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Neutrino Physics
&

Path Toward MicroBooNE

Outline:

1. Path Toward MicroBooNE

2. MicroBooNE Detector

3. Detector Construction

4. Commissioning Schedule

5. Summary

2Thursday, May 8, 14



Neutrino Flavor Mixing

What we know about neutrinos
• Neutral, spin 1/2 lepton

• 3 weakly interacting flavors

• At least 3 non-degenerate mass eigenstates

• Very, very tiny mass

• Flavor mixing!

Quark Neutrino

3Thursday, May 8, 14



U

Production
(weak interaction)

Detection
(weak interaction)Propagation

Probability for detecting νβ
Ultra-relativistic Approx.

Depends on θ, L, E, and Δm2

Neutrino Oscillation
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Neutrino Oscillation

Key points of oscillation experiments
• We produce & detect neutrinos through weak interaction

- We can see either “disappearance” or “appearance” of specific flavor

• Oscillation effect depends on angle, mass splitting, and L/E

Courtesy of “Celebrating Neutrinos” (LANL)
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Accelerator
&

Atmospheric

KamLAND
&

Solar

What We Already Know

Short Baseline
Reactor

3 neutrino Best Fit
quoted from

Particle Data Group

... we are moving toward precision measurement era ...
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Things we still don’t know...
• CP violation

• Mass hierarchy

• Absolute mass

• Dirac vs. Majorana 

• Sterile neutrinos

What We Still Need to Learn
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LSND Experiment: High ∆m2 Oscillation

• Liquid Scintillator Neutrino Detector (LSND)
- Primary oscillation mode: νµ ⇒ νe ... L/E ≃ ο (1 m/MeV)

LSND Detector

Courtesy of “Celebrating Neutrinos” (LANL)
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LSND Experiment: High ∆m2 Oscillation

• Liquid Scintillator Neutrino Detector (LSND)
- Primary oscillation mode: νµ ⇒ νe ... L/E ≃ ο (1 m/MeV)
- Saw oscillation signal at high ∆m2

‣ Not seen by others! ...  “sterile neutrino”

LSND allowed region for
∆m2 vs. sin22θ

Possible ∆m2 ∈ [0.2, 2.0] eV2

Solid Lines
90% CL from other experiments

PRD 64, 112007 (2001)
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MiniBooNE: Investigating LSND Oscillation

BNB

MiniBooNE Detector

• MiniBooNE: Booster Neutrino Experiment @ L ≃ 500 m
- Oscillation mode: νµ ⇒ νe & νµ ⇒ νe ... L/E ≃ ο (1 m/MeV)
‣ Investigate LSND signal

- Cherenkov detector w/ non-scintillating oil
- Source: Booster Neutrino Beam (BNB)

Mod. Phys. Lett. A27: 1230024 (2012) 

MiniBooNE Horn
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• MiniBooNE result
- Could be compatible w/ LSND 
- Saw an excess of (anti) νe in low energy 

PRL 110, 161801(2013)

MiniBooNE: Investigating LSND Oscillation
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• MiniBooNE result
- Could be compatible w/ LSND 
- Saw an excess of (anti) νe in low energy 

PRL 110, 161801(2013)

Event excess are in lower L/E
• Different (?) signature than LSND

Region with large backgrounds
• Δ ⇒ N γ
• π0 ⇒ γ + γ
Possible Mis-ID of single e- vs. γ 
(hard business for Cherenkov Detector)

Need for definitive measurement!

MiniBooNE
Excess

LSND
Excess

MiniBooNE: Investigating LSND Oscillation
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MicroBooNE Detector
~ High Precision LArTPC ~

Outline:

1. Path Toward MicroBooNE

2. MicroBooNE Detector

3. Detector Construction

4. Commissioning Schedule

5. Summary
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MicroBooNE Experiment Overview

• 170 ton Liquid Argon Time Projection Chamber (LArTPC)
- Oscillation mode: νµ ⇒ νe & νµ ⇒ νe ... L/E ≃ ο (1 m/MeV)

- BNB (on-axis)
- NuMI (off-axis)

- Located @ LArTF 
‣ on surface
‣ in front of MiniBooNE

MicroBooNE Cryo-Stat & TPC

C
athodeA

no
de

Field Cage
10.4 x 2.5 x 2.3

90 ton LAr

Beam direction
along

TPC “Z-axis”

 Three Objectives
1. MiniBooNE low E excess
2. Low E ν-Ar cross-section
3. LArTPC R&D
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BNB: Primary Source of Neutrino

Target + Horn + Decay Tunnel
(Meson Focusing & Decay)

Booster
(8 GeV Protons)

Dirt
(Oscillation)

MicroBooNE
Detector

• 8 GeV protons from BNB hit Beryllium target @ ≃ 2 Hz
- Producing mesons, mainly π & K
- Horn focus mesons of desired polarity
- Decay produce neutrinos

• Oscillation takes place in dirt ( ≃ 470 m)
• Expecting 6.6 E20 POT for 3 years of running

Picture taken from PRD  79, 072002 (2009)
and courtesy of FNAL

Well... you know this much better than I do ...
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BNB
On-Axis

dtarget ≅ 470 m

MiniBooNE

NuMI
Off-Axis (≅ 25 degree)

dtarget ≅ 680 m

MicroBooNE @ FNAL

MicroBooNE

BNB: Primary Source of Neutrino
PRD  79, 072002 (2009)

Horn: Neutrino Mode

Event Rate Break Down
(flux & xs)

- νµ ≃ 98.6%
- νµ ≃ 0.8 %
- νe ≃ 0.6 %
- νe ≃ 0.02 %

... high purity νµ beam ...
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BNB
On-Axis

dtarget ≅ 470 m

MiniBooNE

NuMI
Off-Axis (≅ 25 degree)

dtarget ≅ 680 m

MicroBooNE @ FNAL

MicroBooNE

BNB: Primary Source of Neutrino
PRD  79, 072002 (2009)

Horn: Neutrino Mode

Event Rate Break Down
(flux & xs)

- νµ ≃ 98.6%
- νµ ≃ 0.8 %
- νe ≃ 0.6 %
- νe ≃ 0.02 %

... high purity νµ beam ...

BNB operation in the same 

configuration as MiniBooNE 

greatly helps to reduce systematics 

in comparison analysis
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TPC Working Principle

Cathode @ 128 kV
(plate)

Anode
(wire plane)

Electric Field
500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar
• Ionize electrons
• Produce scintillation light

2. Ionized e- drift toward anode
3. Wire planes detect drift e-
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TPC Working Principle

Cathode @ 128 kV
(plate)

Anode
(wire plane)

Electric Field
500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar
• Ionize electrons
• Produce scintillation light

2. Ionized e- drift toward anode
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light
detected by PMTs
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TPC Working Principle

Cathode @ 128 kV
(plate)

Anode
(wire plane)

Electric Field
500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar
• Ionize electrons
• Produce scintillation light

2. Ionized e- drift toward anode
3. Wire planes detect drift e-

Scintillation Light
detected by PMTs

Max drift time ≃ 1.6 ms
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Scintillation Light
detected by PMTs

Cathode @ 128 kV
(plate)

Anode
(wire plane)

Electric Field
500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

TPC Working Principle
1. Charged particles interact in Ar

• Ionize electrons
• Produce scintillation light

2. Ionized e- drift toward anode
3. Wire planes detect drift e-

Charge collected
by wire plane

Drift Time = X position
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Three Wire Planes

U plane
(induction)

V plane
(induction)

Y plane
(collection)

⊕ ⊕ =

8256 wires w/ pitch = 3mm
(Y, Z) = coincidence on wire

Induction Plane MC Waveform
(Bi-polar pulse as e- pass through)

Collection Plane MC Waveform
(Uni-polar pulse as e- pass through)

Picture courtesy of J. Assadi
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Optical Detector
Image Credit: B. Jones

• LAr optical properties
- Two paths for light production
- Two scintillation time constants
‣ singlet & triplet  (τ ≃ 6 ns & 1.6 µs)

- “Transparent” to its own light
‣ Wavelength shift by TPB

- High light yield ≃ 4e4 / MeV
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Optical Detector

Crucial for MicroBooNE
because of

high cosmic ray rate (~5kHz) @ surface!

What we want

What we will have
several cosmics within

the same drift time period (1.6 ms)

µ

µ
µ µ

µ

µ

• LAr optical properties
- Two paths for light production
- Two scintillation time constants
‣ singlet & triplet  (τ ≃ 6 ns & 1.6 µs)

- “Transparent” to its own light
‣ Wavelength shift by TPB

- High light yield ≃ 4e4 / MeV

• Optical Detector
- 32 of 8” PMTs
- 3 important motivations
‣ Getting T0
‣ Reconstructing YZ
‣ Cosmic background rejection
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Optical Detector
• LAr optical properties

- Two paths for light production
- Two scintillation time constants
‣ singlet & triplet  (τ ≃ 6 ns & 1.6 µs)

- “Transparent” to its own light
‣ Wavelength shift by TPB

- High light yield ≃ 4e4 / MeV

• Optical Detector
- 32 of 8” PMTs
- 3 important motivations
‣ Getting T0
‣ Reconstructing YZ
‣ Cosmic background rejection

• PMT Calibration
- LED flasher system
‣ Gain & T0 calibration

Picture & drawings 
courtesy of B. Jones
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Table ... Courtesy of M. Soderberg
Price Range ... Courtesy of J. Asaadi 

Price ≃ $10/L ≃ $500/L ≃ $2/L ≃ $700/L ≃ $3000/L

It’s dense, easily ionizable, has high light yield, and cheap!

Why LAr?
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Temperature & Electric field
affect drift velocity!

LArTPC: Temperature & HV

Drift velocity depends on T & |E|

W. Walkowiak NIM A449 p.288 (2000)

which affects measurement of X position

• Stability ... key for stable operation & detector systematics
- Argon temperature and HV 
- LAr purity (later slide)
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Drift velocity depends on T & |E|

W. Walkowiak NIM A449 p.288 (2000)

which affects measurement of X position

Electric Field
affects Electron Energy

Diffusion (σ) depends on drift distance & |E|

σ
ε : electron energy
z : drift distance
E: field strength

Picture credit: J. Asasdi

Temperature & HV are keys
to understand detector response

• Stability ... key for stable operation & detector systematics
- Argon temperature and HV 
- LAr purity (later slide)

LArTPC: Temperature & HV
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• Field non-uniformity arise 
- Distortion expected by Ar+ accumulation @ cathode
- Needs to be calibrated out 

• Laser Calibration System (LCS)
• LCS inject laser to ionize Ar along the path

- λ ≅ 266 nm, need high intensity to ionize
- Distortion shows up in the reconstructed signal path

Laser path @ ArgonTube
(Uncalibrated)

Laser path @ ArgonTube
(Calibrated)

Plot & Diagram ... courtesy of C. Rudolf

Electric Field Uniformity
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LAr Purity
From C. Montanari, June 2007

τe & e- attenuation

• High purity LAr necessary for 2.5 m drift!
- Water & Oxygen affect electron lifetime
‣ shorter lifetime = larger attenuation

- Nitrogen causes scintillation light quenching
- Goal: O2 < 100 ppt & N2 < 1 ppm

NIM A605, 306 (2009)

Example
H2O Conc. vs. Lifetime

Example
N2 Conc. vs. Light Attenuation

arxiv 1306.4605

30Thursday, May 8, 14



From C. Montanari, June 2007

τe & e- attenuation

Condenser

Cu O2 filter

Mole sieve

LAr cryostat

LAr pump

LAr

GAr

• High purity LAr necessary for 2.5 m drift!
- Water & Oxygen affect electron lifetime
‣ shorter lifetime = larger attenuation

- Nitrogen causes scintillation light quenching
- Goal: O2 < 100 ppt & N2 < 1 ppm

LAr Purity

• Filling & Purification System ... LAPD
- Purge the detector with GAr first
‣ Evacuating a large TPC volume is not very practical
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From C. Montanari, June 2007

τe & e- attenuation

• High purity LAr necessary for 2.5 m drift!
- Water & Oxygen affect electron lifetime
‣ shorter lifetime = larger attenuation

- Nitrogen causes scintillation light quenching
- Goal: O2 < 100 ppt & N2 < 1 ppm

LAr Purity Monitor

LAr Purity

• LAr Purity Monitor ... field cage w/ cathode & anode (design from ICARUS)

- Xe flash lamp to liberate electrons
‣ Qanode/Qcathode tells us τe

Demonstrated & Works
τe ≃ 6ms for many weeks!

• Filling & Purification System ... LAPD
- Purge the detector with GAr first
‣ Evacuating a large TPC volume is not very practical
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Cold Readout
• Reading signal from LAr

- “Cold electronics” (by BNL) resides in LAr (reduced noise)
‣ first stage amplification & shaping of signal

- “Warm electronics” (by Nevis) resides in DAQ racks
‣ Trigger & signal readout
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Warm Readout
• Optical detector readout

- “High” & “Low” gain ... 32 x 2 channels digitized @ 64 MHz
- Two readout stream to store waveform using discriminator logic
‣ Neutrino (triggered readout)
‣ SuperNova (continuous)

Neutrino stream
- Cosmic discriminator (20 ADCs)
- Beam discriminator (1500 ADCs)
- Stored based upon L1 trigger
- Generate PMT-Trigger

SuperNova stream
- Continuous 
- Stored only for last 2 days worth
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Warm Readout

Time

Trigger Time

• Optical detector readout
- “High” & “Low” gain ... 32 x 2 channels digitized @ 64 MHz
- Two readout stream to store waveform using discriminator logic
‣ Neutrino (triggered readout)
‣ SuperNova (continuous)

• TPC readout
- 8256 channels digitized @ 2 MHz ... Neutrino & SuperNova readout stream
‣ Neutrino records [-1.6, 3.2] ms upon trigger
‣ SuperNova records every 1.6 ms

1.6 ms 1.6 ms 1.6 ms

Neutrino interaction occurs here

Electron drift from ν
arrives anode within

1.6 ms

Reading out [-1.6, 3.2] ms
provides full information of

cosmic background
that may overlap w/ signal
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Warm Readout

• Trigger
- Readout 4 x 1.6 ms frames @ coincidence of beam pulse & PMT-Trigger

PMT beam (1500 samples)

Time

Trigger Time

TPC beam [-1.6, 3.2] ms @ 2 MHz
PMT cosmic (20 samples)

• TPC readout
- 8256 channels digitized @ 2 MHz ... Neutrino & SuperNova readout stream
‣ Neutrino records [-1.6, 3.2] ms upon trigger
‣ SuperNova records every 1.6 ms

• Optical detector readout
- “High” & “Low” gain ... 32 x 2 channels digitized @ 64 MHz
- Two readout stream to store waveform using discriminator logic
‣ Neutrino (triggered readout)
‣ SuperNova (continuous)
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... When All Work Out Well ....

Example: π0 ⇒ 2 γ
LArTPC provides rich information 

about particle interaction

1.
2 

m

1.6 m

γ
γ

• We get:
- Great detail of particle tracks
- Calorimetry information from 3 planes

• Huge effort on automated reconstruction
- Very active & exciting development frontier 
- Unfortunately I have to skip this time (a whole another talk!)

Reconstructed “Hit” on the collection plane
Color = deposited charge

... So ... 
what physics can we do?
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MicroBooNE Physics: XS Measurement

• MicroBooNE adds data points < 1 GeV
- The region that is not well explored
- Crucial for future LAr experiments

Neutrino per Nucleon XS
Rev. Mod. Phys. 84, 1307 (2012)

Neutrino 

Anti-Nu
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MicroBooNE Physics: XS Measurement

• MicroBooNE adds data points < 1 GeV
- The region that is not well explored
- Crucial for future LAr experiments

• Probe various nuclear final state
- Huge effort on nuclear model on-going
- Probe in this energy range is crucial

Neutrino per Nucleon XS
Rev. Mod. Phys. 84, 1307 (2012)

Neutrino 

Anti-Nu

Example DIS event
(courtesy of ArgoNeuT collaboration)

47
 c

m

90 cm

p

Muon

π±

γ
γγ

γ

MicroBooNE provides crucial knowledge
about ν-Ar cross-section for future LArTPC
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• Excellent PID = better BG rejection
- Clear signature for π0 decay

MicroBooNE Physics: Low E Excess

π0 decay MC
(shown: reconstructed hits on the collection plane)

Single e- MC
(shown: reconstructed hits on the collection plane)

Courtesy of A. Szelc

Courtesy of A. Szelc
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• Excellent PID = better BG rejection
- Clear signature for π0 decay
- dE/dX distinguish single e- from γ

MicroBooNE TRD3

MicroBooNE Physics: Low E Excess

π0 decay MC
(shown: reconstructed hits on the collection plane)

Single e- MC
(shown: reconstructed hits on the collection plane)

First 2.4 cm of shower gives:
• 1 MIP for single e- 
• 2 MIPs for single γ 

Above plot shows a separation 
@ E=250 MeV

Courtesy of A. Szelc

Courtesy of A. Szelc
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Scenario A: e- signal selection
5σ signal sensitivity

Scenario B: γ signal selection
4σ signal sensitivity

MicroBooNE TRD3

MicroBooNE Physics: Low E Excess

• Excellent PID = better BG rejection
- Clear signature for π0 decay
- dE/dX distinguish single e- from γ

• MicroBooNE can prove low E excess!
- Smaller volume but improved BG rejection
‣ Can be competitive w/ MiniBooNE

- and important XS measurement
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MicroBooNE
~ Year 2013 ~

Detector Construction

Outline:

1. Path Toward MicroBooNE

2. MicroBooNE Detector

3. Detector Construction

4. Commissioning Schedule

5. Summary
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TPC/PMT/Cryostat Preparation @ DAB
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TPC/PMT/Cryostat Preparation @ DAB

TPC built w/ 8256 wires!
w/ big effort on tension measurement!
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TPC/PMT/Cryostat Preparation @ DAB

TPC built w/ 8256 wires!
w/ big effort on tension measurement!

Light reflection shows
three wire planes!
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TPC/PMT/Cryostat Preparation @ DAB

32 PMTs installed on the rack
with TPB coated plate

This picture is taken with 60 [s] exposure time in covered (dark) cryostat
Courtesy of Christoph Rudolf von Rohr
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TPC/PMT/Cryostat Preparation @ DAB

PMT tested with HV in “dark” cryostat
• Used production readout electronics
• Official DAQ successfully record data
• HV hardware & software working
• Confirmed cabling
• All PMTs confirmed with signal

This picture is taken with 60 [s] exposure time in covered (dark) cryostat
Courtesy of Christoph Rudolf von Rohr

Prelim
inary

Sample waveform 
from one PMT 

using “LED Flasher”
(courtesy of Ben J.)
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TPC/PMT/Cryostat Preparation @ DAB

... testing to see if all fits ...
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TPC/PMT/Cryostat Preparation @ DAB

After insertion... TPC tested
• Inject test pulse & readout
• DAQ successfully readout data

Looks good :)

• Standardized as a test procedure

Prelim
inary

Sample waveform 
using test pulse
(TPC readout)

(courtesy of David C.)
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MicroBooNE
Commissioning Schedule

Outline:

1. Path Toward MicroBooNE

2. MicroBooNE Detector

3. Detector Construction

4. Commissioning Schedule

5. Summary
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Moving to LArTF

• The detector end cap welded on ... in 2 weeks!
• Move the cryostat from DAB to LArTF
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Post-Moving / Installation Tasks @ LArTF

• Task followed by moving
- TPC & PMT testing

• Installation tasks
- Preparation of platform
- Cryostat insulation
- Complete cryogenic piping
- Readout racks & cables

Platform w/ readout racks

Cryostat

Cryogenic pumps, filters, etc

≃4 months for installation
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Detector Commissioning

• Detector ... ≃ 2 months
- Test run @ TPC HV 64 kV ... we request low intensity BNB
‣ 1 week to ramp up

• Cryogenics ... ≃ 2 months
- GAr purging, recirculation w/ purification
- Cool down of cryostat
- LAr filling followed by purification
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Detector Commissioning

What Do We Expect @ 64 kV?
• 40% longer drift time

- increase in cosmic background
• 20% increase in diffusion broadening
• 15 to 45 % reduction in collected Q

- Variation from MIP to stopping protons

Study & Plot courtesy of B. Baller

• Detector ... ≃ 2 months
- Test run @ TPC HV 64 kV ... we request low intensity BNB
‣ 1 week to ramp up

• Cryogenics ... ≃ 2 months
- GAr purging, recirculation w/ purification
- Cool down of cryostat
- LAr filling followed by purification
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Detector Commissioning

• Detector ... ≃ 2 months
- Test run @ TPC HV 64 kV ... we request low intensity BNB
‣ 1 week to ramp up
‣ 1 week for stable run ... low intensity BNB, cosmic ray, laser calibration

- Review before ramping the HV to 100+ kV
- Test run @ TPC HV 128 kV ... we request high intensity BNB
‣ 5 weeks to ramp up + short runs, followed by review for stable run
‣ 4 weeks for stable run ... high intensity BNB desired for neutrino data!

• Cryogenics ... ≃ 2 months
- GAr purging, recirculation w/ purification
- Cool down of cryostat
- LAr filling followed by purification
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Summary

Outline:

1. Path Toward MicroBooNE

2. MicroBooNE Detector

3. Detector Construction

4. Commissioning Schedule

5. Summary
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Summary

• MicroBooNE is 170 ton LArTPC experiment
- Definitive measurement on the low energy event excess from MiniBooNE
- Perform crucial ν-N cross-section measurement at BNB energy range
- Important R&D for future LArTPC experiments

• MicroBooNE Status
- TPC/PMT/Cryostat built & tested @ DAB
- Ready to move into LArTF after lid closure

• Plan for Commissioning
- 4 months to complete installation work @ LArTF
- 2 months to complete LAr filling
- 2 months for commissioning data taking
‣ Need low intensity BNB for 64 kV running 
‣ Need high intensity BNB for 128 kV running 
‣ Schedules are preliminary but we are looking forward to achieving it!
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Back Up Slides
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MicroBooNE Physics: More
• SuperNova 

- Can detect νe capture on Ar ... dominant xs

- Cannot trigger on its own ... small volume & too much cosmics!

- Can analyze SuperNova data stream upon SNEWS 

‣ That’s why we have it!

• Proton Decay

- Cannot study proton decay: p ⇒ K+ ν ... too small :(

- Can study cosmic induced background rate: K0 p ⇒ K+ n

‣ Important measurement for future LArTPC

‣ High cosmic rate can be helpful sometimes :)

Active work on-going on these fronts!
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TPC Volume [ton] 90

Dimension [m] 10.4 x 2.5 x 2.3

# Channels 8256

Wire Diameter [mm] 0.15

Wire Pitch [mm] 3

Operating Temp. [K] 87

Max Drift Length [m] 2.53

Electric Field 500 V / cm

PMT Type Hamamatsu R5912-02

PMT Size 8”

# Channels 32

Wavelength Shifter TPB coated acrylic plate

TPC

Light Collection System

MicroBooNE Detector: Numbers
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NuMI @ MicroBooNE

• We can trigger on NuMI beam
- “Off-Axis” ≃ 25°
- Target-Detector ≃ 690 m
- Absorber-Detector ≃ 100 m 

Expected Event Rate
(2~3 years running)

NuMI Flux Estimate 
@ MicroBooNE

Plots/Numbers/Diagram
Courtesy of D. Davis
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MicroBooNE Physics: More++
• Near Detector for MicroBooNE ?

- Is anomaly due to oscillation or beam (intrinsic)?
‣ definitive answer from having a near detector (ND)

- LAr1-ND 
- Proposed 40 ton LArTPC ND for LAr1 program
- BNB on-axis @ 100 m from target
- Can be MicroBooNE ND!

- Greatly improve MicroBooNE sensitivity
arxiv 1309.7987

without LAr1-ND with LAr1-ND
• Left ... without LAr1-ND

‣ Assume 20% νe syst.

• Right ... with LAr1-ND

‣ Same syst. error

‣ Almost 2σ improvement!

LAr1-ND greatly help 

MicroBooNE
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