

Accelerator Perspective *

Vladimir Shiltsev Accelerator Physics Center, Fermilab January 19, 2014

* any views or opinions presented here are solely those of the author and do not necessarily represent those of the entire international accelerator community, neither of the accelerator group of the Workshop... "words of wisdom"

QUESTIONS WE FACE:

- --What are the scientific goals of a Higgs factory and of a next generation of pp collider?
- -- What are the optimal design and technological challenges for the future colliders?
- What are the sensitivities of the scientific goals that can be reached with these future colliders?
 What are the requirements and challenges of instrumentation for accomplishing these measurements?
- -- What lessons have been learned from the LHC?

Future

FCC, SppC, Muon Collider, CLIC...

"Near" Future

CepC, TLEP, ILC...

Now

& Past

LHC,Tevatron, B-fact's, SSC...

Future

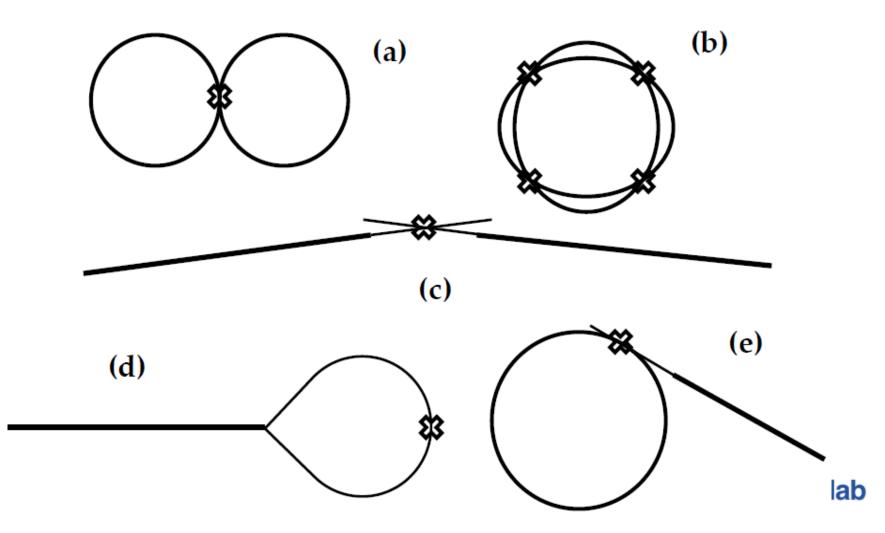
.?.

Past and Present shape Future

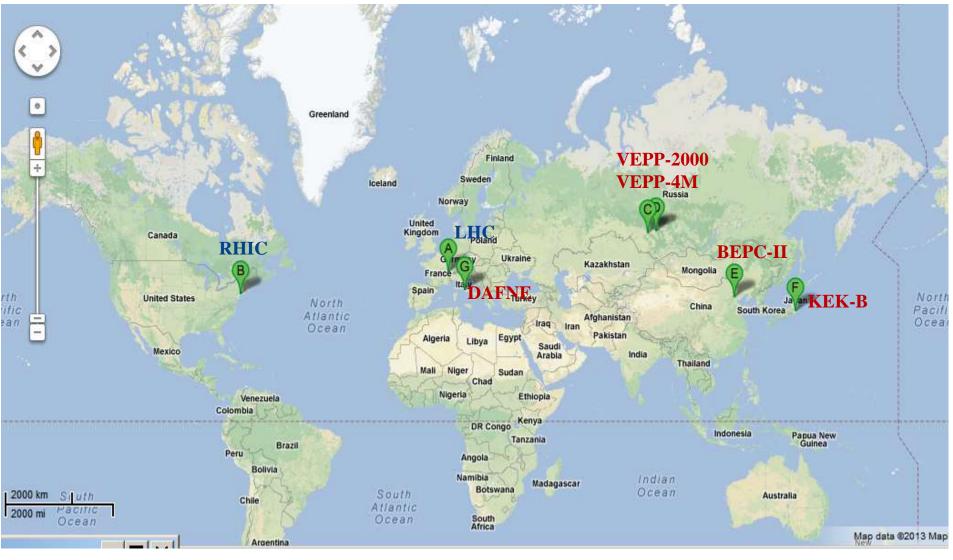
When one wants to analyze options for future HEP accelerators, the question comes to

PHYSICS vs FEASIBILITY

- (Leave **PHYSICS** to next speakers)
- **FEASIBILITY** of an accelerator is actually complex:
 - Feasibility of **ENERGY**
 - Is it possible to reach the *E* of interest / what's needed

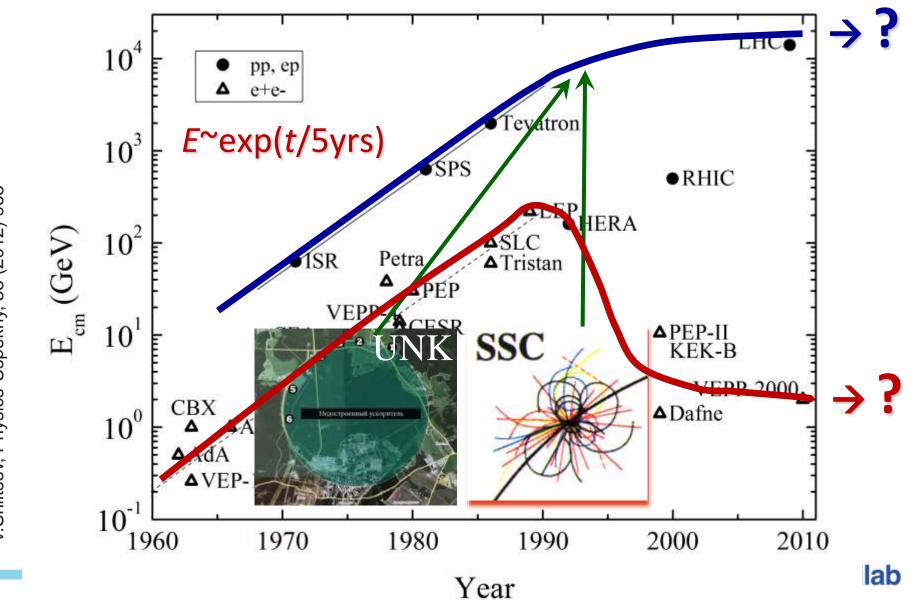

Fermilah

- Feasibility of **PERFORMANCE**
 - Will we get enough physics out there / luminosity
- Feasibility of COST
 - Is it affordable to build and operate
- What can we learn/take from the past?

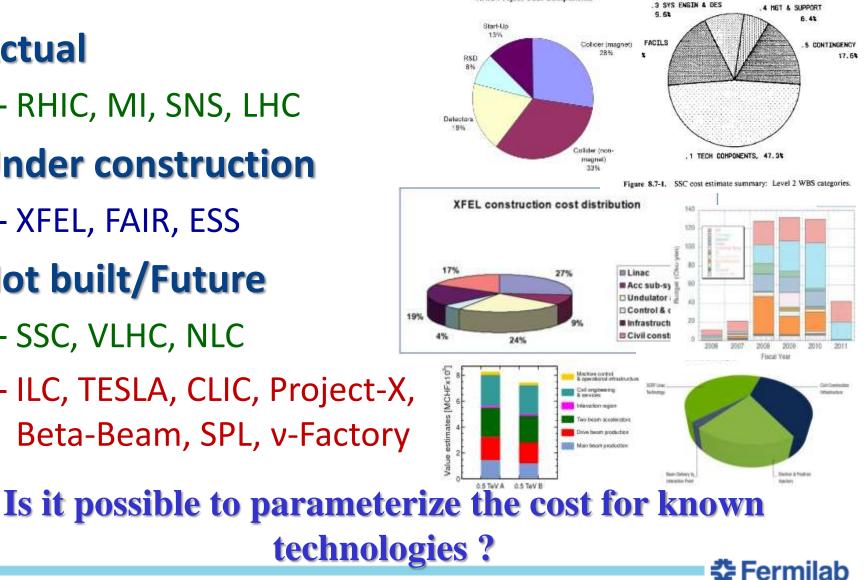


Colliders

 Over the past 5 decades, COLLIDERS dominated the Energy Frontier of particle physics



29 Colliders Built... 7 Work "Now"



Colliders: Glorious Past

"Known" Costs for 17 Big Machines

- Actual
 - RHIC, MI, SNS, LHC
- Under construction – XFEL, FAIR, ESS
- Not built/Future
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC, Project-X, Beta-Beam, SPL, v-Factory

RHIC Project Cost Components

	Cost (B\$) Year	Energy (TeV)	Accelerator technology	Comments	Length (km)	Site power (MW)	TPC range (Y14 B\$)
SSC	11.8 B\$ (1993)	40	SC Mag	Estimates changed many times [6-8]	87	~ 100	19-25
FNAL MI	260M\$ (1994)	0.12	NC Mag	"old rules", no OH, existing injector [9]	3.3	~ 20	0.4-0.54
RHIC	660M\$ (1999)	0.5	SC Mag	Tunnel, some infrastructure, injector re-used [10]	3.8	~ 40	0.8-1.2
TESLA	3.14 B€ (2000)	0.5	SC RF	"European accounting" [11]	39	~ 130	11-14
VLHC-I	4.1 B\$ (2001)	40	SC Mag	"European accounting", existing injector [12]	233	~ 60	10-18
NLC	~ 7.5 B\$ (2001)	1	NC RF	~ 6 B\$ for 0.5 TeV collider, [13]	30	250	9–15
SNS	1.4 B\$ (2006)	0.001	SC RF	[14]	0.4	20	1.6-1.7
LHC	6.5 BCHF (2009)	14	SC Mag	collider only — existing injector, tunnel & infrstr., no OH, R&D [15]	27	~ 40	7–11
CLIC	7.4-8.3B CHF(2012)	0.5	NC RF	"European accounting" [16]	18	250	12-18
Project X	1.5 B\$ (2009)	0.008	SC RF	[17]	0.4	37	1.2-1.8
XFEL	1.2 B€ (2012)	0.014	SC RF	in 2005 prices, "European accounting" [18]	3.4	~ 10	2.9-4.0
NuFactory	4.7-6.5 B€ (2012)	0.012	NC RF	Mixed accounting, w. contingency [19]	6	~ 90	7-11
Beta- Beam	1.4-2.3 B€ (2012)	0.1	SC RF	Mixed accounting, w. contingency [19]	9.5	~ 30	3.7-5.4
SPL	1.2-1.6 B€ (2012)	0.005	SC RF	Mixed accounting, w. contingency [19]	0.6	~ 70	2.6-4.6
FAIR	1.2 B€ (2012)	0.00308	SC Mag	"European accounting" [20], 6 rings, existing injector	~ 3	~ 30	1.8-3.0
ILC	7.8 B\$ (2013)	0.5	SC RF	"European accounting" [21]	34	230	13~19
ESS	1.84 B€ (2013)	0.0025	SC RF	"European accounting" [22, 23]	0.4	37	2.5-3.8

N 01 P TNST 0 T07002

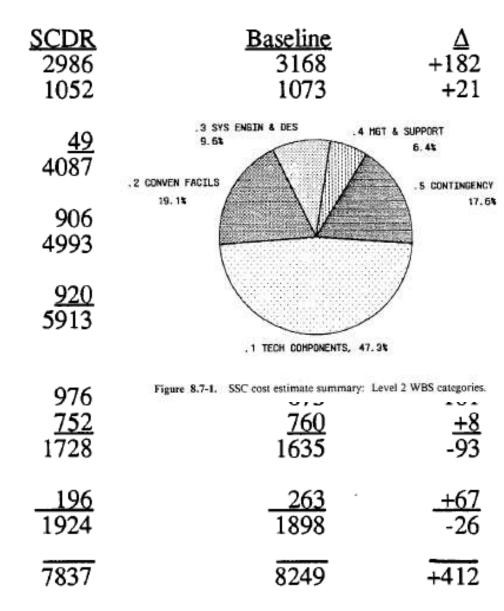
Raw Data: *Confusion* All are Different!

- Parameters:
 - energy
 - size/length
 - power
- Currencies
- Years
- Technologies
- Accounting

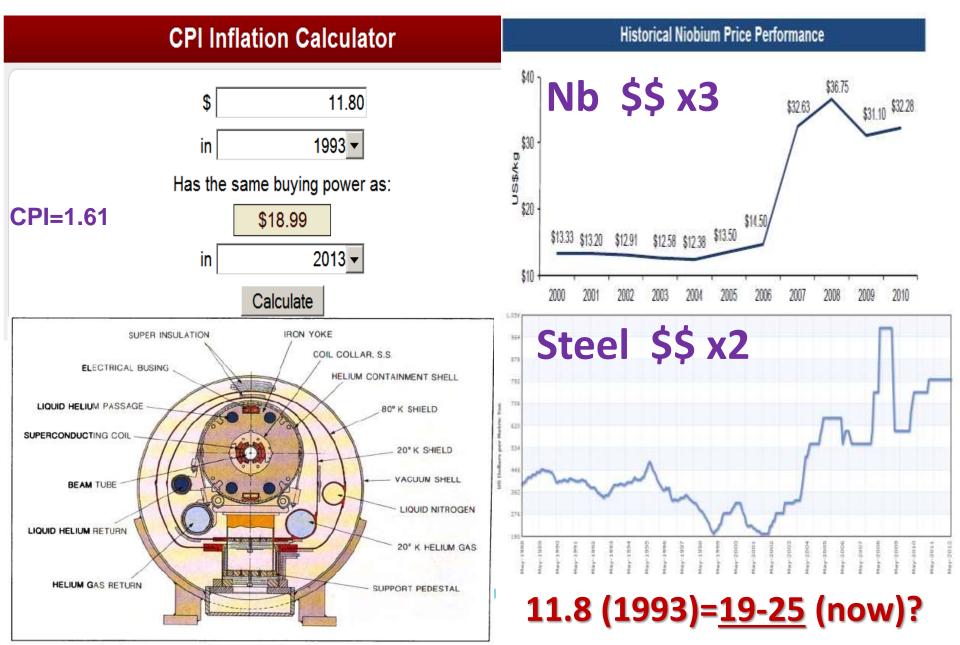
What are we after ?

- In the US (now) the figure of interest is TPC = "Total Project Cost" (in specified "Year \$\$")
- Includes everything:
 - Technical components
 - Conventional systems
 - Cost of R&D, PED
 - Program management
 - Escalation
 - Contingency
 - SWF, OH, etc, etc...
- (Tough it is not always easy) the "known" costs will be translated to the **TPC** ... sets reference

Fermilab


What is the COST of, e.g. SSC ?

- 1984 2.7-3.1B\$ RDS, FY1984
- 1986 3.9-4.2B\$ SSC CDR
- 1988 5.2B\$ budget request
- 1989 5.9B\$ URA contract
- 1990 7.8B\$ SSCL site specif.
- 1992 8.3-8.9B\$ var. DOE/HEPAP
- 1993 11.8B\$ (1.2B\$) TPC Congress



SSC 1990 (DOE/ER-0468P)

$1.0 \\ 2.0$	struction Project Technical Systems Conventional Systems Project Management Support, & Indirects Subtotal (FY90\$)
	Escalation Subtotal (AY\$)
	Contingency (AY\$) Construction Total (TEC)
4.0	er Related Costs R&D, Pre-Ops, & Support Experimental Systems Subtotal (FY90\$)
	Escalation Other Costs Total (AY\$)
Tota	l Project Costs (TPC)

11.8B\$ in 1993 = ?? Today

LHC: 7+7 TeV pp, 27 km, 120 MW

Construction costs (BCHF)	Personnel	Materials	Total
LHC Machine and areas	0.92	3.68	4.60 *)
CERN share to Detectors	0.78	0.31	1.09
LHC injector upgrade	0.09	0.07	0.16
LHC computing (CERN share)	0.09	0.09	0.18
Total	1.88	4.15	6.03

*) (including 0.43 BCHF of in-kind contributiods.cern.chirecord/1092437/files/CERN-Biochure-2008-001-Eng.pdf by C Lefewe - 2008 - Cited by 12 - Related articles

- "European accounting":
 - no OH, R&D, PED, etc
- So, how much did it actually cost?
 - 10 yrs of construction x ~3/4 of
 - ¹⁴ Annual budget of 1.2BCHF= 9B

"...The construction of LHC was approved in 1995 with a budget of **2.6 billion** Swiss francs, with another 210 million francs towards the cost of the experiments ... The total cost of the project is anticipated to be between US\$5 and US\$10 billion.[2] "

- Two notes :
 - Injector complex and
 LEP tunnel <u>existed</u>
 - SC Magnets ~2/3 of the cost

TPC (US Accounting) vs European Accounting

- To get the TPC one needs to include SWF, OH, Escalation, Contingency, R&D, PED (often missed), and other "missing elements"
- TESLA (H.Edwards & P.Garbincius) ~ 1.95
- ITER (D. Lehman) ~ 2.3 (10% of 5B\$=1.15B\$)
- ILC (2008 DOE/OS) 16.5/6.7=2.45 ?

Use factor of 2-2.4 as typical

ILC: 0.5 TeV com, e+e-, 31 km, 230 MW

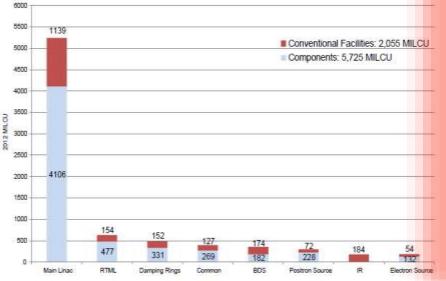


Figure 15.8. Distribution of the ILC value estimate by system and common infrastructure, in ILC Units. The num bers give the TDR estimate for each system in MILCU.

- ILC RDR (2007)
 - 6.6B\$ components- 14,000 FTEs
- ILC TDR (2013)
 - 7.8B\$ components
 - 13,000 FTE (man yrs))

ScienceInside Breaking news and analysis from the	
Chu Pegs ILC Cost at \$25 Billio by <u>Adrian Cho</u> on 5 May 2009, 2:03 PM <u>0 Comments</u>	on
🖂 Email 🖨 Print I 🛐 💌 😢 💿 🔯 🙆 🔁 More	PREVIOUS ARTICLE NEXT ARTICLE
The International Linear Collider (ILC), a proposed 40-kilometer much? U.S. Secretary of Energy Steven Chu and the leader of Yesterday, Chu said that "the total price tag will be about \$25 California Institute of Technology in Pasadena who directs the	of the project don't agree. 5 billion." But Barry Barish, a physicist at the
	Cryomodule
cific Systems High Level RF Computing nfrastructure	L-band Higi Level RF
ated Controls	
& Collimators —	
& Collimators	Convention
& Collimators	Convention Facilities
& Collimators trumentation Vacuum Magnets and	

ILC-0.5 TPC = ?

Components:

Manpower:

7.8B\$ 22e6 man hrs ~2,5B\$

XX B\$

Also:

- Detailed engineering design (~3 yrs) X B\$
- Site development (bringing electrical power, roads, buildings to the site) Y B\$
- Running associated lab for 10 years ZBS (safety, HR department, procurement, roads, maintenance, etc for green field site)
- Detectors
- YY B\$ Contingency

(add 25% to have ~85% confidence level)

- One ends up with ~(15-18)B\$
- Note that ILC-0.25 TeV (Higgs Factory) cost is ~70% of ILC-0.5 TeV

syn	nmetry	dimensions of particle physics
home	departments ⊗	science topics ⊗

Commentary: Ray Orbach

Photo: Reidar Hahn, Fermilab

Focus on the future

Over the next few years, the U physics communities will see g These, in turn, will pose profou the right timescales to ensure particle physics for the next se major discovery throughout the

Three events are notable:

 Within the next several years highly successful experiment Factory at SLAC. These two field, and I congratulate the to for their success in running tl luminosities.

HEPAP and Office of Science summed: ILC in the US "...delayed till ~2025 "

DIRECTOR'S CORNER

Based on some rather simplistic scaling, the cost of a dedicated 250-GeV machine would be ~70% of the cost of the 500-GeV machine. This may seem surprising until you realise that only about 60% of the total baseline cost is actually the linacs; the remaining 40% ishibit the Isources, Tamping why, bear delivery system and IR hall. A first look at the construction schedule also September 2012

Approach: Though the TPC is complex $mix \rightarrow break$ it in just three parts

RADIATio

Tunnel

INSURANC

220

CONTINSE

THSTRUME

Infra-

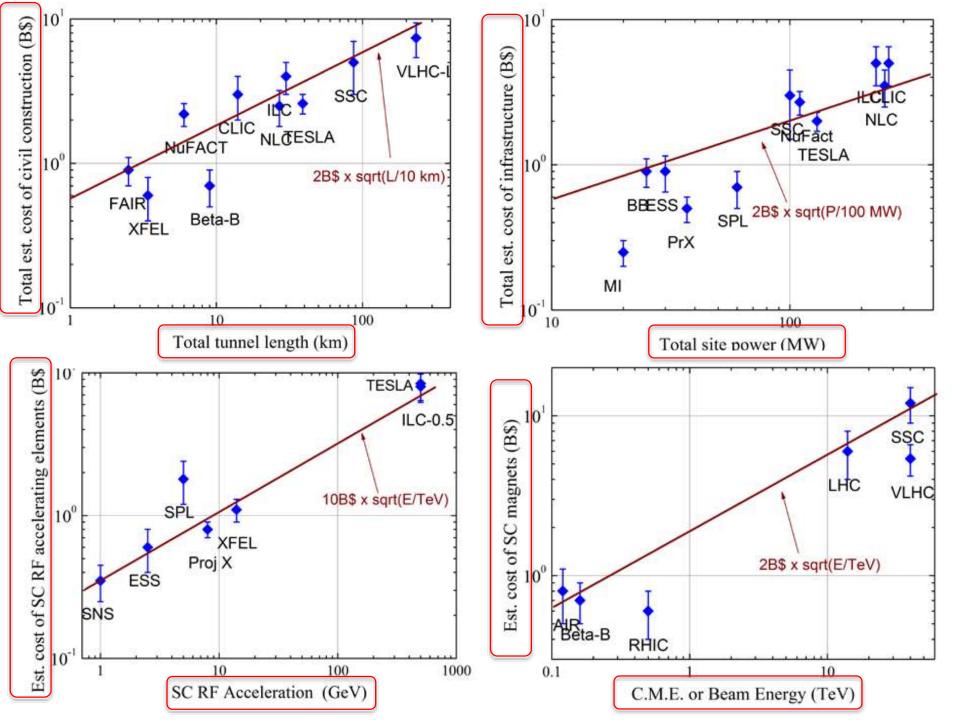
structure

ASSEMBLY

STALLATION

URE

Renor

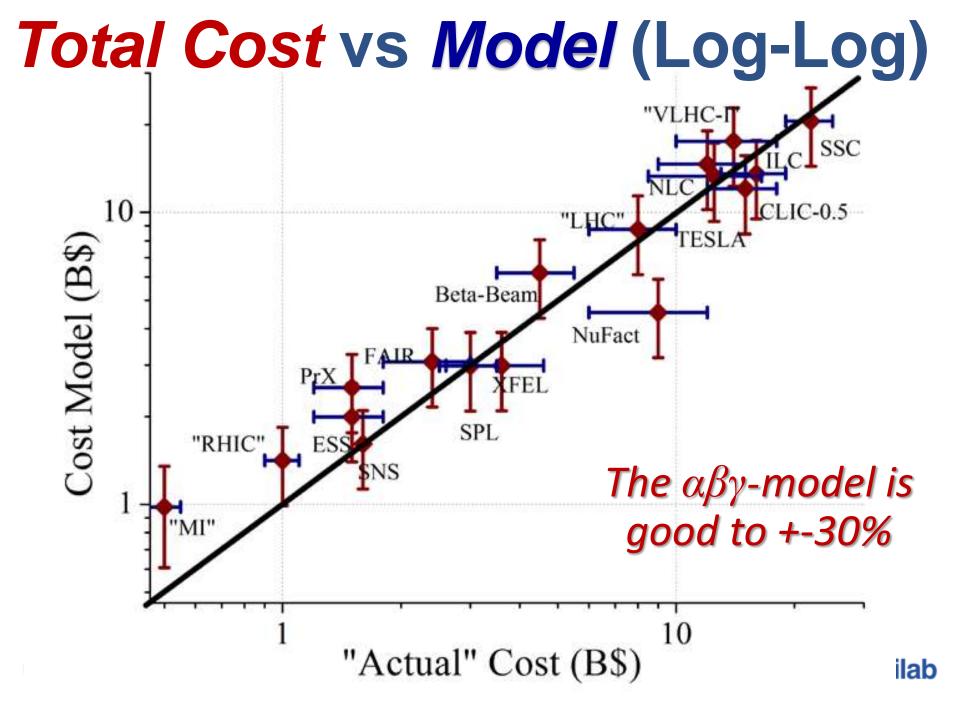

Accelerator

Components

• Three parts:

- "Accelerator" $f(E_{CM})$
- "Tunnel" $f(\mathbf{L}_{\text{Tunnels}})$
- "Infrastructure" f(P_{site})
- Parameterize
- each by
- one para-
- meter
- Sum≡TPC

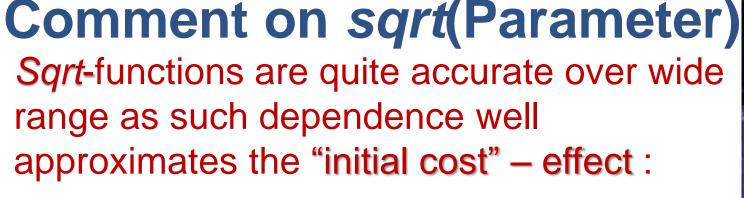
(unitarity condition)

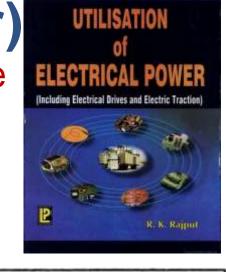


Phenomenological Cost Model $Cost(TPC) = \alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$ "Total Project Cost "Tunnels" - Cost "Energy" - Cost of "Site Power"in the US accounting"

where α, β, γ – technology dependent constants – $\alpha \approx 2B$ \$/sqrt(L/10 km)

- β≈ 10B\$/sqrt(E/TeV) for SC RF
- β≈ 2B\$ /sqrt(E/TeV) for SC magnets
- β≈ 1B\$ /sqrt(E/TeV) for NC magnets
- γ≈ 2B\$/sqrt(P/100 MW)





- approximates the "initial cost" effect : Pre-construction, shafts,
 - buildings, etc for "tunnels" (L=0)
- Injectors, transfer lines for "accelerators" (E=0)
- Access, utilities, general infrastructure, preconstruction, etc –

for "power" (P=0)

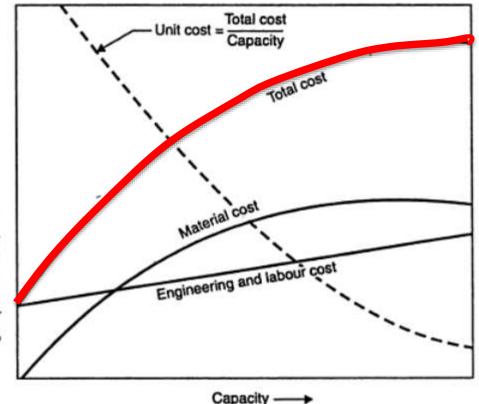


Fig. 9.5. Variation of costs of power plant versus its capacity.

The $\alpha\beta\gamma$ cost model: $Cost(TPC) = \alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

- a) Is for a "green field" facility !
- b) US-Accounting !
- c) There is hidden correlation btw *E* and technology progress
- d) Pay attention to units (10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(E/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(E/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(E/TeV) for NC magnets
 - γ≈ 2B\$/sqrt(P/100 MW)

USE AT YOUR OWN RISK!

Part II: "Near" Future Facilities E_{cm} L Ρ **TLEP CERN 0.25 100 ~300 CepC** China 0.25 55 ~300 Japan 0.5 36 233 ILC TeV km MW **Energy Feasibility – No Doubt!** 🛟 Fermilab

Feasibility of *Performance* (1) TLEP & CepC : ~(2-5)10³⁴/IP – feasible, but there are issues

- Luminosity vs SRF power trade off ($P=I \Delta E_{turn}$)
- 100 MW RF not easy * (klystrons, cryo, couplers, HOM mode dampers, etc)
- beam-strahlung: lifetime, IR optics *
- beam-beam effects
- pretzel separation if one ring
- Earth field effects if injection energy is low
- Not easy injector: e+/e- source and booster

SRF Challenges: Power to Beam

5-10 GeV 10 mA 100 MW cw SRF 15-20 MV/m cw, 35MV/m pulsed

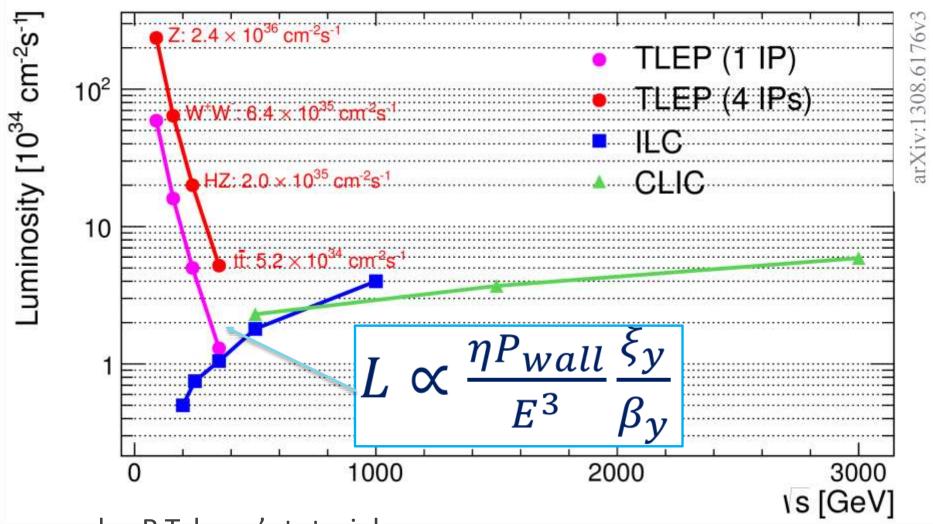
- for CepC / TLEP
- SC RF: compare with
- LEP 6GeV 6mA 18MW cw

- SNS 1GeV 1 mA 1 MW pulsed
- LCLS-II 4GeV 0.25mA 1MW cw
- ESS 2.5GeV 2mA 5 MW p
- ILC 250GeV 0.05 12 MW p

Cooling / Tuning Sleeve

Double RF window

Coaxial coupler Transition Window assembly

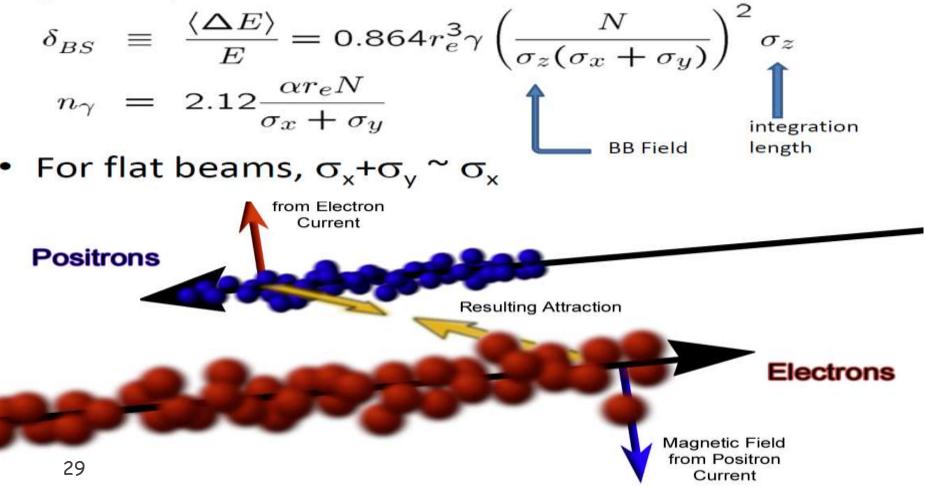

SRF : Cryo Power CepC/TLEP vs ILC

$\begin{aligned} P_{cryo} &\propto V_{tot} G_{RF} D/Q_0 \quad \text{or} \\ P_{cryo} &\propto f_{RF} V_{tot} G_{RF} D/Q_0 \end{aligned}$

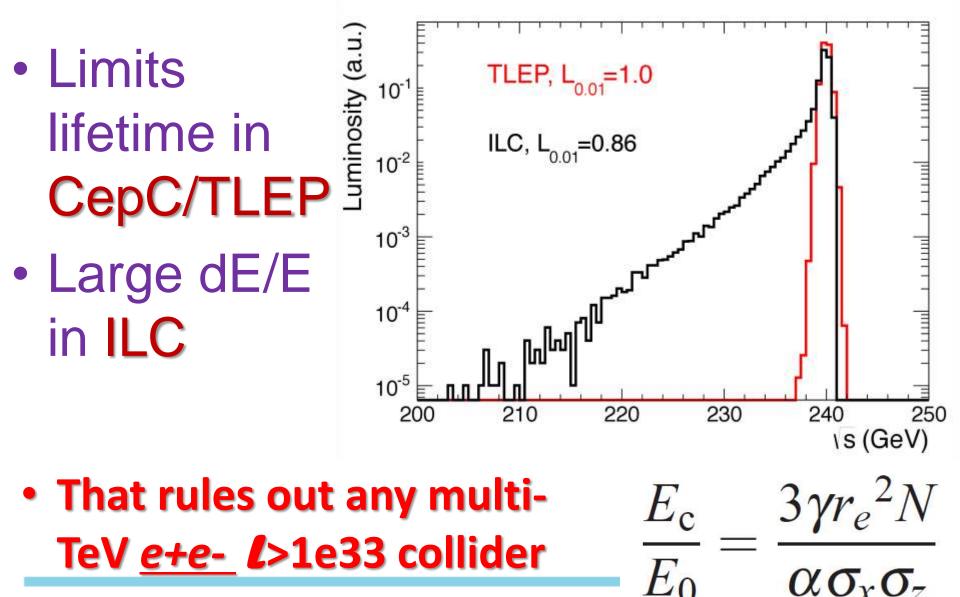
(if SC cavity losses dominated by BCS resistance)

	ILC-H	CepC/TLEP	
RF voltage V_{tot}	240 GV	6-12 GV	
RF gradient G_{RF}	31.5 MV/m	15-20 MV/m	
effective RF length	8 km	<800 m	
RF frequency f_{RF}	1.3 GHz	400 MHz (?)	
Q_0 : unloaded cavity Q	10 ¹⁰	$2-4x10^{10}$ (higher at lower G_{RF})	
D: RF duty factor	0.75% (pulsed)	100% (cw)	
total cryo power	16 MW	10-25 MW	
27 V.Shiltsev IAS-HKUST-2015: Future of HEP total cryo power similar for both projects			

CepC/TLEP Luminosity is set by RF power...

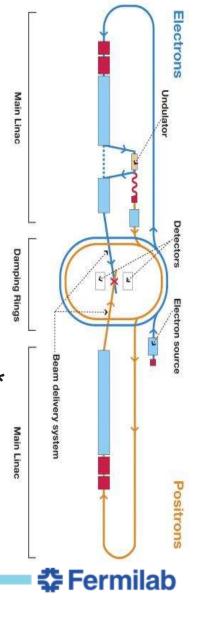


see also R.Talman's tutorial


...or by beam-strahlung

Beamstrahlung

 The average energy loss and the number of photons per electron for the head-on collision with beam energy E=γmc², bunch charge eN, rms bunch length σ_z, beam size σ_x, σ_y, are given by


Beam-strahlung

Feasibility of *Performance* (2)

- ILC: ~2 10³⁴ - tough* :
 - emittances from the DRs
 - positron production
 - alignment/jitter of the linac
 - unprecedented final focus to few nm *
 - beam-beam effects
 - beam-strahlung *
 - (relatively novel type of accelerator)

Feasibility of Cost

• ILC : – official est.: 7.8B\$ + 13,000 FTES

• ILC-Higgs ~70%: 5.5B\$ +9,000 FTEs

αβγ: TPC = $2 \cdot 3^{1/2}$ + $10 \cdot 0.5^{1/2}$ + 2 · 2.33^{1/2} = 3.5+7.1+3.1=**13.6B**\$±4B\$ US Accounting feasible ? – TBD soon

Feasibility of Cost (2)

•TLEP: 100 km, 5 GeV SRF

 $\alpha\beta\gamma$: 2-10^{1/2}+(1-0.25^{1/2} + 10-.005^{1/2}) + 2-3^{1/2} =6.3+1.2+3.4 =**10.9 B**\$±4B\$

• **CepC**: 50 km, 7 GeV SRF $\alpha\beta\gamma$: 2.5^{1/2} + (1.0.12^{1/2}+10.007^{1/2}) +2.3^{1/2} = 4.5+1.2+3.4=**9.1 B\$**±3B\$

"Unfair Competitive Advantage"

• CepC : the project to be built in China

Case study: modern light sources

SSRF (China)

- 432 m
- 3.5 GeV
- 1.2-billion RMB (US\$176-million) 2007
- China's biggest investment in a single science facility

SPRING-8 (Japan)

- 1436 m
- 8 GeV
- The initial construction cost was approximately 110 billion yen (1997). In addition, Hyogo Prefecture donated the site.

DIAMOND (UK)

• 562 m • 3 GeV

<u>383 M £</u> Diamond's construction is taking place in phases. Phase I cost £263 million and included the synchrotron machine itself, the surrounding buildings and the first seven experimental stations or beamlines. This phase was completed on time, on budget and to specifications in January 2007. Phase II funding of £120 million for a further 15 beamlines and a detector development programme was confirmed in October 2004 and completed in 2012. Diamond can potentially host up to 40 beamlines so there will be continual construction within the main building.(2006).

NSLS-II (US)

- 792 m
- 3 GeV
- \$912 M\$ (2015)

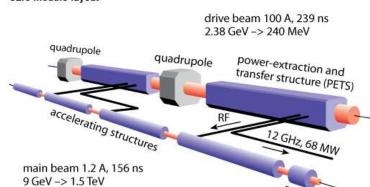
Compare Costs of Light Sources

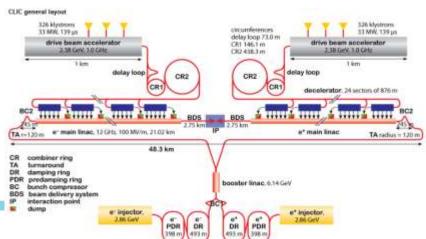
	Cost then	Cost now	Cost USD	Scale to SQRT(1km)
SSRF	1.2B RMB (2007)	1.44 RMB	230 M\$	350 M\$
SPRING-8	110 BY (1999)	110 BY	924 M\$	772 M\$
DIAMOND	383 M£ (2006)	500 M£	780 M\$	1040 M\$
NSLS-II	912 M\$ (2015)	912 M\$	912 M\$	1024 M\$

Part III: Future Colliders E_{cm} L **CLIC** CERN 3 560 60 Muon C. US 230 6 20 FCC CERN 100 100 400 **SppC** China 55 300 50+ TeV km

Feasibility of *Energy*

100 MV/m @ 1e-7 spark CLIC NC RF tough Muon C. SCMag no doubt FCC HF-SCMag not (now) **HF-SCMag not (now) SppC**

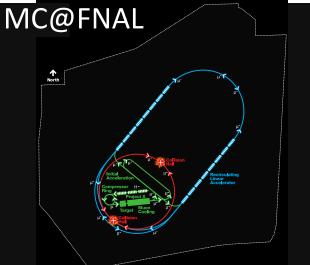

16-20 T magnets for >70 TeV



Feasibility of Performance (1) CLIC: e+e-~5 10³⁴

– very tough **

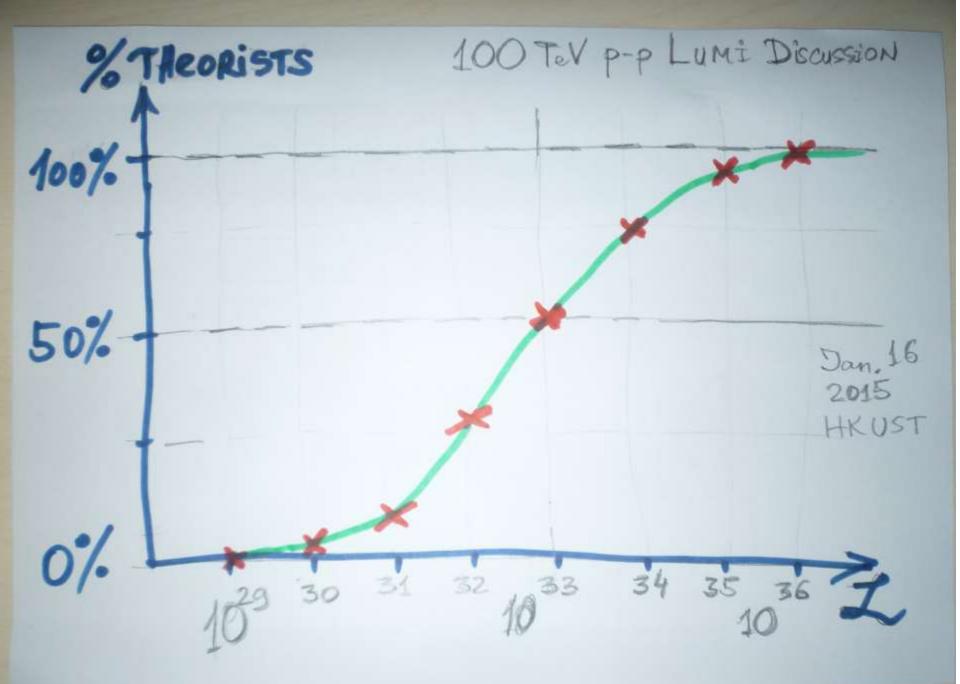
- emittances from the DRs
- positron production
- alignment/jitter of the linac
- unprecedented final focus to few A *
- beam-strahlung **
- 15 accelerators
- 560 MW of site power



Feasibility of *Performance* (2)

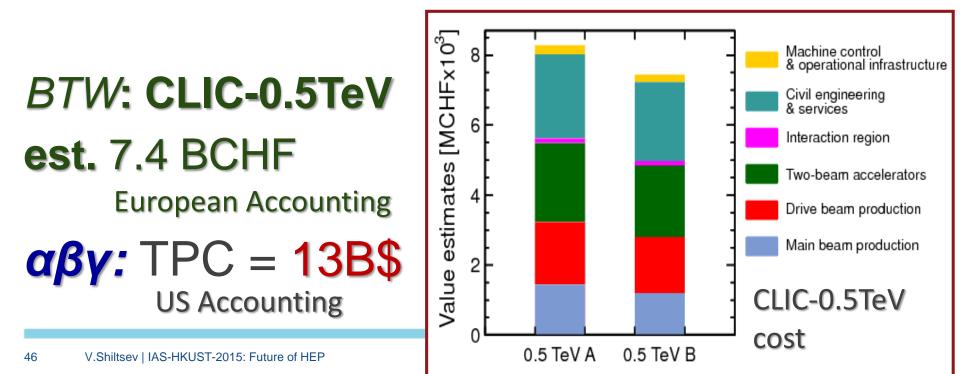
• Muon Collider : ~2 10³⁴ — impossible now:

- requires 6D muon cooling
- about few × 10³¹ without it
- 4D cooling MICE experiment
- But:
 - superb dE/E~0.1%
 - *s*-channel 40,000 × *e*+*e*-
 - very compact/economical



Feasibility of *Performance* (3) SppC and FCC: ~5 10³⁴ – impossible now:

- SR power 5 MW
- 25-50 W/m (vs 0.1-0.5)
- Collimation 8GJ/beam
- IR optics/beam-beam
- But:
 - There are ideas for SR (liner, magnets)
 - Ideas for beam-beam (e-lenses) & collimation


Fermilab

45

Feasibility of Cost (1)

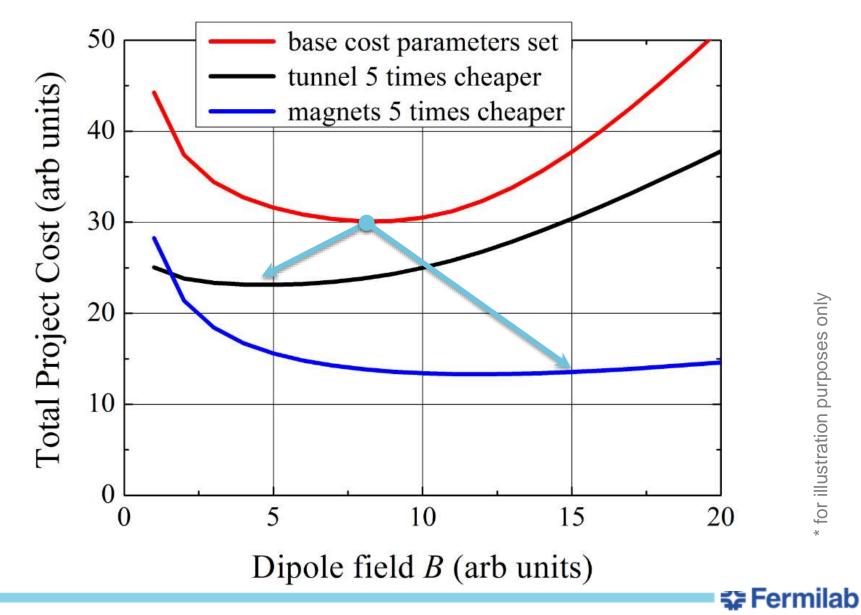
CLIC-3TeV : probably not αβγ: Cost = 2.6^{1/2} + 10.3^{1/2} + 2.5.6^{1/2} = 4.9+17.3+4.7=26.9B\$±8B\$

Feasibility of Cost (2)

- Muon Collider-6TeV : no?
- 40 km of tunnels
- 6 TeV of SC magnets
- 50 GeV of SCRF linac / RLA
- 250 MW of site power

αβγ: Cost = $2 \cdot 4^{1/2} + (2 \cdot 6^{1/2} + 10 \cdot 0.05^{1/2})$ + $2 \cdot 2.5^{1/2} = 4 + 4.9 + 2.2 + 3.2 = 14.4B$ \$±58\$

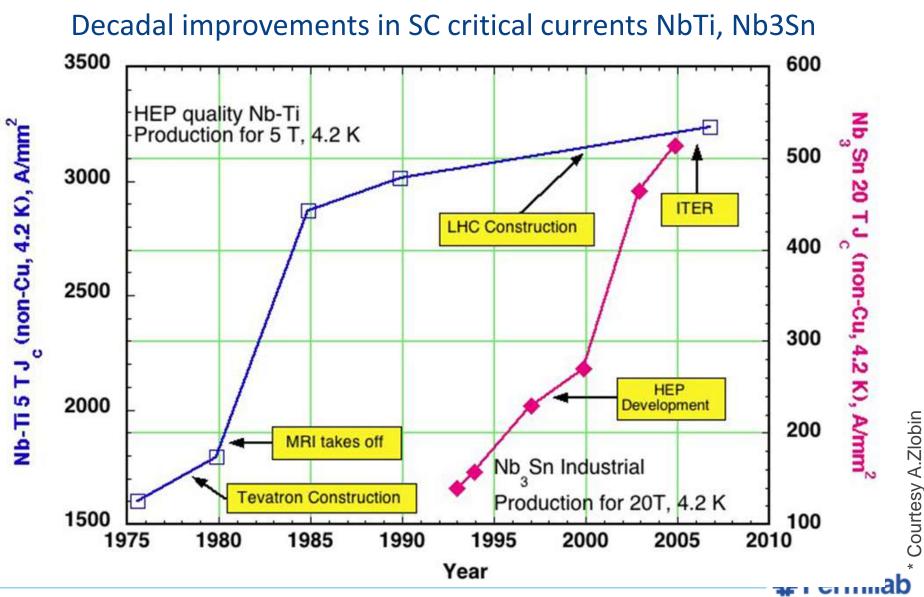
🛟 Fermilab


Feasibility of Cost (3)

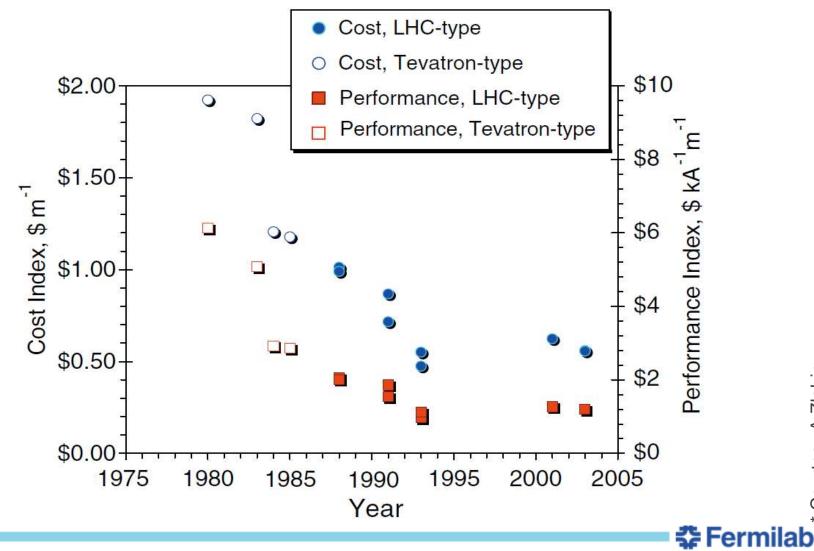
- 100 TeV pp : no?
- 50-100 km of tunnels
- 70-100 TeV of SC magnets
- 400 MW of site power

αβγ: 2·(5-10)^{1/2} +2·(70-100)^{1/2} +2·4^{1/2} = (4.5-6.3)+(17-20)+4=(25-30) B\$ ±9B\$

(less ~10B\$ if injector exists)


100 TeV pp : Qualitative Cost Dependencies

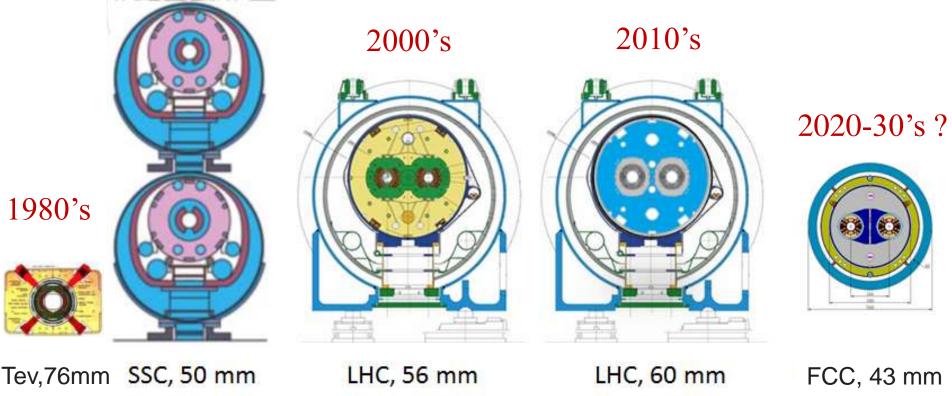
100 TeV pp R&D Goal #1: SC Magnets


- Long-term research and development toward significant (~3-4) cost reduction of high-field ~15 T accelerator quality magnets
- Global coordination :
 - Accelerator design teams (to understand and meet the specs)
 - Magnet design and development teams (to avoid duplication of efforts)
- Key areas (see also S.Gourlay tutorial):
 - push NB₃Sn technology, new magnet designs, quench & splice engineering, better materials & conductors, etc

Substantial improvements need time

Substantial improvements need time

Decadal improvements in SC NbTi cable cost per m, per A*m



Courtesy A.Zlobin

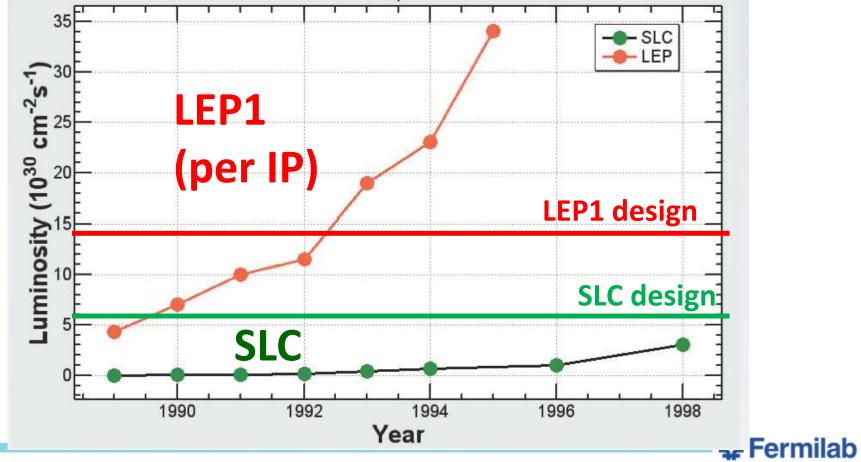
Substantial improvements need time

Decadal improvements in SC magnet design

1990's

4.5T,4.2K 6.6 T, 4.3 K

8.3 T, 1.9 K


11 T, 1.9 K

16T, 4.5K

Two Comments: #1

 It takes time to get to design luminosity... moreover, it is not 100% guaranteed

⁵⁴ V.Shiltsev | IAS-HKUST-CERTN OSL-2002-009 (OP), SLAC-PUB-8042 [K. Oide, 2013]

Time to reach **Design Luminosity**

	Time to Design <i>L</i>	Final <i>L</i> / Design <i>L</i>
LEP-I	5 years	x2
SLC	Not achieved (9 years)	x0.5
LEP-II	0.3 year	x3
PEP-II	1.5 year	x4
KEK-B	3.5 year	x2
DAFNE	Not reached yet (9 years)	x0.9
TEV-Ib	1.5 year	x1.5
HERA-I	8 years	x1
RHIC-pp	10 years*	x1.2
TEV-II	3.5 years	x5
HERA-II	5 years	x1
	Not reached yet (6 ** years)	x0.77

56 V.Shiltsev | IAS-HKUST-2015: Future of HEP

Comment #2

- Besides financial feasibility, one should take into account availability of experts :
 - "Oide Principle" : 1 Accelerator Expert can spend intelligently only ~1 M\$ a year
 - some 1,000-1,200 total in the world now ... e.g.
 ILC: 13,000 FTEs=1300 x 10 yrs
 - it takes significant time to get the team together (XFEL, ESS)

K.Oide (KEK)

Part IV: Is There "Far" Future ?

Post-100 TeV "Energy Frontier" assumes

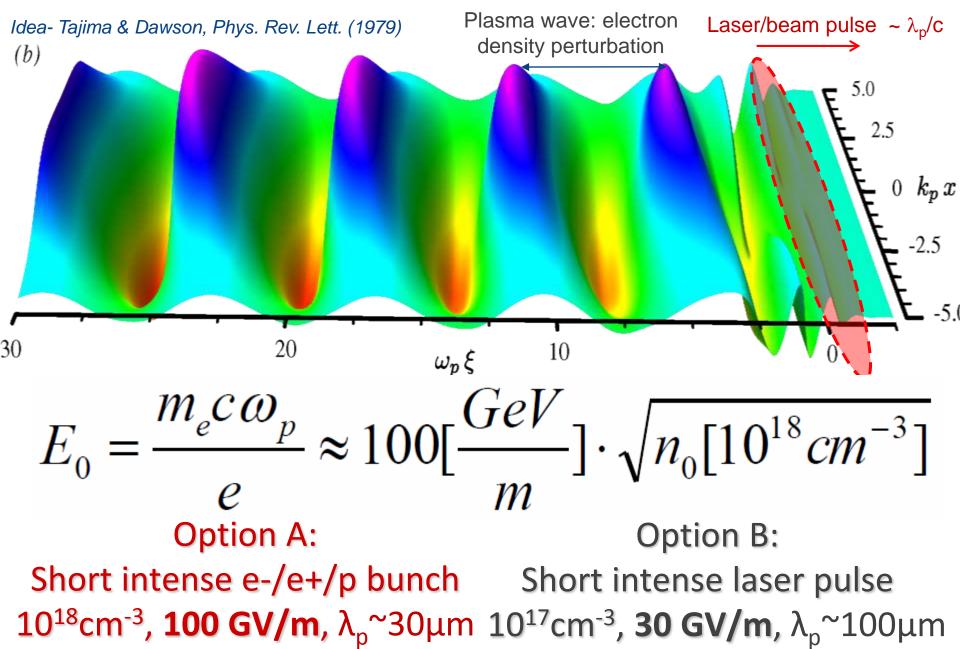
circular collider

 $L \propto \frac{\eta P_{wall}}{E^3} \frac{\xi y}{\beta_{y}}$

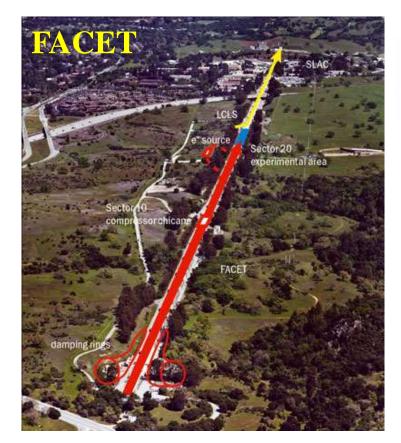
- ✤ 300-1000 TeV (20-100 × LHC)
- "decent luminosity" (TBD)
- Surely we know:

For the same reason there
 is no *e+e-* collider above Higgs-F
 there will be no *pp* colliders
 beyond 100 TeV → LINEAR

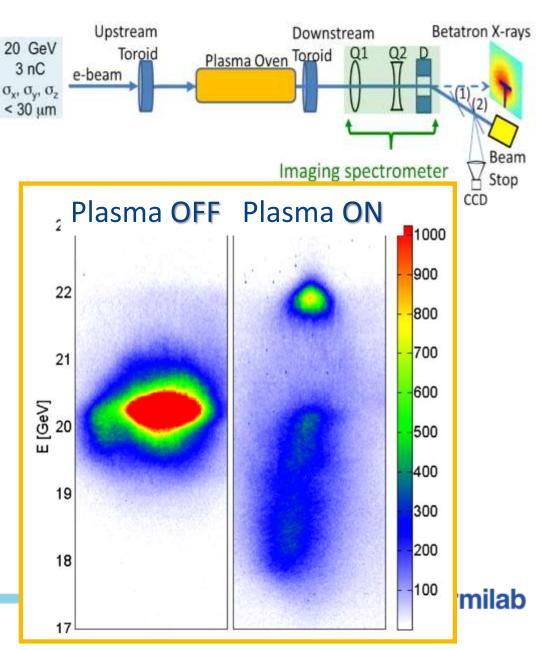
2. Electrons radiate 100% linear collider beam-strahlung (<3 TeV) and in focusing channel (<10 TeV) $\rightarrow \mu + \mu$ - or p-p $L \propto \frac{\eta_{\text{linac}} P_{wall} N_{\gamma}}{E}$


"Phase-Space" is Further Limited

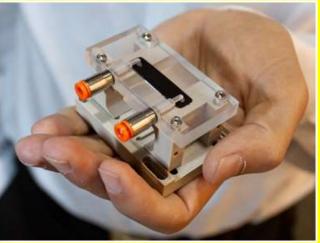
- "Live within our means": for 20-100 × LHC
 - ♦ < 10 B\$</p>
 - **❖** < 10 km
 - < 10 MW (beam power, ~100MW total)</p>
- →New technology should provide >30 GeV/m @ total component cost <1M\$/m (~NC magnets now) 2T magnets ~ 50 MeV per meter

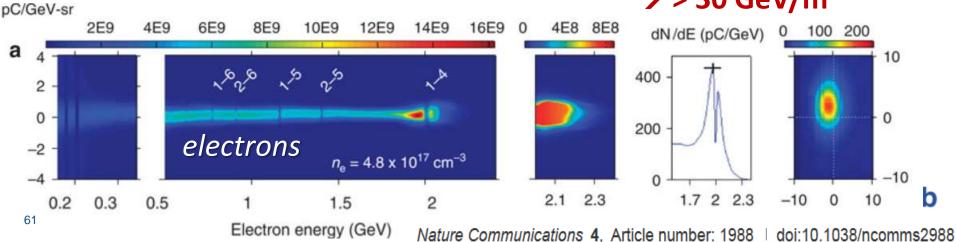

3. Only one option for >30 GeV/m is known now: <u>dense plasma</u>→ that excludes protons→ <u>only muons</u>

🛟 Fermilab

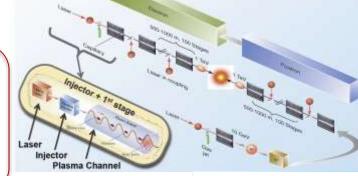

Plasma Waves

Option A: Plasma Wakes by Beam

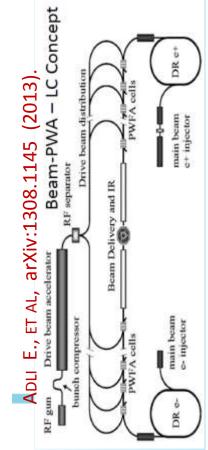

n~5e16 cm-3 L=0.3 m dE ~2 GeV → 6 GeV/m


V.Shiltsev | IAS-HKUST-2015: Future of HEP

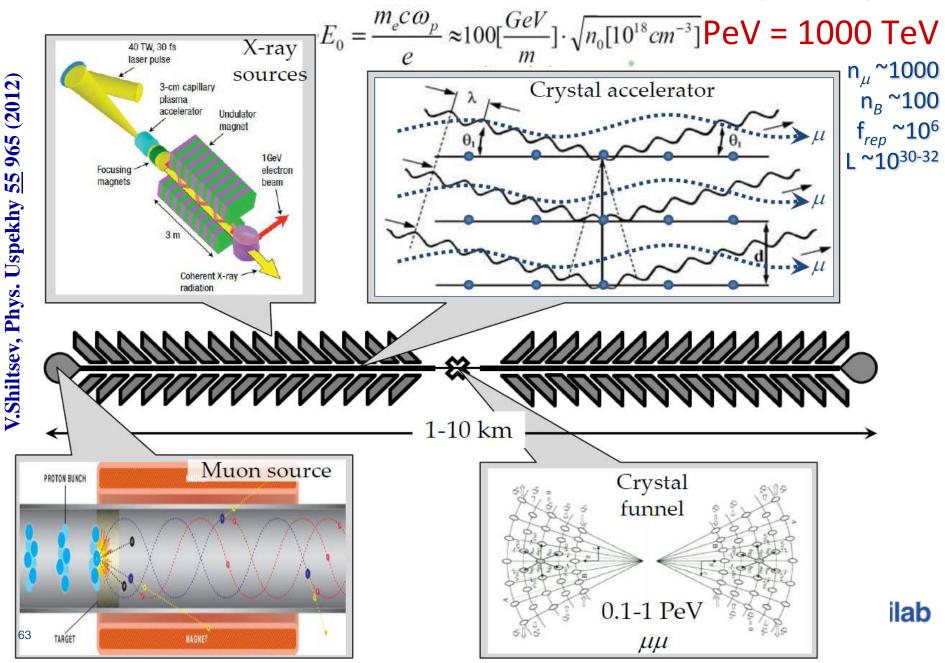
Option B: Plasma Wakes by Laser



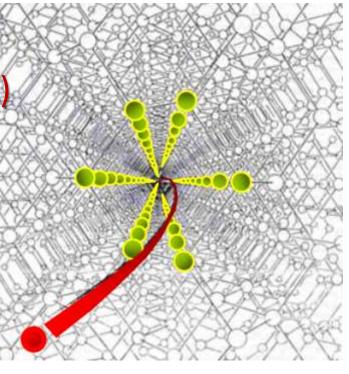
n~few e17 cm-3 L=0.03-0.1 m dE ~2-5 GeV (PW lasers) → > 30 GeV/m

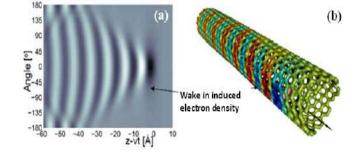


e+e- Plasma Collider Design Attempts ISSUES AND QUESTIONS:


Staging is VERY inefficient – limits <u>average acceleration</u> gradient to ~1-2 GeV/m (beam) and ~10 GeV/m (laser)

- Cost is prohibitive (now) : e.g., in the beam-option (A) the $\alpha\beta\gamma$ -model estimate the cost of <u>10 TeV</u> facility (25 GeV SCRF drive-beam, 20 km of tunnels, 540 MW) as $2 \times (20/10)^{1/2} + 10 \times (25 \text{GeV}/1\text{TeV})^{1/2} + 2 \times (540/100)^{1/2}$ =9B\$ + 30-70% for plasma cells (= 12-15 B\$?)....
- for laser-plasma ~15-30 M\$/10 GeV (i.e. <u>factor of ~20</u> above required)
- **Power MW:** 130 for 1 TeV -> 540 for 10 TeV (est.)
- Luminosity unknown (many issues, dE/E 100% for ee)




Option C: Crystals & Muons n~10²² cm⁻³, 10 TeV/m →

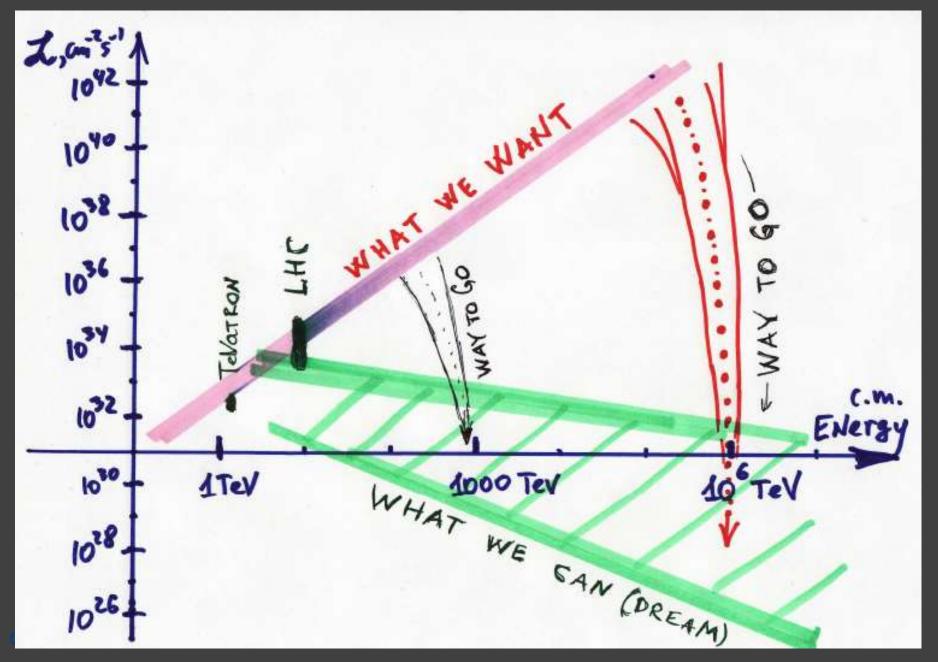
Option C: Crystals & Muons ISSUES AND QUESTIONS:

- Can do(??) ~100+ GeV/m (test at ASTA)
 - How to excite crystal?
 - By Xrays? Sub-µm short bunches?
- Cost/m unknown
- Power MW: unknown
- Luminosity unknown (low)
- yes That will be the shortest accelerator
- yes Energy reach of 1-10 PeV thinkable
- yes Muons "do not radiate" !!

New Paradigm for Collider Physics

 E_{CM} Size is limited <10 km \rightarrow calls for the highest gradients \rightarrow crystals \rightarrow muons

$$L = f \frac{N_1 N_2}{A}$$


Luminosity calls for more particles in the smallest beam size

$A \sim 1 \text{ Å}^2 = 10^{-16} \text{ cm}^{-2}$ This is the smallest beam size

$$P = fn_{ch} \cdot NE$$

The power is limited <10MW $\rightarrow N$ is small at high $E \rightarrow L$ -

Paradigm Shift : Energy vs Luminosity

HEP's "Far" (or "Far-Far") Future

- Good News
 - -options **EXIST**
 - 300-1000 TeV muons in Crystals
- Bad News
 - -It will be
 - High
 - Energy
 - Low
 - Luminosity

Conclusions (1)

PAST AND PRESENT LESSONS

- Success of Colliders : 29 built over 50 yrs, ~10 TeV c.m.e.
- The progress has greatly slowed down due to increasing size, complexity and cost of the facilities.
- Accelerator technologies of RF and magnets well developed and costs understood (*αβγ* - model)
- **<u>"NEAR" FUTURE DIRECTIONS (5-15 years)</u>**
- CepC, TLEP and ILC are not simple but "~feasible" in terms of energy, luminosity and possibly cost
- CepC seems to have "unfair competitive advantage" (cost)
- Start building the accelerator team NOW (~700-1000)
- Do not expect luminosity on "Day 1" (more like "Year 4")

🚰 Fermilab

Conclusions (2)

FUTURE ENERGY FRONTIER COLLIDERS (15-30 years)

- All have serious issues: 3 TeV CLIC with performance and cost, 6 TeV Muon Collider - with performance, 70-100 TeV SppC/FCC - with cost
- Key R&D for SppC/FCC is to reduce the cost of ~16-20 T magnets by factor ~3-5 – it will take ~2 decades → start NOW
- Three regions are open for such collaboration
- **"FAR" FUTURE OUTLOOK (> 30 years)**
- Not many options for 30-100 xLHC !!!
- Actually one: linear acceleration of muons in dense plasma
- In any case, that will be <u>High Energy Low Luminosity</u> facility (still ~10 orders of magnitude better than cosmics)

感谢您的关注

Thank You for Your Attention!

