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Cornell University M Ot |Va t | on

e Cornell has been interested in SRF R&D to
make an ERL affordable

— Minimize df/dp for smaller RF amplifiers
— Reduce Q, degradation in cryomodules
— Increase Q, beyond standard EP/120 C bake Nb




Cornell University Minimize df/ d P
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* | used ANSYS simulations to optimize the pressure
sensitivity of the main linac cavity
* | found df/dp is minimized for no stiffening rings or

large radius stiffening rings, and end tuner with
small endwall area (PRST-AB 15, 022002, 2012)
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(&) comentnivesity Reduce Q, Degradation in Cryomodules

* Previous experience: can achieve high Qg in
vertical test—often degrades in horizontal test

* Cornell HTC: record Qg in a cryomodule

Quality Factor

1.6 K Before/After 10 K Cycle

[ ]/A 1.8 K Before/After 10 K Cycle
[ ]/m 2.0 K Before/After 10 K Cycle
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Euce MV /m]
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(&) comenniversity  Increase Q, Beyond State of the Art

* Available now: Nb with HF rinse, N-doping
* R&D project for future: Nb,Sn
* T.=18 Kvs 9 K for niobium

Preparation MaxQ, at4.2K MaxQ, at2.0K
Nb, EP/120 C bake 2 x 1010
Nb, EP/120 C +HF rinse 3 x 1010

Nb, N-doped 4 x 1010 -8 x 100

Nb,Sn, vapor diffusion @ >1011

"Approximate Q, for 1.3 GHz TeSLA or 1.5 GHz CEBAF cavities if R, is small

res



@ Cornell University Importance of High Q,

* Cryogenic plants for
large SRF linacs (LCLS II,
Project X, XFEL, ERL)
cost ~S100 million and
require MW of power

* Higher Q, = less heat to
remove = smaller
cryoplant, less power

* Higher T, = higher
helium temperature -2

Sl m p I erc rYO p I d nt ) Images from D. Delikaris, Cryogenics at CERN, ‘2010 “
higher efficiency
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E Cornell University Importance of High QO

LD A

* For lower-energy industrial
applications, it may not be
cost-effective to have a
supply of 2 K LHe

* Higher T. of Nb;Sn allows
high-Q, operation with
atmospheric 4.2 K LHe, or
even gas/supercritical He

* Flue gas, waste water
treatment, isotope ,, |
p rod u Ct | on , secu rity Images from S. Sabharwal, NA-PAC13
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(@) comenuniversity  Challenge of Strongly Type II SC

ED A

* Nb;Sn is a strongly type Il superconductor
— Small H_;: onset of metastability is low
— Small &¢: metastable state sensitive to defects
* Unclear if metastable state is reliable
— Is H, limit (2x max Nb field) or H_, (1/10™ max Nb field)?
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Gibbs Free Energy of a Vortex [J]
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=) comenniversity Coating Mechanism: Vapor Diffusion

Sn vapor arrives at
surface

Il
|
Nb cavity . Il

substrate Il
Nb-Sn
/interdiffusion
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Testmg f|t |
before weldmg

>1200 C heater
connection
(all Nb, Ta, Mo,
ceramic)

Connection of
thermocouples

()
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23))) Comell University Cornell Coating Chamber
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Flange to
UHV
furnace |

~ Copper transition weld
from stainless to Nb

Cavity
Temp
4 Thermo-
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Tungsten
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Coating Procedure

Coating
3 hours

Nucleation
5 hours

\

[

Cavity 1
—Cauvity 2
—Tin1
—Tin2

Surface
diffusion
0.5 hours

[

\

4 C-type thermocouples:
2 for cavity temperature,
2 for tin source temperature

10
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Time [h]




* First coating: 1” square Nb samples
* First test: anodization in NH,OH at 75 V
* Nb->blue Sn->yellow Nb.Sn->Pink/purple

* Color indicates uniform Nb,;Sn, no excess tin

1”

Not anodized Anodized
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e Cornell University S E M / E DX

 SEM indicates appropriate grain size and texture

* EDX shows desired tin content for highest T

 EDX at various locations confirms uniformity
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A. Godeke, Supercond. Sci. Tech, 2006



T. Measurement

* Inductive T_ measurement system
designed and built by community
college students working with me

 T.=18.0+ 0.1 K measured inductively is
close to highest literature value

Tc =17.99+0.08 K
QTC =0.060 £ 0.001 K o
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(8)) comenvnivesy  Thickness of Nb,Sn Layer

e XPS with incremental sputtering shows uniform
composition down to 1.5 um

* FIB confirms layer is 2-3 microns thick

Tin Fraction (normalized to surface)
(] (=] ) [+

0.5 1 1.5 2

Approximate Depth (um) ’ HV [ WD T tit [mag Ba‘ curr }det[ 20 ym \

. HV WD | tilt [mag @[ curr [ det | Sum |
1.6 nA[ETD| | " 115.00 kV[5.0 mm |52 °| 6 500 x [2.2 nA|TLD | |

5.00kV|[49mm|52°|1510x

XPS FIB FIB

pA



Why Nb;Sn?

Material development
Lessons from history

My Nb,Sn cavity research
Material removal studies
Quench fields

Outlook

22



L UN/D
Sy

() comainiversity Tool | Developed - Slow Cool System

o ——
* Nb,;Sn/Nb induces thermocurrents l<_ ;‘
..(..7‘-‘ | S S

o)

* To prevent losses, must slowly,
uniformly cool through T_=18.0 K

* No cold gas: only 4.2 K LHe available

* Designed and made in-line pressure
reducer + heater for transfer line

e Cernox 2
* Cernox 3

10
time [min]
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* Pioneering work at Siemens AG, University of
Wuppertal, Kernforschungzentrum Karlsruhe,
Cornell University, Jefferson Lab, CERN, and SLAC

* Siemens researchers
demonstrated great
potential of Nb,Sn
coatings

* High surface magnetic
fields in 9.7 GHz cavities,

even at 4.2 K (R,~10%Q
for Nb at 2K,

1.3 GHz) B. Hillenbrand et al., Siemens, 1981 4
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Cornell University N b 35 N S R F H | St O I‘y

e U. of Wuppertal

— Small R, values in Nb;Sn cavities with shapes and
frequencies appropriate for particle accelerators

— Strong Q-slope, cause uncertain

No FE or
guench.
RF power

%”% limited.

Nb at 2.0 K

aro

G. Miiller et al, U. Wuppertal, 1.5 GHz CEBAF single cell, 2000 25
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(&) Cornell niversity Possible Q-Slope Causes

LD A

* ExceedingH_,?
— Nb,Sn strongly type II: vulnerable metastable state
— Onset field for increased losses consistently ~ H_,

e Weak links?

— Losses in material between crystal grains
— Qvs E similar in appearance to Nb/Cu
— R, ~ f? fits some weak-coupling models [1]

[1] Padamsee, Knobloch, and Hays, RF Superconductivity for Accelerators, 1998. 26
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surface resistance R (mQ )

M. Hein et al.,
U. Wuppertal,
1”7 dia. samples
at 19 GHz,
2001
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Nb,Sn SRF History
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U. of Wuppertal
— Additional studies on samples

— Found that onset field of RF
instability depended on grain
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ldeas from Previous Researchers

Qb A

M. Perpeet et al.,
U. Wuppertal, 1999

Overheating less
problematic at ~1 GHz
weak couping local heating vs 19 GHz because

e Vo weak o< Vo
Rgcs Is much smaller

 Wuppertal researchers suggest larger grains
leads to larger GB critical currents

e Also fewer GBs (i.e. fewer lossy regions)

* Preliminary 1250 C annealing attempts at
Wuppertal had poor results N
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Before Coating
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Standard
Nb cavity

Nb;Sn-Coated
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Cornell University First Cavity: No Anneal

* First cavity: no anneal
e Strong Q-slope observed similar to Wuppertal

* Cause of high R, appears to be coating
problems for one half-cell only

31



* Found | could grow grains by factor of ~2 while
maintaining desired stoichiometry by modifying
Wuppertal recipe

— Extra annealing step: Furnace at 1100 C, but tin heater off

No annealing step, average grain size ~1 um Anneal 6 hours, average grain size ~2 um 32
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Cornell University Second Cavity: 6 h Anneal

* R..problem seems resolved by new cavity

res

* 6 hour annealing during coating process
* No strong Q-slope observed
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(&) comenvnivessty 4,2 K Comparison Curves

QED

[ [

N I‘.llf.
B

]
||

m NbBSn, Cornell, 6 h anneal, 4.2 K

u NbSSn, U. Wuppertal, 4.2 K

B Nb, 42K
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2.0 K Comparison Curves
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A Nb, N-doped, 2.0 K

S N [

| Nb reaches
+higher fields

AT

E
acc

10 15
[MV/m]




(&) comell niversity 2.0 K Comparison Curves

Cornell Nb,Sn data multiplied by
cryoplant efficiency at 4.2 Kvs 2 K
/ (ratio ~ 3.6)

e g A /

e ' Nb reaches
A A 4hAaA A A 4 A AA A AAA A Thigher fields
R ,
A Ay, A A A 4 L,
a4 A N A A Ay 4, JOT

A
m Nb.Sn, Cornell, 42K xn,, . /Mn,, K-

A Nb3Sn, U. Wuppertal, 2.0 K

A Nb, EP/120C, 2.0K
A Nb, N-doped, 2.0 K
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(8) comarunvesity  Q vs E Curve Decomposition

* Generally think of two R, contributions to

overall Q,:
— Residual resistance R,..: temperature independent

— BCS resistance Ry.: roughly follows Ae2/(kT)
* For T << A/k, Ry is very small, so residual
dominates

* Can subtract low temperature R, to determine
temperature-dependent contribution

37



Q vs E Curve Decomposition

R, dominates even at 4.2 K
Rgcs IS very small

B2 0K
m42K
® Difference

15




Cornell Nb;Sn data with R,
subtracted and multiplied by
cryoplant efficiency at 4.2 Kvs 2 K

I Nb reaches
"higher fields

R —
m Nb.Sn, Cornell, 42K xn,, . /Mn,, K-

A Nb3Sn, U. Wuppertal, 2.0 K

A Nb, EP/120C, 2.0K
A Nb, N-doped, 2.0 K
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(&) Comell niversiy Resetting the Surface

e BCP 10 minutes inside and
outside to clean entire
surface before putting cavity _
. e
into clean room furnace AR "

e 10 micron BCP inside to reset
RF surface

Larger
niobium
grains after
1100 C heat
treatment

40



Cornell University R e p ed t a b | | |ty

@® Coat+HPR, 2.0 K
A Coat+HPR, 4.2 K
@® +Eich+Coat+HPR, 2.0 K|
A +FEtch+Coat+HPR, 4.2 K
@ +Etch+Coat+HPR, 2.0 K
A +Etch+Coat+HPR, 4.2 K

10 15




(&) comeliuniversity Tool | Developed — 1.3 GHz Temperature Map

* Converted 1.5 GHz CEBAF-shape T-map to 1.3
GHz TeSLA- and ERL-shapes

New boards, holders, test insert

* Wrote MATLAB program to take data from
multiplexer, convert to temperature, and plot




Before quench, T=2K, E, .. = 14 MV/m, Q, = 8x10°

* Temperature maps
show quench occurs in
small area in high
magnetic field region

T — ) (29 coating shown)

e Defect with size
comparable to ¢ (~3-4
nm) is suspected cause

* Before resetting
surface, | used material
removal to try to
remove defects

Resistor #

Resistor #

Resistor #
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HF Rinse

Five cycles of:

— Fill cavity with HF and
leave it for 2 minutes to
remove oxide layer

then remove acid AA /\,-\

— Fill with DI water and
leaving for 5 minutes to

regrow the oxide, then S 2 u}'/'n

remove water

HF rinse: Uniform removal of
HPR and mount to test 30-50 nm to smooth as-coated

stand surface, remove defects

45



(@) comenunvessity - Centrifugal Barrel Polish (CBP)

* Applied on
Cooper’s N

— 40 nm col

y finest polishing step from Charlie
0 recipe (coating is only 3 um thick!)

oidal silica with wood blocks

e Short duration: 4.5 hours (minimal removal to
see if degradation occurs due to CBP)

— Nb recipe

calls for 40-300 hour duration




Coat+HPR, 2.0 K
Coat+HPR, 4.2 K |
+HF Rinse+HPR, 2.0 K
+HF Rinse+HPR, 4.2 K |
+Etch+Coat+HPR, 2.0 K|
+Etch+Coat+HPR, 4.2 K]
+CBP+HPR, 2.0 K
+CBP+HPR, 4.2 K
+8 hat 120 K, 4.2 K

> >eP>oe e e

15




Indications of GB Losses?

After Barrel Polishing




e Coat+HPR ;
¢ +HF Rinse+HPR|

Post-removal Q,

suppressed above ~6 K

[
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Cornell University Indications of GB Losses?
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* Q-slope is strongly
temperature
dependent

o .
PR o I
. r %
"‘ PRI =9 _f" - ",
# (T ,
- A %
- '!
.".

* Post-removal Q,
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* Suggests poor quality M o Devantay 1981
. 2 @ Devantay 1981 (after Flilkigeg 1981)
superconducting 0

17 18 19 20 21 22 23 24 25 26
1 " ~ Atomic Sn content [ % |
material with T, ~ 6 K
A. Godeke, Supercond. Sci. Tech, 2006
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Material Parameters

o July PLL
> June NA
> Aug NA

Tc =18.0K
5 - A/kaC =24
107 o A, =89 nm
, & =7 nm

10° i mfp = 3.7 nm
172 176 18 : Ry =9nQ

5 10 : 10 15
T [K] T [K]

 Extract Nb,Sn material parameters from fits
to R, vs T data

e Use them to calculate Ginzburg Landau
parameters and critical fields




(&) comellniversity Material Parameters

Good agreement with measurements of:
H_, — 1-SR measurement by A. Grasselino
¢z — H., measurement by T. Proslier

i
o I Tczl&OK
s A/ka =24
c

10] -

Hc,=179T
Eg =43 nm

Tc [K] | - - o

140 160 180




(&) ComeliUniversity H., NOT a Fundamental Limit for low-§ Materials

H.,range: 27 = 5mT
for Cornell cavity

Well above H., without
strong Q slope!
=> Energy barrier keeps flux-

| ® Cornell ERL1-4, 2.0 K|| free state metastable, even
® Cornell ERL1-4, 4.2 K|} with small § of Nb,Sn

10 20 30 40 S0 60
Bpk [mT]

H.; IS NOT a fundamental limitation!




CW Quench Field

[ [ [

With annealing step, quench
occurs at 50-60 mT

Wuppertal cavities
reached higher fields:
qguench not fundamental
to material

® Coat+HPR, 2.0 K
® +Etch+Coat+HPR, 2.0 K
® +Etch+Coat+HPR, 2.0 K
© Wuppertal, 2.0 K

20 40 60
B [mT
Pk '




= Pulsed Quench Field
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Time to Quench [us]

T =18.0+0.1K,B_(0)=0.39+0.05T,
B ,(0)=27+5mT

o
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Forward Power from Klystron [MW]
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Cornell University DC Flux Penetration Field
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Cornell University DC Flux Penetration Field
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Expected curve for Nb,Sn:

Expected curve for clean Nb B, ~ 390 mT x [1-(T/18 K)?]

from cavity bulk: |
B, ~ 240 mT x [1-(T/9.2 K)?] Extrapolated low-T pen. field

measured is closer to 110 mT
- GB penetration?

o 10 x Power Supply | [A]
o Hall Probe B [mT]
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(@) comellUniversit Summary and Outlook

* Significant Nb,;Sn performance improvement
— Strong Q-slope suppressed after annealing
— High Q, at useful fields, T=4.2 K

* Important knowledge gained

— Low-T_ Nb-Sn alloys in grain boundaries are likely
cause of Q-slope

— H_, NOT a fundamental limit
* Exciting ideas for what to do next

— EP cavity (freshly loaded in furnace)
— Nb,Sn cavities for mid-field applications

60



(&) comelunwesty  Other SRF Projects — Cryomodule Work

* Helped assemble HTC and MLC prototype

 With HTC, | performed cryogenic Q vs E
measurements, tuner studies, microphonics
and df/dp measurements, LLRF optimization

Amplitude from 2.5 Vpk
on Piezo Actuator

20 40 60 80
Motor Steps — Main Linac Cavity
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(&) comenunivessity Other SRF Projects — Beam Operation

= i, i I
Riilli '|"'|'|m"" =
s

Measured suppression of HOMs by ferrite
absorbers in ERL injector prototype

Recorded HOM power as a function of freq.
while running high current through cavities

0.35

——measured spectrum | 0.3

— simulated spectrum ’
integrated spectrum | {0- 25

—— integrated simulation 00

M"‘I mw i

5 10 25
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(&) comeiuniversity  Other SRF Projects — Theory

e Studies on vortex behavior in SRF films with
Cornell theorist James Sethna

e Attempt to determine if SIS structure can be
beneficial

- R

surface

disorder
' ffet
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