈Δx2〉 〈Δp2

x〉 − 〈ΔxΔpx〉2 and εy =
√

〈Δy2〉 〈Δp2
y〉 − 〈ΔyΔpy〉2 (3.32)

are the horizontal and vertical unnormalized rms emittances, px,y are the horizontal and ver-

tical canonical momenta, λ is the linear density that the distribution n(x, y; s) is normalized

to after integration over x and y, r0 is the classical radius of the beam particle. The last terms

in Eq. (3.33) are the space-charge forces. The imperfect lattice error around the ring that

drive the integer and half-integer resonances has been left out for the time being, but will

be added later in Eq. (3.37) below. For a uniform distribution with elliptical symmetry in

two dimensions, the half widths of the beam are x̂ = 2x̃ and ŷ = 2ỹ. The full emittances are

ε̂x,y = 4εx,y, since we also have p̂x,y = 2
√〈(px,y − 〈px,y〉)2〉. The envelope equation becomes

x̂ ′′ +Kx(s)x̂− ε̂2x
x̂3

− 4r0λ

γ3β2

1

x̂+ ŷ
= 0,

ŷ ′′ +Ky(s)ŷ −
ε̂2y
ŷ3

− 4r0λ

γ3β2

1

x̂+ ŷ
= 0, (3.33)

which is the Kapchinsky-Vladimirsky envelope equation [8].

Now let us come back to Eq. (3.31), which is the more general envelope equation. Using

the relations
βxβ

′′
x

2
+
β ′

x
2

4
+ β2

xKx = 1 and
βyβ

′′
y

2
+
β ′

y
2

4
+ β2

yKy = 1, (3.34)

the substitutions

X̃ =
x̃√
εxβx

and Ỹ =
ỹ√
εyβy

, (3.35)
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and the Floquet phases

ψx =

∫ s

0

ds

ν0xβx
and ψy =

∫ s

0

ds

ν0yβy
, (3.36)

the envelope equation for the rms transverse beam spreads is transformed to

d2X̃

dψ2
x

+
(
ν2

0x + 2ν0xΔνsx cosnxψx

)
X̃ − ν2

0x

X̃3
− ν0xΔν

spch
0x

σx + σy

σxX̃ + σyỸ
= 0,

d2Ỹ

dψ2
y

+
(
ν2

0y + 2ν0yΔνsy cosnyψy

)
Ỹ − ν2

0y

Ỹ 3
− ν0yΔν

spch
0y

σx + σy

σxX̃ + σyỸ
= 0. (3.37)

In above, σx =
√
εxβx and σy =

√
εyβy are the rms spreads of the beam, and

Δνspch
x =

λr0R
2

γ3β2ν0xσx(σx + σy)
and Δνspch

y =
λr0R

2

γ3β2ν0yσy(σx + σy)
(3.38)

are the maximum incoherent space-charge tune shifts at the center of the beam, with λ =

Nb/(2πR) being the average linear particle density. We have also included the parts in Kx(s)

andKy(s) that correspond to quadrupole gradient errors as forces possessing horizontal nx-th

harmonic and vertical ny-th harmonic and total stopband widths Δνsx and Δνsy.

We first solve for the static beam radii

X̃ = 1 + ξx and Ỹ = 1 + ξy (3.39)

in terms of the incoherent space-charge tune shifts Δνspch
x and Δνspch

y via the two parameters

Δx =
Δνspch

x

ν0x

and Δy =
Δνspch

y

ν0y

. (3.40)

Up to the second order, we get

ξx =
Δx

4
+

Δ2
x

16
− ΔxΔy

32
and ξy =

Δy

4
+

Δ2
y

16
− ΔxΔy

32
. (3.41)

The change in static radii of the beam is due to the influence of the space-charge force. Next,

the infinitesimal time-dependent displacements δx and δy are included:

X̃ = 1 + ξx + δx and Ỹ = 1 + ξy + δy. (3.42)

Let us first study the special case of a round beam with σx = σy. However, the incoherent

space-charge tune shifts can still be unequal for the horizontal and vertical because horizontal
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and vertical betatron tunes can be different. We obtain the equations for small-amplitude

oscillations:⎛
⎜⎜⎜⎝

d2δx
dψ2

x

d2δy
dψ2

y

⎞
⎟⎟⎟⎠ + M

⎛
⎝ δx

δy

⎞
⎠ =

⎛
⎝ ν2

0xΔν
spch
x cosnxψx + O[

(Δνspch
x,y )2

]
ν2

0yΔν
spch
y cos nyψy + O[

(Δνspch
x,y )2

]
⎞
⎠ , (3.43)

where

M =

⎛
⎜⎜⎜⎝

(
4 − 5Δx

2
− 7Δ2

x

8
+

ΔxΔy

4

)
ν2

0x

(
Δx

2
− Δ2

x

8
− ΔxΔy

8

)
ν2

0x(
Δy

2
− Δ2

y

8
− ΔxΔy

8

)
ν2

0y

(
4 − 5Δy

2
− 7Δ2

y

8
+

ΔxΔy

4

)
ν2

0y

⎞
⎟⎟⎟⎠ , (3.44)

or

M =

⎛
⎜⎜⎝

4ν2
0x −

5ν0xΔν
spch
x

2
− 7(Δνspch

x )2

8
+
ν0xν0yΔν

spch
x Δνspch

y

4

ν0yΔν
spch
y

2
− (Δνspch

y )2

8
− ν0xν0yΔν

spch
x Δνspch

y

8

ν0xΔν
spch
x

2
− (Δνspch

x )2

8
− ν0xν0yΔν

spch
x Δνspch

y

8

4ν2
0y −

5ν0yΔν
spch
y

2
− 7(Δνspch

y )2

8
+
ν0xν0yΔν

spch
x Δνspch

y

4

⎞
⎟⎟⎠ . (3.45)

It is clear that Eq. (3.43) is just a set of driven oscillatory equations. Thus the eigentunes

of M will give the coherent tunes of oscillation of the beam envelope. Analytic expressions

for the coherent eigentunes are straight forward, although pretty messy. Fortunately, we can

resort to numerical solution. The coherent eigentunes νcoh are obtained by just solving the

quadratic equation

ν4
coh − ν2

coh

(M11 + M22

)
+ M11M22 −M12M21 = 0, (3.46)

where Mij denote the matrix elements of M. There are only two physical eigentunes which

are real and positive. For beam rotation in the CR, the betatron tunes are ν0x = 6.76

and ν0y = 8.44. The maximum incoherent space-charge tune shifts given by Ref. [1] are

Δνspch
x = 0.14 and Δνspch

y = 0.16. The two coherent eigentunes are ν1 coh = 2 × 6.713 and

ν2 coh = 2 × 8.393. Thus the two coherent space-charge tune shifts are Δνspch
1 coh = 2 × 0.047

and Δνspch
2 coh = 2 × 0.047.
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If we include only first-order incoherent space-charge tune shifts in M, these coherent

tune shifts turn out to be the same within three significant figures. Thus the first-order

equation would be sufficient, although the two incoherent space-charge tune shifts Δνspch
x =

0.14 and Δνspch
y = 0.16, both may not be too small. In that case the solution can be written

in a more manageable form:

ν2
coh =2

(
ν2

0x + ν2
0y

) − 5

4

(
ν0xΔν

spch
x + ν0yΔν

spch
y

)
±

{
4(ν2

0x − ν2
0y)

2 − 5
(
ν2

0x − ν2
0y

)(
ν0xΔν

spch
x + ν0yΔν

spch
y

)

+
25

16

(
ν0xΔν

spch
x − ν0yΔν

spch
y

)2
+

1

4
ν0xν0yΔν

spch
x Δνspch

y

}1/2

. (3.47)

In addition, when the incoherent space-charge tune shifts are equal in the two transverse

directions, Δνspch
x = Δνspch

y , the above reduces to

ν2
coh = 2

(
ν2

0x + ν2
0y

) − 5

4

(
ν0x + ν0y

)
Δνspch

x

±
√

4(ν2
0x−ν2

0y)
2−5

(
ν0x−ν0y

)2(
ν0x+ν0y

)
Δνspch

x +

[
25

16

(
ν0x−ν0y

)2
+

1

4
ν0xν0y

](
Δνspch

x

)2
.

(3.48)

Of course, one may argue that terms involving second order in incoherent space-charge

tune shifts should be omitted in Eqs. (3.47) and (3.48) because only terms with first order

space-charge tune shift are included in M. When the two bare tunes are close so that

|ν0x − ν0y| 	 ν0xΔν
spch
x , the two coherent tunes are

ν2
coh =

{
4ν̄2 − 2ν0xΔν

spch
x

4ν̄2 − 3ν0yΔν
spch
x

or νcoh ≈
⎧⎨
⎩

2
(
ν̄ − 1

4
Δνspch

x

)
,

2
(
ν̄ − 3

8
Δνspch

x

)
,

(3.49)

where 2ν̄2 = ν2
0x +ν2

0y. This represents that the two transverse directions are tightly coupled.

The eigenfunctions are ∼ (δx+δy) for the upper solution and ∼ (δx−δy) for the lower solution.

Thus, the upper solution is the symmetric breathing mode where the oscillations are in phase

in both transverse directions and the tune is 2
(
ν̄ − 1

4
Δνspch

x

)
. The lower solution is the

antisymmetric mode where the beam envelope oscillates out of phase in the two transverse

directions with tune 2
(
ν̄ − 3

8
Δνspch

x

)
.

If the tune split is large so that |ν0x − ν0y| 
 ν0xΔν
spch
x , the oscillations in the two

transverse directions are almost uncoupled. The envelope oscillations in the two transverse
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directions are just two independent oscillators. The two coherent tunes becomes

ν2
coh =

{
4ν2

0x − 5
2
ν0xΔν

spch
x

4ν2
0y − 5

2
ν0yΔν

spch
y

or νcoh ≈
⎧⎨
⎩

2
(
ν0x − 5

16
Δνspch

x

)
,

2
(
ν0y − 5

16
Δνspch

y

)
.

(3.50)

3.4 General Solution

The most general situation is when Δνspch
x �= Δνspch

y and σx �= σy. First we substitute the

static solution of Eq. (3.39) into the envelope equation (3.37). The solution up to second

order in space-charge tune shifts is

ξx =
Δx

4
+

1 + 3σy/σx

1 + σy/σx

Δ2
x

32
− σy/σx

1 + σy/σx

ΔxΔy

16
,

ξy =
Δy

4
+

1 + 3σx/σy

1 + σx/σy

Δ2
y

32
− σx/σy

1 + σx/σy

ΔxΔy

16
. (3.51)

Now the oscillatory parts of the solution, δx and δy, are added. The result is the driven

oscillatory equation (3.43), but with the oscillatory matrix M replaced by

M11

ν2
0x

= 4 − 2+ 3σy

σx

1+ σy

σx

Δx −
7+ 12σy

σx
+(3σy

σx
)2

1+ σy

σx

Δ2
x

8
+

σy

σx
(1+ 3σy

σx
)

(1+ σy

σx
)2

ΔxΔy

4
,

M12

ν2
0x

=

σy

σx

1+ σy

σx

Δx −
σy

σx

(1+ σy

σx
)2

Δ2
x

2
− (σy

σx
)2

(1+ σy

σx
)2

ΔxΔy

2
,

M21

ν2
0y

=

σx

σy

1+ σx

σy

Δy −
σx

σy

(1+ σx

σy
)2

Δ2
y

2
−

(σx

σy
)2

(1+ σx

σy
)2

ΔxΔy

2
,

M22

ν2
0y

= 4 −
2 + 3σx

σy

1+ σx

σy

Δy −
7+ 12σx

σy
+(3σx

σy
)2

1+ σx

σy

Δ2
y

8
+

σx

σy
(1+ 3σx

σy
)

(1+ σx

σy
)2

ΔxΔy

4
. (3.52)

We now substitute the beam radii σx = 6.464 mm and σy = 5.391 mm at turn 660, but

still employ the incoherent space-charge tune shifts Δνspch
x = 0.14 and Δνspch

y = 0.16 quoted

in Ref. [1]. The coherent eigentunes are ν1 coh = 2 × 6.717 and ν2 coh = 2 × 8.389. The

quadrupole coherent tune shifts are Δν1 coh = 2 × 0.043 and Δν2 coh = 2 × 0.051.

If we substitute instead the incoherent space-charge tune shifts obtained from our beam

rotation computation, i.e., Δνspch
x = 0.190 and Δνspch

y = 0.183, the eigentunes become

ν1 coh = 2×6.701 and ν2 coh = 2×8.382. and the coherent tune shift become Δνspch
1 coh = 2×0.059

and Δνspch
2 coh = 2 × 0.058.
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3.5 Comments

1. Our computation shows that the quadrupole coherent space-charge tune shifts are of

the order of Δνspch
1,2 coh = 2 × 0.060, less than one half of the incoherent tune shifts.

Since the bare tunes are ν0x = 6.76 and ν0y = 8.44, the shifts are far away from the

half-integer resonances.

2. The computation has been for the center slice of the beam. If each transverse slice of

the beam is independent and is treated at a coasting beam, the quadrupole coherent

space-charge tune shifts for these off-center slices will be smaller because the local

beam current will be smaller. In other words the coherent tune shifts become coherent

tune spreads. Nevertheless these spreads will still be far away from the half-integer

resonances.

However, each transverse slice is not independent because of synchrotron motion. The

correct way to attack the problem will be some three-dimensional theory that includes

the longitudinal as well, so that the coherent oscillation frequencies correspond to

collective modes of the bunch as a whole. The solution of such a problem will be left

to a future article.

4 Conclusions

We have studied the space-charge effects on the bunch narrowing rotation in the CR, both

longitudinally and transversely. Our investigation shows that at the present bunch intensity

the longitudinal space-charge force, although not too small, is still no able to cause significant

disastrous effects, like big bunch-width increase, to the beam rotation. The transverse space-

charge force will drive coherent quadrupole breathing modes of oscillation in the beam. But

at the present beam intensity, these coherent frequency shifts, Δνspch
1,2 coh ∼ 2 × 0.06 will not

be large enough to lead these modes into the half-integer stopbands. However, if the bunch

intensity is doubled in the future, one will see significant beam-profile distortion in the beam

rotation as depicted in Fig. 4. Transversely, the coherent quadrupole tune shifts are still not

large enough to shift the beam into the half-integer stopbands even if the bunch intensity is

doubled. But the encountering of other higher-order parametric resonances can be possible.
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