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New Formulae for 3DoF Space Charge Field 

Y. Alexahin (FNAL APC) 

There is a large number of programs for space charge effect simulations using various methods to 

calculate the space charge field which can be divided in two main groups: the first uses actual 

particle distribution obtained on the preceding step of simulations (e.g. PIC, multipole expansion) 

while the other relies on a smooth approximation (e.g. Gaussian) of particle distribution and 

analytical formulas for the field. 

Here we present new formulas long bunches with charge density described by 
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where  is linear charge density (not necessarily Gaussian). 

For a long bunch, z >> max(x, y), we can neglect variation of (z) and use formulas for two-

dimensional charge distribution. Then for the transverse electric field the well-known Basetti-

Erskine formula [1] can be used.  

In this approximation the transverse field (and the associated kick) is proportional to the charge 

density at the particle location, (z). For symplecticity of the 6D transfer map it must be 

complemented by a longitudinal kick dependent on the transverse coordinates. 

The symplecticity will be guaranteed if the field components are derived from the same potential. 

In the present report we give the space charge potential of a (transversely) Gaussian bunch in a 

convenient form for numerical calculations and also provide an alternative to the Erskine-Basetti 

formula. This approach was successfully used in the beam-beam effect analyses [2]. 

 

In the long bunch approximation the time retardation can also be neglected to give direct space 

charge potential in the form1 
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where the Green function can be presented as 
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r =y /x, so far this choice being arbitrary. 

 

Performing in eq.(2) integration by transverse variables we obtain 
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1 Gaussian units are used. To convert to SI units the r.h.s. should be divided by 40 



Making use of the formula 
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with subsequent integration by k1,2 and finally setting  = (t -1 -1)/2r2 we get 
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We deliberately have chosen an asymmetric form to make eq.(6) easier to treat at least in some 

cases (see later). 

Thus far we have not paid attention to the logarithmic divergence of the integral (6) at t=0: it 

disappears in the formula for the transverse field. But if we need the longitudinal field we have to 

eliminate this divergence. 

The simplest way to regularize the potential (6) is by subtracting unity from the exponential in the 

integrand to obtain 
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This regularization does not affect the transverse field at all and makes the potential (hence the 

longitudinal field) identically zero on the beam axis (x=y=0). If necessary longitudinal and 

transverse wakes can be added on top of the field obtained from potential (7). 

Power series 

Integral (7) as well as its derivatives w.r.t. the transverse coordinates can be computed numerically 

but for small offsets  
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n  4-5, a power expansion can be used. Its coefficients are integrals which can be expressed via 

the Gauss hypergeometric series: 
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with a = r2  1. Then we have for the potential 
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where m,n is the Kronecker delta: m,n =1 if m=n and m,n =0 otherwise. 



The following recurrence relations can be used to compute coefficients (9) 
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For | a | < 1 the first relation should be used as it is presented, in the descending order in m in order 

to avoid loss of precision, while for a = r2  1 > 1 it must be used in the ascending order in m. So 

to obtain the whole set of coefficients just one integral has to be computed (or a hypergeometric 

function if | a | < 1). For m >> 1 an asymptotical formula can be obtained by expanding the 

denominator in eq. (9) in powers of (1t): 
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These coefficients determine not only the potential but also the electric field components, so that 

all necessary quantities can be obtained simultaneously. 

With M=50 and L=M-m in eq. (10) a better than 6-digits precision is obtained for n = 5.6 in the 

case a < 0. For a > 1 the error can be by an order of magnitude larger, so it is better to use formulas 

with interchanged x and y if y > x. 

Asymptotic expansion 

For distant halo particles (n > 5 in eq. (8)) we can employ expansion in inverse powers of 

coordinates but also use power series to calculate the integral in (7) in the close vicinity of t=0. 

Let us define parameter 
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with some chosen n and, if u < 1, divide integration interval in (7) in two parts: 
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using power series in the first integral: 
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The part of the second integral which contains exponential can be found either by direct numerical 

integration or as an asymptotic expansion by integrating by parts which gives 
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Analytical expressions for the derivatives of function Y(t) can be easily found with the help of 

programs for symbolic computations such as Mathematica. To obtain with n = 4 the same 6-digits 

precision of the total integral typically about three terms should be retained in the sum. With larger 

n in eq. (13) this addition may be not necessary at all. 

The remaining part of the second integral evaluates analytically: 
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