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• Cornell has been interested in SRF R&D to 
make an ERL affordable

– Minimize df/dp for smaller RF amplifiers

– Reduce Q0 degradation in cryomodules

– Increase Q0 beyond standard EP/120 C bake Nb
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Motivation



• I used ANSYS simulations to optimize the pressure 
sensitivity of the main linac cavity

• I found df/dp is minimized for no stiffening rings or 
large radius stiffening rings, and end tuner with 
small endwall area (PRST-AB 15, 022002, 2012)
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Minimize df/dp



• I used ANSYS simulations to optimize the 
pressure sensitivity of the main linac cavity

• I found df/dp is minimized for no stiffening rings 
or large radius stiffening rings, and end tuner 
with small endwall area
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Minimize df/dp
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• Previous experience: can achieve high Q0 in 
vertical test—often degrades in horizontal test

• Cornell HTC: record Q0 in a cryomodule
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Reduce Q0 Degradation in Cryomodules



• Available now: Nb with HF rinse, N-doping

• R&D project for future: Nb3Sn

• Tc = 18 K vs 9 K for niobium
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Increase Q0 Beyond State of the Art

Preparation Max Q0
* at 4.2 K Max Q0

* at 2.0 K

Nb, EP/120 C bake 6 x 108 2 x 1010

Nb, EP/120 C +HF rinse 6 x 108 3 x 1010

Nb, N-doped 6 x 108 4 x 1010 – 8 x 1010

Nb3Sn, vapor diffusion 6 x 1010 >1011

*Approximate Q0 for 1.3 GHz TeSLA or 1.5 GHz CEBAF cavities if Rres is small



• Cryogenic plants for 
large SRF linacs (LCLS II, 
Project X, XFEL, ERL) 
cost ~$100 million and 
require MW of power

• Higher Q0  less heat to 
remove  smaller 
cryoplant, less power

• Higher Tc  higher 
helium temperature 
simpler cryoplant, 
higher efficiency
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Importance of High Q0

Images from D. Delikaris, Cryogenics at CERN, 2010
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Importance of High Q0

• For lower-energy industrial 
applications, it may not be 
cost-effective to have a 
supply of 2 K LHe

• Higher Tc of Nb3Sn allows 
high-Q0 operation with 
atmospheric 4.2 K LHe, or 
even gas/supercritical He

• Flue gas, waste water 
treatment, isotope 
production, security Images from S. Sabharwal, NA-PAC13



• Nb3Sn is a strongly type II superconductor

– Small Hc1: onset of metastability is low

– Small ξ: metastable state sensitive to defects

• Unclear if metastable state is reliable

– Is Hsh limit (2x max Nb field) or Hc1 (1/10th max Nb field)?
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Challenge of Strongly Type II SC
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Coating Mechanism: Vapor Diffusion

Sn vapor arrives at 
surface

Nb-Sn
interdiffusion

Ts = Sn source temperature
=~1200 C

By independently 
controlling Sn vapor 

abundance, it can 
balanced with Nb-Sn
interdiffusion rate to 

achieve desired 
stoichiometry

Sn

Nb

Nb3Sn

Sn
Vapor

Heater

Coating 
chamber 
in UHV 
furnace

Nb cavity 
substrate

Tf = furnace temperature
=~1100 C
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Design and Assembly

Connection of 
thermocouples

>1200 C heater 
connection 

(all Nb, Ta, Mo, 
ceramic)

Testing fit 
before welding
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Cornell Coating Chamber

UHV Furnace

Copper transition weld 
from stainless to Nb

Tin Container

Tin Heater

Heat Shields

Heater 
Power

Tungsten 
Supports

Cavity 
Temp 

Thermo-
couples

Heater 
Temp 

Thermo-
couples

Flange to 
UHV 

furnace
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Coating Procedure

Degas
~ 1 day

Nucleation
5 hours

Coating
3 hours

Surface 
diffusion
0.5 hours

4 C-type thermocouples:
2 for cavity temperature,

2 for tin source temperature



• First coating: 1” square Nb samples

• First test: anodization in NH4OH at 75 V

• Nb->blue Sn->yellow Nb3Sn->Pink/purple

• Color indicates uniform Nb3Sn, no excess tin
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Initial Material Development

1”

Not anodized Anodized



• SEM indicates appropriate grain size and texture

• EDX shows desired tin content for highest Tc

• EDX at various locations confirms uniformity
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SEM/EDX

A. Godeke, Supercond. Sci. Tech, 2006



• Inductive Tc measurement system 
designed and built by community 
college students working with me

• Tc = 18.0 ± 0.1 K measured inductively is 
close to highest literature value
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Tc Measurement



• XPS with incremental sputtering shows uniform 
composition down to 1.5 μm

• FIB confirms layer is 2-3 microns thick
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Thickness of Nb3Sn Layer

FIB FIBXPS

20 µm
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• Nb3Sn/Nb induces thermocurrents

• To prevent losses, must slowly, 
uniformly cool through Tc = 18.0 K

• No cold gas: only 4.2 K LHe available

• Designed and made in-line pressure 
reducer + heater for transfer line
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Tool I Developed - Slow Cool System
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Nb3Sn SRF History

B. Hillenbrand et al., Siemens, 1981

(Rs ~ 10-8 Ω
for Nb at 2K, 

1.3 GHz)

• Pioneering work at Siemens AG, University of 
Wuppertal, Kernforschungzentrum Karlsruhe, 
Cornell University, Jefferson Lab, CERN, and SLAC

Nb3Sn 
9.7 GHz

• Siemens researchers 
demonstrated great 
potential of Nb3Sn 
coatings

• High surface magnetic 
fields in 9.7 GHz cavities, 
even at 4.2 K 



• U. of Wuppertal

– Small Rs values in Nb3Sn cavities with shapes and 
frequencies appropriate for particle accelerators

– Strong Q-slope, cause uncertain
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Nb3Sn SRF History

G. Müller et al, U. Wuppertal, 1.5 GHz CEBAF single cell, 2000

Nb at 4.2 K

Nb at 2.0 K
No FE or 
quench.

RF power 
limited.



• Exceeding Hc1?

– Nb3Sn strongly type II: vulnerable metastable state

– Onset field for increased losses consistently ~ Hc1

• Weak links?

– Losses in material between crystal grains

– Q vs E similar in appearance to Nb/Cu

– Rres ~ f2 fits some weak-coupling models [1]
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Possible Q-Slope Causes

[1] Padamsee, Knobloch, and Hays, RF Superconductivity for Accelerators, 1998.
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Nb3Sn SRF History

• U. of Wuppertal
– Additional studies on samples

– Found that onset field of RF 
instability depended on grain 
size

Wuppertal University – 1.5 GHz Cavity

M. Hein et al.,
U. Wuppertal,

1” dia. samples 
at 19 GHz,

2001



• Wuppertal researchers suggest larger grains 
leads to larger GB critical currents

• Also fewer GBs (i.e. fewer lossy regions)

• Preliminary 1250 C annealing attempts at 
Wuppertal had poor results 28

Ideas from Previous Researchers

Overheating less 

problematic at ~1 GHz 

vs 19 GHz because 

RBCS is much smaller

M. Perpeet et al.,
U. Wuppertal, 1999
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Standard 
Nb cavity

Nb3Sn-Coated

30

Coated Cavity

Before Coating

After Coating



• First cavity: no anneal

• Strong Q-slope observed similar to Wuppertal

• Cause of high Rres appears to be coating 
problems for one half-cell only
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First Cavity: No Anneal
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• Found I could grow grains by factor of ~2 while 
maintaining desired stoichiometry by modifying 
Wuppertal recipe
– Extra annealing step: Furnace at 1100 C, but tin heater off
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Grain Growth via Annealing

No annealing step, average grain size ~1 µm Anneal 6 hours, average grain size ~2 µm



• Rres problem seems resolved by new cavity

• 6 hour annealing during coating process

• No strong Q-slope observed
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Second Cavity: 6 h Anneal
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4.2 K Comparison Curves
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2.0 K Comparison Curves
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2.0 K Comparison Curves

Nb reaches 

higher fields

Cornell Nb3Sn data multiplied by 

cryoplant efficiency at 4.2 K vs 2 K 

(ratio ~ 3.6)



• Generally think of two Rs contributions to 
overall Q0:

– Residual resistance Rres: temperature independent

– BCS resistance RBCS: roughly follows Ae-Δ/(kT)

• For T << Δ/k, RBCS is very small, so residual 
dominates

• Can subtract low temperature Rs to determine 
temperature-dependent contribution
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Q vs E Curve Decomposition
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Q vs E Curve Decomposition
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2.0 K Comparison Curves

Nb reaches 

higher fields

Cornell Nb3Sn data with Rres

subtracted and multiplied by 

cryoplant efficiency at 4.2 K vs 2 K



• BCP 10 minutes inside and 
outside to clean entire 
surface before putting cavity 
into clean room furnace

• 10 micron BCP inside to reset 
RF surface

40

Resetting the Surface

Larger 
niobium 

grains after 
1100 C heat 
treatment
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Repeatability
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• Converted 1.5 GHz CEBAF-shape T-map to 1.3 
GHz TeSLA- and ERL-shapes

• New boards, holders, test insert

• Wrote MATLAB program to take data from 
multiplexer, convert to temperature, and plot
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Tool I Developed – 1.3 GHz Temperature Map



• Temperature maps 
show quench occurs in 
small area in high 
magnetic field region 
(2nd coating shown)

• Defect with size 
comparable to ξ (~3-4 
nm) is suspected cause

• Before resetting 
surface, I used material 
removal to try to 
remove defects
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Field Limitation – Quench
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• Five cycles of:

– Fill cavity with HF and 
leave it for 2 minutes to 
remove oxide layer, 
then remove acid

– Fill with DI water and 
leaving for 5 minutes to 
regrow the oxide, then 
remove water

• HPR and mount to test 
stand
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HF Rinse

HF rinse: Uniform removal of 

30-50 nm to smooth as-coated 

surface, remove defects



• Applied only finest polishing step from Charlie 
Cooper’s Nb recipe (coating is only 3 µm thick!)

– 40 nm colloidal silica with wood blocks 

• Short duration: 4.5 hours (minimal removal to 
see if degradation occurs due to CBP)

– Nb recipe calls for 40-300 hour duration

• HPR and mount to test stand
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Centrifugal Barrel Polish (CBP)
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Degradation from Material Removal
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Indications of GB Losses?
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Indications of GB Losses?
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• Q-slope is strongly 
temperature 
dependent

• Post-removal Q0

suppressed above ~6 K

• Suggests poor quality 
superconducting 
material with Tc ~ 6 K
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Indications of GB Losses?

A. Godeke, Supercond. Sci. Tech, 2006
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• Extract Nb3Sn material parameters from fits 
to Rs vs T data

• Use them to calculate Ginzburg Landau 
parameters and critical fields
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Material Parameters
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• Extract Nb3Sn material parameters from fits 
to Rs vs T data

• Use them to calculate Ginzburg Landau 
parameters and critical fields
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Material Parameters
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Hc1 NOT a Fundamental Limit for low-ξ Materials

Hc1 is NOT a fundamental limitation!

Hc1 range: 27 ± 5 mT

for Cornell cavity

Well above Hc1 without 

strong Q slope!

=> Energy barrier keeps flux-

free state metastable, even 

with small ξ of Nb3Sn
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CW Quench Field
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Pulsed Quench Field
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DC Flux Penetration Field

Flux penetration

T = 6.3 K
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DC Flux Penetration Field
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• Significant Nb3Sn performance improvement

– Strong Q-slope suppressed after annealing

– High Q0 at useful fields, T = 4.2 K

• Important knowledge gained

– Low-Tc Nb-Sn alloys in grain boundaries are likely 
cause of Q-slope

– Hc1 NOT a fundamental limit

• Exciting ideas for what to do next

– EP cavity (freshly loaded in furnace)

– Nb3Sn cavities for mid-field applications
60

Summary and Outlook



• Helped assemble HTC and MLC prototype

• With HTC, I performed cryogenic Q vs E 
measurements, tuner studies, microphonics
and df/dp measurements, LLRF optimization
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Other SRF Projects – Cryomodule Work



• Measured suppression of HOMs by ferrite 
absorbers in ERL injector prototype

• Recorded HOM power as a function of freq. 
while running high current through cavities
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Other SRF Projects – Beam Operation
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Other SRF Projects – Theory
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Other SRF Projects – Theory

• Studies on vortex behavior in SRF films with 
Cornell theorist James Sethna

• Attempt to determine if SIS structure can be 
beneficial
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