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HTS opens an application space that is not available
with present LTS technology

Opportunities: 22-100T@4.2K magnets and 1-5T@20-77K
magnets for rotating electric machines and cryogen-free MRI
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What will be the role of HTS for high-field magnets?

® Muon collider demands solenoids of 30+ T

® Future circular colliders need dipoles of 16+ T

® 10-year magnet challenges supported by U.S. NSF:
® 30T Nuclear Magnetic Resonance (NMR) (All Superconducting)
® 60T Hybrid (Resistive + Superconducting )

® Bi-2212 round wire responds to all these needs.
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Outlines — A viable HTS, 2212 included, magnet technology
requires technology advancements at many forefronts

* HighJ_in along-length HTS wire made by an industrial
scaling process is hard to get. For 2212,

— Decode wire fabrication and heat treatment of long-length wire

— Overpressure processing technology delivers a J_ of several 103 A/mm? at
20-30 T in long-length Bi-2212

* Magnets are hard to fabricate, may be crashed by high

stresses, and are difficult to protect from quenches.

— Can we detect a quench in HTS magnets?

— How to protect HTS magnets from catastrophic damages induced by
unprotected quenches?
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Commercial 2212 round wire is fabricated by a powder-
in-tube route
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PIT 2212 is transformed to a high J_ conductor using an empirically
developed melt processing

Microstructures of fully reacted wires are complicated.
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Through-process quench studies to understand how
2212 develops — goal to develop understanding
driven process
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Decode the processing: Porosity agglomerates
into gas bubbles that strongly limit J_

Kametani and Shen et al. Supercon. Sci. Tech., 24, 075009 (2011)

Shen et al. Supercon. Sci. Tech., 23, 025009 (2010)
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Porosity, endemic to all PIT wires, is a major obstacle to getting high
J.in 2212 wires

® Very High Field Superconducting Magnet Collaboration: (PI:
D. Larbalestier and A. Tollestrup)
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In 2010, J. of 10 VHFSMC conductor batches and two OST conductors varies from
1000 A/mm? to 2880 A/mm? at 4.2 K, 5 T.
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Removing bubbles using cold-densification methods
more than doubles J_/J_ of short samples

Cold isostatic processing of Bi-2212: Jiang et al. Supercon. Sci. Tech., 24, 082001 (2011)
Swaging of Bi-2212 (S. Hong HIC Enterprise, SBIR phase 1): Jiang et al. IEEE Trans Appl. Supercond. 23, 6400206 (2013)

Regular PIT wires, quenched@887C

Shen et al., J. Appl. Phys., 113, 213901 (2013)
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For 20 years, the performance of long length

Bi-2212 wires has been much worse than in short pieces.

Short pieces: J;=500 A/mm? at 4.2 Kand 20 T
Long pieces: J;.<200 A/mm? at 4.2 Kand 20 T

Mysterious leakage appearing in long length wires
during the forming reaction.

CIP didn’t
help.
(Jiang et al.
FSU)

NHMFL, 1999,
3 Tinsert
from tape
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Start-up observations: Wire swells, J_is degraded in 1-3 m long
wires, and low J_ correlates well with large wire swelling
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Wire swells, leaks, and carries 3 times less | when melt processed with its
ends being sealed.
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Key observation: Gases are released from wires while they were
heated, detected by mass spectrometer

Shen et al., J. Appl. Phys., 113, 213901 (2013)

C and H species gasifying at high-temperatures.
Significant gas releases when 2212 melts.
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At high temperatures, 2212 wire creeps like cylindrical pressure vessels
subjected to internal pressure

Key understanding:

« Silver creeps outward, producing more porosity in 2212 and
lowering J. in long-length wire

« Leakage is a natural consequence of the creep rupture of AgMg at
the strain of ~3%.
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The problem can be cured by applying external gas pressure
during heat treatment

Overpressure processing can take the long length wire

J;to>600 A/mm?at4.2Kand 20T

J, (A/mm?, 4.2 K)

3500

2212: OST
"W13" NHMFL
100 bar OP

1200 < 3000
~
| 3
1100 T A E 2500 )
A\ s
1000 T 2 =, 2212: OST "w2"
‘A = 2000- NHMEL 1 bar
soo 4 TN
o S 1500 4 e R it
800t 3y :b 10 12 14 16 18 20
E Y g \ Applied Field (T)
700 £ i
{ .
600 ~ 1 2212: OST "W13"
. : C:' NHMFL 100 bar OP
500 T . I =
s |1
a0+ 7 ! 1
r @ ~A-
- ] -
300+ % |1 T Ry
F £ "
00F 8 ! Nb,Sn: OST .
- V High-J, s 7) ))
100 + YBCOBL - 2212:OST "w2"
[ 2212: "W13" 1 bar OP Tape Plane NHMFL 1 bar
0 IS S N S S S S S N S S S S S S N R N S T T S SR S ST SO |
0 5 10 15 20 25 30 35 40 45

Applied Field (T)

Tengming Shen | High temperature superconducting magnets: Pushing limits

Larbalestier et al. Nature
Materials 13, 375-381 (2014)

Some history:

Tried for 2212 in 1990s but
limited success was found.

Developed into the core
technology for 2223 industry in
early 2000s.

Picked up by VHFSMC/FSU to
initially remove porosity (gas
bubbles).
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Critical questions for optimizing and scaling up overpressure
processing (OP)
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Under external pressure, Ag creeps inward, producing denser
Bi-2212 core and raising J_

(courtesy of OST)
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J, (42K, 5T), Almm*

Using the concept of equilibrium pressure, model predicts a
simple dependence of the density of filaments in Op Bi-2212 on
the P_/P, ratio
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@ Implications:

d Overpressure requirement decreases with
decreasing gas impurities levels in the wire.
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Overpressure processing furnace system installed, approved to use,
and being commissioned

« 3-zone MTI tube furnace, 50 mm bore
« #x1°Cin16cm

« Operated at 100 bar@900 °C
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Section summary

* High J_in a long-length wire made by an industrial scaling process
is hard to get.

— In 2010, J_ of wires produced by U.S industry varied by a factor of 3.

— Discovered that porosity agglomerates into large gas bubbles and
that it strongly limits conductor J_.

— Removing gas bubbles doubles J..

* Identified the internal gases as the fundamental cause for low J_
as well as leakage in long-length conductor, demonstrated that

silver creep is the fundamental mechanism

* Developing overpressure processing technology that delivers a J_
of several 103 A/mm? at 20-30 T in long-length Bi-2212

— Developed theoretical description of the overpressure processing

— Installed and commissioning a Fermilab overpressure processing furnace
system
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Quench detection and protection remain an outstanding problem
for HTS magnets

Metal —>
A [

Superconductor
Normal zone

Unprotected quenches can destruct a magnet.
Hot spot temperature rises to a dangerous level in a fraction of

a second.

Adiabatic heat balance: J:p(T)dt = C(T)dT

For temp rise T,<200 K, RRR=30, Ag fraction=0.75, the
required time constant is:

0.73 sec for J =400 A/mm?

0.18 sec for J =800 A/mm?.
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An unsettling question is whether a quench can be detected, how it
can be detected, and to what degree temperature, magnetic field,

and operating current will affect the quench detection?

ko] VNZO
Metal—>|—
A
Superconductor Normal zone
(LotVyzpy't)
10=10RaO=10-| o)
~(LytVnzpy't)

If the initial normal zone (2xL,) is small

V,,(t)=1(t) X Ry, (t)

=I(t) x Vyzpy X t X p(T\S)/S,,
=J xp(Ty) XUy, x t
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Normal zones in HTS
propagate very slowly.
Superconductor Vyzpy[mm/s]
NbTi >1000
Nb.Sn >500
Bi-2223 ~1-10

YBCO ~1-10
Bi-2212 ~1-10

ForV, . toreach0.1V,

- Nb,;Sn: 10 ms, temp rise <30

K

- HTS: >1 s, temp rise>100 K
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Experimentally study quench behaviors of small-scale coils in strong
magnetic fields — previous experiments were mostly on short-
samples and pancakes of YBCO at 4.2 K and self field
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The coil is very stable — its minimum quench energy is
greaterthan 0.1Jat4.2Kand 7 T

Hot spot temperature (K) & heater (Volts)

24

MQE of Bi-2212 exceeds 0.1 J

— three orders of magnitude of greater than energy disturbances produced
by conductor motion and epoxy cracking
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Temperature rise and quench propagation when
J =118 A/mm?(l_/1.=24%)

 Temp goes up at ~10 K/s.
* Normal zones propagate from layer 6 to layer 1. V,,,, (transverse)=1.4

mm/s T=4.2K,B=7T,J_=118 A/mm?
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Temperature rise and quench propagation when J =472
A/mm?(l_/1 =95%) — “point-like” quench zones

« Temp goes up at ~148 K/s.
* Quench zone is small, confined in layer 6. V,,,(transverse)=7.4 mm/s

T=42 K, B=7T,J =472 A/mm’
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30 cm & 15 cm heaters vs. 1 cm heater: what do they tell us?
“Point-like” quench zones develop into a length greater than 30 cm
before thermal run-off

* Length of critical normal zone is proportional to MQE.
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Quench detection voltage: how high should it be
and how will it affect the hot spot temperature?

oil terminal voltage
uring recovery cases
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Section summary

- Experimentally determine quench behaviors of sub-scale
coils of Bi-2212 at 4.2 K and strong magnetic fields

— MQE>0.1 J, V\zpy (transverse to conductor)~1-10 mm/s

* Revealed that “point-like” normal zone develops into a
length greater than 30 cm before thermal run-off.
— Enabling quench detection using resistive voltages.

— The ability of quench detection depends on critically on
MQE, modestly on NZPV. This is in strong contrast of LTS,
whose normal zones are in um-mm in length and depends
on normal zone propagation.

* First determined the dependence of hot spot temperature
upon quench detection on the detection voltage criterion.
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Future plans

e Continue systematic exploration of processing-microstructure-
performance relationships and push J, of 2212 conductors to
>1000 A/mm? at 20 T through innovative processing and close
collaboration with U.S. industry, and study new concepts and
tools of fabricating, designing, and operating HTS magnets

— DOE Early Career Award - $2.5M over 5 years (2012-2017)

* Develop, optimize, and innovate practical HTS magnet systems
— 22+ T solenoids for MAP
— 16+ T dipoles for future accelerator and the cable they depend on

— Technology transfer and commercialization (22+ T solenoids, Muons
Inc. DOE-SBIR)

30 Tengming Shenl High-temperature Superconducting Magnets: Pushing limits 5/19/14



Further increase conductor J. — the possibility is high

Tuning precursor powder composition led to a 4-times difference in
J. and we are providing some answers why (Pei Li).

Collaboration with Nexans and OST.
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First experience with high-strength cables whose J_
didn’t degrade and understanding why

6+1 high-strength 2212 cable
> High-strength

¥ alloy
Y=

g

| -e— 6-around-1 cable|

-
N
[=1
o

x6.3

\\\‘] \

Ic (4.2 K) (A)

i1 . . 400 | -a— single-strand |
KTIOZ coating A
2212 RW 0 2 4 6 8 10 12 14 16

B(T)

Fe-Cr-Al preserves 2212 J_..
Inconel-X750 degrades 2212 J_.

v
_ o
- ot
c
=] T T
FecrAl g 100 o Oxygen Ka1l ]
™ ® Aluminum Ka1 'S 80
8 A Chromium Kat 3
s> 801 v __lron Ka1 2 70
) S 60
o >
€ 604 = 50
- c
£ o 404
_— £
=30
@ Z
A|203 = 20 g 20
. L3 - 7 >
passivatiorf @ 10
a 0 SrasLy ;
- n ) 04
: layer w w 'l
T 0 5 10 15 20 25
0 2 4 6 8 10 12

Position (um)

Position (um)

32 Tengming Shen | High temperature superconducting magnets: Pushing limits 5/21/114



Pushing J, of cables to 600 A/mm? at 4.2 K and
20 T

10 bar OP done at FSU. 100 bar processing at Fermilab
coming soon.
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Developing overpressure processing technology for
building high-performance coils

Integrated finite element modeling and thermo-mechanical measurements to
access the mechanical limits

14T LTS outsert + 4 T HTS insert Insert only Insert + 8 mm SS reinforcement

. i 2
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Conclusions

& LT_]‘» %onductors approach their limits. Bringing HTS to applications
will be revolutionary.

® 30T NMR (all SC)
® 60T hybrid (R+SC)
® 30+ T muon cooling magnets and 16+ T dipoles

® Increased J; of long-length Bi-2212 wire to >600 A/mm? at 4.2 K,
20T

@ Developing overpressure processing technology

® Experimentally determined quench behaviors of HTS coils in strong
magnetic fields.

@ With clear implications for quench detection and protection

® Bi-2212 is becoming a magnet grade conductor

® Immediately open up applications in NMR and muon colliders at 22-30 T
(solenoids)

@ Feasible for 16+ dipoles
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