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Intensity Effects  

• Beams in accelerators consist of charged particles which interact with 

each other: 

– By means of direct Coulomb fields (space charge). By itself, this 

cannot drive an instability. 

– By means of image charges and currents. By itself, this cannot 

drive an instability. 

– By means of fields left behind (wake fields due to resistive wall, 

radiation or e-cloud). This may drive collective instability. 

• When a beam is intense enough, wake fields make it unstable.   

 

• We have to distinguish collective motion of beam particles from their 

mutual Coulomb scattering (intra-beam scattering). This is possible 

due to huge number of particles inside the beam, like ~1E11 /bunch.  

• Here, only collective instabilities are discussed. 
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Liuville/Collisionless Boltzmann/Gibbs/Jeans/Vlasov 
Equation  

• Collective motion of beam particles can be described as a flow of a 

medium in the phase space:  
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As a result, we have a linear integro-differential equation to solve. 

See details in e.g. A.Chao, “Physics of Collective Beam Instabilities”  
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Nested Head-Tail Basis  
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My basis functions for transverse oscillations 

of bunched beams:  



Starting Equation, single bunch  

• In the air-bag single bunch approximation, beam equations of motion 

can be presented as in Ref [A. Chao, Eq. 6.183]: 

 

 

 

      where       is a vector of the HT mode amplitudes,   

 

 

 

 

 

       

       is the damper gain in units of the damping rate, 

 

        time is in units of the angular synchrotron frequency.    
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Analysis of solutions  
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1. For every given gain and chromaticity, the eigensystem is found for the LHC 

impedance table (N. Mounet).  

 

2. The complex tune shifts are found from the eigenvalues                             

 

3. The stabilizing octupole current is found from the stability diagram for every 

mode, then max is taken.       
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Coupled Equidistant Bunches  
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Main idea:  

 

For LHC, wake field of preceding bunches can be taken as flat within the 

bunch length.  

 

The only difference between the bunches is CB mode phase advance, 

otherwise they are all identical.  

 

Thus, the CB kick felt by any bunch is proportional to its own offset, so the 

CB matrix          has the same structure as the damper matrix       : 
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Old damper gain 
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Old narrow-band  ADT gain profile  (W. Hofle, D. Valuch) .  

At 10 MHz it drops 10 times. The new damper is bbb for 50ns beam. 

 

Below gain is measured in omega_s units, max gain=1.4 is equivalent to 50 

turns of the damping time.     
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CB Mode Damping Rate   
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With             as the frequency response function of the previous plot, the time-

domain damper’s “wake” is 

 

 

 

 

assuming  this response to be even function of time (no causality for the damper!). 

 

From here (equidistant bunches!): 

 

 

 

 

 

 

 

where          is the rate provided for low-frequency CB zero-head-tail modes at 

zero chromaticity.  
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CB Wake and Gain Factors for the Old ADT   
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2(SB and CB), flat ADT, Tunes at the Plateau    
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•All unstables -0.1<Re[dQ/Qs]<0. 

 

• Weak head-tail is justified at the 

plateau. 

 

• Mode with max rate (MUM) has ~max 

tune shift as well. 

 

• For unstables -Re[dQ]/Im[dQ]~20-30. 

tunes tune shifts 

all tunes 
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2(SB and CB), flat ADT, MUM 

12 

Growth rate and -tune shift of the most unstable mode (MUM) vs chroma and gain.  

Both are in units of Qs.   

 

Note that at the plateau the rate (Im[dQ_c]) is ~20-30 times smaller than the shift (Re[dQ_c]).   

AB 

Q’ 
Q’ 

d d 



2(SB and CB), flat ADT, MUM CM and Coupling 
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Center of mass (CM) and head-tail coupling parameters for MUM.  

 

Note strong suppression of CM at the plateau by the damper.  

Note that at plateau the weak head-tail approximation is well-justified.  
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Coherent Beam-Beam  
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Main assumption: bunch length << beta-function. For transversely dipolar modes, 

CBB is a cross-talk of bunch CM – thus, intra-bunch matrix structure is similar to 

the ADT and CB:  

 

 

 

 

 

 

 

 

 

 

 

Here 2 identical opposite IRs are assumed (IR1 and IR5 for LHC) with 2K+1  LR 

collisions for each, every one with its beta-function and separation            .  

 

Alternating x/y collision for IR1/IR5 is assumed with      as a difference between 

the two phase advances, while             is the incoherent beam-beam tune shift 

per IR.   
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Coherent BB at Plateau: effect ~30%  
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Dispersion Equation  
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Let’s consider a small fraction of the beam described by an NHT amplitude vector        

:  

 

 

Due to the frequency spread eigenvalues are slightly changed,                 but 

eigenvector at the first approximation are the same (similar to QM). From here 
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Weak Head-Tail case  
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This derivation assumes frequency spread can be treated as a perturbation. This 

is justified when the resonant particles are at the tails of the distribution.    

 

 

 

 

 

 

 

With the damper, weak HT approximation can be applied at many cases. If so 

(true for LHC), the DE is simplified: 
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Stability Diagram   
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Stability diagram (SD) is defined as a map of real axes  on the complex plane:   

 

 

 

 

 

 

 

To be stable, the coherent tune shift has to be inside the SD.  
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NHT vs BeamBeam3D (S. White) 
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BeamBeam3D 

NHT 

Threshold chromaticity vs gain for  

 

two single-bunch LR-colliding beams,  

end of the squeeze parameters,  

no octupoles.  

Highest growth rates for  

 

single beam, single bunch,  

maximal gain and nominal impedance 
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Couple Bunch Factor: LO+, bbb ADT, 2Imp  
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Tails Factor: LO+, CB, bbb ADT, 2Imp  
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Tails Factor: LO-, bbb ADT, 2Imp  
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Beam-Beam Factor: 2Imp, CB, CBB =/2, LO+, bbb ADT 

25 

5 0 5 10 15 20
Q'

100

200

300

400
Joct

gain 0.2, 0.7 and 1.4

CBB effect ~ 30% at 

the Plateau.   

5 0 5 10 15 20
Q'

100

200

300

400
Joct

gain 0.2, 0.7, 1.4

3

IR1 2.5 10Q   

AB 

Q’ 

Q’ 

d 

d 



Impedance Factor: CB, CBB =/2, LO+, bbb ADT 
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Long-Range Beam-Beam Tune Spread  

• For the alternating x/y IR1/IR5 collision scheme, the octupolar LR tune 

spread is  

 

 

 Here          is the linear LR bb tune shift per IR,           is beam 

separation in units of their rms size at that point. Round betas are 

assumed. 

 

• For LHC at the end of the squeeze                        ,             .    
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Stability Diagrams with Long Range Beam-Beam  
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LO=140A – computed threshold 

 

BB only, LO=0 

 

LO=500A, no BB 

 

BB and LO=500A 

 

 LO=1000A, no BB 

At the end of the squeeze and LO+, 

BB is equivalent to +500A of LO. 

 

For the black curve, where we are 

now, we must be very stable, being 7 

times in effective LO above the 

threshold.  

 

However, we are unstable! 

A big beast is still overlooked…  

E-cloud in the IRs? Big drift of Q’? …? Any idea can be checked with NHT. 
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Summary: power of the model  

• Method of nested head-tail modes (NHT) is implemented on a base of 

Mathematica. It allows to find coherent tunes for all the modes, 

solving the eigenproblem at its 4D set:  

              azimuthal  radial  coupled-bunch  beam-beam.  

 

• The external data: impedance/wake, ADT frequency profile, 

distribution functions and nonlinearities, beam-beam scheme.  

 

• Based on that, all the coherent modes with all the details are 

computed.  

 

• The LO parameter scan, with 5 radial, 21 azimuthal and 15 

representative CB modes  it takes only 1s on my 3 years old laptop.  

 

• The same problem takes days for a single-bunch multi-processor 

tracking; it is unsolvable for a thousand bunches. 
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Next steps  

• To include longitudinal plane into SD. 

 

• To include train structure. 

 

• To include detuning wakes/impedances. 

 

• To make all that user friendly and public. 

 

 

 However powerful are our models – they are nothing 
but tools to see consequences of our ideas. Models 
cannot have more ideas than we put into them.    
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Many thanks for your attention! 


