Envelope Optics

Rick Baartman, TRIUMF

March 17, 2016

Intro: Motivating Example

Electron gun, solenoids, buncher, linac; 15 pC bunch charge.
How to:
Find peak energy gain phase?
Solenoid match?
Vary with bunch charge?
Buncher phase?
For different cavity excitation?
Etc.

Outline

1. Theory: Hamiltonian, Space Charge, Transfer Matrices
2. Example 1: FNAL Booster
3. Example 2: Injecting into TRIUMF cyclotron
4. Example 3: Linear Accelerators
```
    tE
        96
        EUROIEAI ORGAIIZATION FOR NUCIEAR mESEARCII
        =folsem
```



```
CERN/SI/Int. DL/70-12 18.11.1970
RMS ENVELOPE EQUATIONS WITH SPACE CHARGE

\footnotetext{
Frank J. Sacherer
}

\section*{ABSTRACT}
```

The envelope equations for a continuous beam with circular symmetry but otherwise arbitrary charge distribution have been derived by Lapostolle and Gluckstern. Their results are extended in this report to continuous beams with elliptical symmetry and to bunched beams with ellipsoidal form.

```

\section*{Statistical Approach to Beam Dynamics}

If there is a distribution of particles, one would like to calculate the final distribution from the initial. The behaviour of the beam centroid
\[
\begin{equation*}
\langle\mathbf{X}\rangle=\sum_{i=1}^{N} \mathbf{X} / N \tag{1}
\end{equation*}
\]
(where \(N\) is the number of particles, and \(\mathbf{X}\) is the column vector \(\left(x, P_{x}, y, P_{y}, z, P_{z}\right)^{T}\) as in eqn.5) is determined by the same transfer matrix \(\mathbf{M}\) as for an individual particle. This is the equation of 'first moments'. At the next level, one would like to calculate the evolution of the beam widths, or, 'second moments' given by
\[
\begin{equation*}
\boldsymbol{\sigma} \equiv \frac{1}{N} \sum_{i=1}^{N} \mathbf{X X}^{T} \tag{2}
\end{equation*}
\]

For example, \(\sigma_{11}=\left\langle x^{2}\right\rangle, \sigma_{12}=\left\langle x P_{x}\right\rangle, \sigma_{13}=\langle x y\rangle, \ldots\). For a distribution of particles so dense that we do not see graininess on any scale of our diagnostics, the sums go over into integrals. For example,
\[
\sigma_{12}=\iiint \iiint x P_{x} f\left(x, P_{x}, y, P_{y}, z, P_{z}\right) d x d P_{x} d y d P_{y} d z d P_{z},
\]
where \(f\) is the distribution in phase space, normalized so that its integral over all 6 phase space dimensions is 1 .

Here, \(s\) is the independent variable, \(z=\beta c \Delta t, P_{z}=(\beta c)^{-1} \Delta E\).

By direct substitution into the definition of \(\sigma\), we find
\[
\begin{equation*}
\boldsymbol{\sigma}_{\mathrm{f}}=\mathbf{M} \boldsymbol{\sigma}_{\mathrm{i}} \mathbf{M}^{T} \tag{3}
\end{equation*}
\]

As well, recalling the infinitesimal transfer matrix \(\mathbf{F}\) where \(\mathbf{X}^{\prime}=\mathbf{F X}\) and the transfer matrix of an infinitesimal length \(d s\) is \(\mathbf{M}=\mathbf{I}+\mathbf{F} d s\), we find directly
\[
\begin{equation*}
\boldsymbol{\sigma}^{\prime}=\mathbf{F} \boldsymbol{\sigma}+\boldsymbol{\sigma} \mathbf{F}^{T} \tag{4}
\end{equation*}
\]

This is the envelope equation. For the full 6D case, it represents 21 equations. (Because \(\sigma\) is symmetric.)

\section*{What is \(F\) ? Infinitesimal Transfer Matrix}

The general Hamiltonian can be Taylor-expanded by orders in the 6 dependent variables \({ }^{1}\),
\[
H\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} ; s\right)=\left.\sum_{i} \frac{\partial H}{\partial x_{i}}\right|_{0} x_{i}+\left.\frac{1}{2} \sum_{i, j} \frac{\partial^{2} H}{\partial x_{i} \partial x_{j}}\right|_{0} x_{i} x_{j}+\ldots
\]

The subscript 0 means that the derivatives are evaluated on the reference trajectory \(\forall i, x_{i}=0\). (Keep in mind though that these partial derivatives in general are functions of the independent variable \(t\) or \(s\).)

Terms of first order are eliminated by transforming to a coordinate system measured with respect to the reference trajectory. The remaining terms are second order and higher, and for linear motion, we simply truncate at the second order.

\footnotetext{
\({ }^{1}\) In this shorthand, \(x_{1}=x, x_{2}=P_{x}, x_{3}=y, \ldots\)
}

Then the Hamiltonian looks like \(H=A x^{2}+B x P_{x}+C x y+\ldots+U P_{z}^{2}\) : there are 21 independent terms. \(A=\frac{1}{2} \frac{\partial^{2} H}{\partial x^{2}}\), and so on; all derivatives are evaluated on the reference trajectory, and may be a function of the independent variable. We know the equations of motion from the Hamiltonian to be: \(x^{\prime}=\partial H / \partial P_{x}, P_{x}^{\prime}=-\partial H / \partial x\), etc., where primes denote derivatives w.r.t. the independent variable. Therefore the equations of motion:
\[
\left(\begin{array}{c}
x^{\prime}  \tag{5}\\
P_{x}^{\prime} \\
y^{\prime} \\
P_{y}^{\prime} \\
z^{\prime} \\
P_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{cccccc}
\frac{\partial^{2} H}{\partial P_{x} \partial x} & \frac{\partial^{2} H}{\partial P_{x}^{2}} & \frac{\partial^{2} H}{\partial P_{x} \partial y} & \frac{\partial^{2} H}{\partial P_{x} \partial P_{y}} & \frac{\partial^{2} H}{\partial P_{x} \partial z} & \frac{\partial^{2} H}{\partial P_{x} \partial P_{z}} \\
-\frac{\partial^{2} H}{\partial x^{2}} & -\frac{\partial^{2} H}{\partial x \partial P_{x}} & -\frac{\partial^{2} H}{\partial x \partial y} & -\frac{\partial^{2} H}{\partial x \partial P_{y}} & -\frac{\partial^{2} H}{\partial x \partial z} & -\frac{\partial^{2} H}{\partial x \partial P_{z}} \\
\frac{\partial^{2} H}{\partial P_{y} \partial x} & \frac{\partial^{2} H}{\partial P_{y} \partial P_{x}} & \frac{\partial^{2} H}{\partial P_{y} \partial y} & \frac{\partial^{2} H}{\partial P_{y}^{2}} & \frac{\partial^{2} H}{\partial P_{y} \partial z} & \frac{\partial^{2} H}{\partial P_{y} \partial P_{z}} \\
-\frac{\partial^{2} H}{\partial y \partial x} & -\frac{\partial^{2} H}{\partial y \partial P_{x}} & -\frac{\partial^{2} H}{\partial y^{2}} & -\frac{\partial^{2} H}{\partial y \partial P_{y}} & -\frac{\partial^{2} H}{\partial y \partial z} & -\frac{\partial^{2} H}{\partial y \partial P_{z}} \\
\frac{\partial^{2} H}{\partial P_{z} \partial x} & \frac{\partial^{2} H}{\partial P_{z} \partial P_{x}} & \frac{\partial^{2} H}{\partial P_{z} \partial y} & \frac{\partial^{2} H}{\partial P_{z} \partial P_{y}} & \frac{\partial^{2} H}{\partial P_{z} \partial z} & \frac{\partial^{2} H}{\partial P_{z}^{2}} \\
-\frac{\partial^{2} H}{\partial z \partial x} & -\frac{\partial^{2} H}{\partial z \partial P_{x}} & -\frac{\partial^{2} H}{\partial z \partial y} & -\frac{\partial^{2} H}{\partial z \partial P_{y}} & -\frac{\partial^{2} H}{\partial z^{2}} & -\frac{\partial^{2} H}{\partial z \partial P_{z}}
\end{array}\right)\left(\begin{array}{c}
x \\
P_{x} \\
y \\
P_{y} \\
z \\
P_{z}
\end{array}\right)
\]
or,
\[
\mathbf{X}^{\prime}=\mathbf{F} \mathbf{X}
\]
where \(\mathbf{F}\) is called the 'infinitesimal transfer matrix'. Of the 36 elements of \(\mathbf{F}\) there are only 21 independent ones.

\section*{Example: Quadrupole}

A particular case is where the beamline consists only of elements that keep all 3 degrees of freedom independent of each other, and there is only a focusing force \(K(s)\) that varies with \(s\). In other words, the Hamiltonian is 6 ,
\[
\begin{equation*}
H=\frac{P_{x}^{2}}{2}+K(s) \frac{x^{2}}{2}+\frac{P_{y}^{2}}{2}-K(s) \frac{y^{2}}{2}+\frac{P_{z}^{2}}{2 \gamma^{2}} \tag{6}
\end{equation*}
\]
so
\[
\mathbf{F}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0  \tag{7}\\
-K & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & K & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\gamma^{2}} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{Space Charge part of F}

The beam is in bunches rather than continuous, so we need the electric field of an ellipsoidal distribution of charge. For this case as well, it turns out, surprisingly (Sacherer, 1971), that the RMS linear part of the space charge self-field depends mainly on the RMS size of the distribution and only very weakly on its exact form. To within a few percent, the RMS linear part of space charge is the same as that for a uniformly populated ellipsoid. The space charge infinitesimal transfer matrix is now
\[
\mathbf{F}_{\mathrm{sc}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0  \tag{8}\\
K_{x \mathrm{sc}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & K_{y \mathrm{sc}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & K_{z \mathrm{sc}} & 0
\end{array}\right)
\]
where
\[
\begin{align*}
K_{x \mathrm{sc}} & =\frac{Q}{4 \pi \epsilon_{0}\left(m c^{2} / e\right) \beta^{2} \gamma^{3}} \frac{1}{a^{3}} g\left(\frac{b^{2}}{a^{2}}, \frac{c^{2}}{a^{2}}\right)  \tag{9}\\
K_{y \mathrm{sc}} & =\frac{Q}{4 \pi \epsilon_{0}\left(m c^{2} / e\right) \beta^{2} \gamma^{3}} \frac{1}{b^{3}} g\left(\frac{c^{2}}{b^{2}}, \frac{a^{2}}{b^{2}}\right)  \tag{10}\\
K_{z \mathrm{sc}} & =\frac{Q}{4 \pi \epsilon_{0}\left(m c^{2} / e\right) \beta^{2} \gamma^{3}} \frac{1}{c^{3}} g\left(\frac{a^{2}}{c^{2}}, \frac{b^{2}}{c^{2}}\right) \tag{11}
\end{align*}
\]
where \(Q\) is the bunch charge, the ellipsoid semi-axes in the \(x, y, z\) directions are \(a, b, c\), and the function \(g\) is
\[
\begin{equation*}
g(u, v)=\frac{3}{2} \int_{0}^{\infty}(1+s)^{-3 / 2}(u+s)^{-1 / 2}(v+s)^{-1 / 2} d s \tag{12}
\end{equation*}
\]

This is from the family of Carlson elliptic integrals.

\section*{Arbitrary bunch distributions, orientations}

For arbitrary distributions of the type \(f(x, y, z)=f\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)\), replace \(a, b, c\) with the RMS values according to the values they have for the uniform case, namely, \(a^{2}=5 \sigma_{11}\), \(b^{2}=5 \sigma_{33}\). Because of relativity, \(c^{2}\) is a special case: \(c^{2}=5 \gamma^{2} \sigma_{55}\).

Notice the recursiveness.
For arbitrary orientations, have to apply a rotation matrix to \(F\), thus making also \(F_{23}, F_{25}, F_{41}, F_{45}, F_{61}, F_{63}\) also non-zero.

For further reading, again refer to Sacherer (1971), but also de Jong (1983).
Elaborated for the case with space charge, DC, uncoupled, it becomes the (better-known) Kapchinsky-Vladimirsky eqns.

\section*{What about: TRANSPORT, TRACE3D?}

If all elements are integrable then the transfer matrices M are known, and they are simply multiplied together to find the matrix of the whole beamline or synchrotron, and the final beam is found from the initial as in 3 . This is the traditional approach, e.g. TRANSPORT.

To incorporate space charge, elements were subdivided and appropriate thin defocus lenses inserted.

In TRACE3D, there are space charge impulses applied in the approximation of long bunches.

\subsection*{7.0 SPACE-CHARGE IMPULSES}

Approximate expressions for the electric field components that are due to a uniformly charged ellipsoid, as given by Lapostolle \({ }^{13}\) are as follows:
\[
\begin{gathered}
E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 I \lambda}{c \gamma^{2}} \frac{(1-f)}{r_{x}\left(r_{x}+r_{y}\right) r_{z}} x, \\
E_{y}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 I \lambda}{c \gamma^{2}} \frac{(1-f)}{r_{y}\left(r_{x}+r_{y}\right) r_{z}} y, \\
E_{z}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 I \lambda}{c} \frac{f}{r_{x} r_{y} r_{z}} z,
\end{gathered}
\]
where \(r_{x}, r_{y}\), and \(r_{z}\) are the semiaxes of the ellipsoid, \(I\) is the average electrical current (assuming that a bunch occurs in every period of the RF), \(\boldsymbol{\lambda}\) is the free-space wavelength of the RF, \(c\) is the velocity of light, and \(\varepsilon_{0}\) is the permittivity of free space. The form factor \(f\) is a function of \(p \equiv \gamma_{z} / \sqrt{r_{x} r_{y}}\). Values for \(f\) are given in Table III for specific values of \(p\) and \(l / p\).

\section*{TABLE III: Space-Charge Form Factor}

\footnotetext{
13 P. M. Lapostolle, CERN report AR/Int. SG/65-15, Geneva, Switzerland (July 1965).
}

\section*{TRANSOPTR}

These techniques are approximate and non-adaptive: Why not use the equations of motion directly? There are only 21 of them. In TRANSOPTR, 4 is solved with a Runge Kutta integrator. This allows not only space charge, but any general case with no closed-form solution to eom's, e.g. varying axial fields, linacs, short-soft-edge quads,...

Original version written by Mark deJong, Ed Heighway.
```

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 4, August }198
A FIRST ORDER SPACE CHARGE OPTION FOR TRANSOPTR
M.S. de Jong and E.A. Heighway
Atomic Energy of C.anada Limited, Research Company
Chalk River Nuclear Laboratories
Chalk River, Ontario, Canada K0J 1J0

```

\section*{Example 1: FNAL Booster}

Combined function magnets, field index \(n\), radius \(\rho\),
\[
\mathbf{F}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0  \tag{13}\\
-\frac{1-n}{\rho^{2}} & 0 & 0 & 0 & 0 & \frac{1}{\rho} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -\frac{n}{\rho^{2}} & 0 & 0 & 0 \\
-\frac{1}{\rho} & 0 & 0 & 0 & 0 & \frac{1}{\gamma^{2}} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\]

With a synchrotron, have to find periodic envelope. Do this by fitting input beam to equal output after 1 turn.

Matched solution, no space charge, tunes=(6.7, 6.8)


Add space charge, 2.6Amp. Matched solution.


\section*{Another Matched solution?}



Added a thin lens to excite the \(1 / 2\)-integer resonance. Bottom: Without space charge, moving bare tune.
 Top: Moving tune using space charge depression; bare tune fixed.

Reference: M. D'yachkov, R. Baartman and F.W. Jones-Multiturn Simulation of Coherent Betatron Resonance With Space Charge Proc. PAC2001. Animated gif

\section*{Example 2: Injection Line to Cyclotron}

- HV1: up to \(1 \mathrm{~mA} \mathrm{H}^{-}\).
- HV2 and HV3 decommissioned,
- Chopper not useful at \(>10 \mu \mathrm{~A}\).
- 13 m vertical section needs replacing.

\section*{Some Particulars}
1. All electrostatic; 100s of delicate, uncooled electrodes.
2. Typically, \(300-400 \mu \mathrm{~A}\), or \(\sim 100\) Watts of beam; can easily melt a quadrupole (which, after all, is just 4 small pieces of aluminum extrusion).
3. \(\mathrm{H}^{-}\), so vacuum must be better than \(10^{-7}\left(f_{\text {lost }}=P /\left(2 \times 10^{-5}\right.\right.\) Torr \(\left.)\right)\). Even so, it easily sheds electrons and these are electrically indistinguishable from beam particles, confusing the diagnostics.
4. Large energy spread from bunchers, so beamline must be achromatic. (DC beam is bunched to a peak of \(\sim 5 \mathrm{~mA}\).)
5. Space charge dominated at typical high intensity operation: 5 mA peak means space charge forces are larger than average quadrupole focusing force.
6. But the space charge force is intrisically nonlinear, generating beam "halo".
7. Centre of cyclotron field is 3 kG : almost the whole vertical line can be thought of as in the fringing field of a (poorly designed) solenoid: strong coupling between transverse planes.
8. Beam is injected into the spiral inflector: possibly the most optically complicated element ever devised. (Also insulated, uncooled, can melt.)
9. Must (try to) match to the first turn of the cyclotron where essentially all vertical focusing comes from RF: tail of the bunch is much more strongly focused than the head. Space charge defocusing causes progressive loss of the head.
10. Old line took \(\sim 5\) years before \(100 \mu \mathrm{~A}\) cyclotron running was routine.

\section*{Why a New Vertical Section?}
- Insulators dirty, shorting. Had to ground some electrodes.
- Vacuum bad, somewhat leaky (o-rings). \(>1 \%\) loss but prefer \(\sim 0.1 \%\).
- Very poor alignment making quads very difficult to tune.
- Insufficient diagnostics (no BPMs).
- In spite of much effort, optics never understood, polarities doubtful.

So in 2011 replaced the whole 13 metre section. Complete re-design of optics. (But how?)

\section*{Beam Dynamics Complexity}
1. Intense 3D space charge (up to 5 mA peak at 300 keV )
2. Bunching into a \(36^{\circ}\) phase acceptance (roughly 30 mm long bunch)
3. Strong \(x-y\) coupling due to cyclotron's axial field
4. Strong and complicated \(x-y-z\) coupling in the inflector.
5. Vertical acceptance depends upon particle's phase because all focusing comes from RF on first few turns.
6. Cannot match, even in principle, so what now? How to optimize?.

In spite of this, we successfully designed, built, commissioned a totally new section without using multi-particle simulations. Used only the statistical approach sometimes called "envelope equation".

\section*{1,2. Bunching into a \(36^{\circ}\) phase acceptance}

Ignore the details of 2-harmonic bunching, take only the linear part. I.e. launch the beam at buncher with a negative correlation between phase and energy. \(r_{56}=-1, \sqrt{5 \sigma_{55}}=\beta \lambda / 2\), and \(\sqrt{5 \sigma_{66}} \propto V_{\text {buncher }}\) optimized to give minimum bunch length at injection gap.


Test calculation of bunching beam in a periodic section. Final bunch is 12 mm dia. by 34 mm long. ( \(\beta \lambda=329 \mathrm{~mm}\) at 23 MHz , so this is roughly the \(36^{\circ}\) desired.)

\section*{3. Strong \(x-y\) coupling due to axial field}

\[
F_{\text {axial } B}=\left(\begin{array}{cccccc}
0 & 1 & \frac{-1}{2 \rho} & 0 & 0 & 0  \tag{1}\\
\frac{-1}{4 \rho^{2}} & 0 & 0 & \frac{-1}{2 \rho} & 0 & 0 \\
\frac{1}{2 \rho} & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{2 \rho} & \frac{-1}{4 \rho^{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\]
which arises from the solenoid Hamiltonian
\[
\begin{equation*}
H_{\mathrm{axial} B}=\frac{1}{2}\left(P_{x}-\frac{y}{2 \rho}\right)^{2}+\frac{1}{2}\left(P_{y}+\frac{x}{2 \rho}\right)^{2}+\frac{1}{2} P_{z}^{2}, \tag{15}
\end{equation*}
\]
where \(1 / \rho=B(s) /(B \rho)\), is a function of the independent variable \(s\). Interpolate it using cubic spline.
4. Strong \(x-y-z\) coupling in the inflector

(See A Canonical Treatment of the Spiral Inflector for Cyclotrons Baartman and Kleeven, Part. Acc. 41 (1993).)
\[
\begin{aligned}
& H\left(x, y, z, P_{x}, P_{y}, P_{z} ; s\right)= \\
& \frac{1}{2}\left[\left(P_{x}+\frac{T C}{A} y\right)^{2}+\left(P_{y}-\frac{T C}{A} x\right)^{2}+\left(P_{z}+\frac{2 T S}{A} y+\frac{2}{A} x\right)^{2}\right] \\
& -\frac{1}{2 A^{2}}\left[\xi\left(x+k^{\prime} S y\right)^{2}+x^{2}+k k^{\prime}\left(C^{2} x^{2}+y^{2}\right)+2 T S x y\right]
\end{aligned}
\]
where
\[
\xi=\frac{1+k k^{\prime} S^{2}}{1+k^{\prime 2} S^{2}}, S=\sin (s / A), C=\cos (s / A), T=\frac{k+k^{\prime}}{2}, k=\frac{A}{\rho}+k^{\prime}
\]
\(A\) is electric radius, \(\rho=\rho(s)\) is magnetic radius, \(k^{\prime}\) is tilt parameter.

\section*{inflector matrix}
\[
F_{\text {inflector }}=\left(\begin{array}{cccccc}
0 & 1 & \frac{T C}{A} & 0 & 0 & 0  \tag{17}\\
\frac{3-\xi+\left(T^{2}-k k^{\prime}\right) C^{2}}{-A^{2}} & 0 & \frac{3 T S-k^{\prime} \xi S}{-A^{2}} & \frac{T C}{A} & 0 & \frac{-2}{A} \\
\frac{-T C}{A} & 0 & 0 & 1 & 0 & 0 \\
\frac{3 T S-k^{\prime} \xi S}{-A^{2}} & \frac{-T C}{A} & \frac{\left(1+3 S^{2}\right) T^{2}-k k^{\prime}-k^{\prime 2} \xi S^{2}}{-A^{2}} & 0 & 0 & \frac{-2 T S}{A} \\
\frac{2}{A} & 0 & \frac{2 T S}{A} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\]

BTW, if integrated with no space charge, this gives matrix that agrees with other codes (CASINO, AXORB).

The inflector is followed by a deflector: crossed \(E\) and \(B\) fields so looks like a Wien filter.

\section*{5. Vertical acceptance depends upon particle's phase}

A simple cyclotron model is a flat field with thin lenses at the dee gaps. The focal length depends upon rf phase (i.e. it is an inherently nonlinear coupling), so one must choose an appropriate central phase. As the bunch charge is raised, the weakest-focused phases (leading the crest and near crest) are lost first. This requires some fiddling: place bunch phase too late and at will not gain sufficient energy.

Below: Blue is bunch length, red is radial, black is radial with dispersion removed, green is vertical.

\section*{some results vs. phase}





\section*{TRANSOPTR Calculation of Injection into TRIUMF Cyclotron and First Turns}


Beam envelopes through the injection line and into the cyclotron versus distance in metres. Charge per bunch is \(22 p \mathrm{C}\) for a time average current 0.50 mA . This is for bunch injection phase \(28^{\circ}\).

\section*{Injection Matching Detail}


New line in detail is very different from the old.
Notice the strong vertical mismatch. Causes factor \(\sim 5\) increase in emittance.

\section*{6. How to optimize?}

Three additional constraints:
- Keep the maximum quadrupole voltage below 5 kV .
- Accommodate anywhere from 0 to \(500 \mu \mathrm{~A}\) ( 5 mA peak) with little change to quad settings.
- Minimize number of matching quad knobs.

The calculation was run with a simulated annealing optimizer that varied the placement, strength and orientation of the final matching quadrupoles.

The minimization penalty parameter was the vertical and horizontal beam sizes weighted by their tunes. Sizes are calculated every half turn. Importantly, the radial size used is not the apparent size, but the size with dispersion removed, which is considerably smaller. The reason for this is we do not care about radial turn width as long as turn width and energy width are correlated, because we do not need separate turns.

\section*{New (left) vs. Old (right)}


\section*{Detail: New (left) vs. Old (right)}



\section*{Results}

Selected e-log entries...
\begin{tabular}{|l|l|r|}
\hline 2011-04-14 14:00:00 & Injecting, seeing a few nA on Q2 VF. & - Bob Scheepmaker \\
\hline 2011-04-15 08:18:32 & \begin{tabular}{l} 
Roman has been tuning the cyclotron. \\
Transmission is 12\%. 73nA to HE3.
\end{tabular} & - Angela Hoiem \\
\hline [intervening time] ] & [Bunchers inoperative; attempts to fix.] & \\
\hline 2011-04-16 15:00:57 & \begin{tabular}{l} 
With louri's help, we have found the other end \\
of the cable from the RF and connected it up. \\
We now have bunching.
\end{tabular} & - Jaswinder Uppal \\
\hline 2011-04-16 15:04:55 & \begin{tabular}{l} 
We now have ISIS Bunchers working. We \\
have 24\% tx after about 5 minutes of tuning.
\end{tabular} & - Jaswinder Uppal \\
\hline 2011-04-16 15:20:00 & Roman is here tuning ISIS. & - David Prevost \\
\hline 2011-04-16 15:45:00 & Cyc at 62\% transmission. & - David Prevost \\
\hline
\end{tabular}

IOW, theoretical tune worked right out of the box.
N.B. \(12 \%\) unbunched is about as good as we ever get at 90 kV rf dee voltage. Somewhat later, we achieved \(70 \%\) transmission bunched, which is about as good as we ever get.

\section*{Example 3: Linear Accelerator}


\section*{Hamiltonian}

With the distance along the reference trajectory \(s\) as the independent variable, the Hamiltonian is
\[
\begin{align*}
& H\left(x, P_{x}, y, P_{y}, t, E ; s\right)=  \tag{18}\\
= & -q A_{s}-\sqrt{\left(\frac{E-q \Phi}{c}\right)^{2}-m^{2} c^{2}-\left(P_{x}-q A_{x}\right)^{2}-\left(P_{y}-q A_{y}\right)^{2}}
\end{align*}
\]

\section*{Potentials}

The case of RF axially-symmetric electric field can be handled entirely with no electric potential ( \(\Phi=0\) ), and time-varying vector potential. This has been presented a number of times in the past (e.g. E.E. Chambers;1968), but we are interested in the following more experimentally-useful case: The electric field along the axis \(\mathcal{E}(s)\) has been measured and is therefore known, and the geometry is exactly axially symmetric.

Rob Ryne(1991) has treated this case, and we use his vector potential \(\vec{A}(x, y, s, t)\) directly.
\[
\begin{align*}
& A_{x}=\frac{\mathcal{E}^{\prime}(s)}{2} \frac{\sin (\omega t+\theta)}{\omega} x  \tag{19}\\
& A_{y}=\frac{\mathcal{E}^{\prime}(s)}{2} \frac{\sin (\omega t+\theta)}{\omega} y  \tag{20}\\
& A_{s}=\left(-\mathcal{E}(s)+\frac{x^{2}+y^{2}}{4}\left[\mathcal{E}^{\prime \prime}(s)+\frac{\omega^{2}}{c^{2}} \mathcal{E}(s)\right]\right) \frac{\sin (\omega t+\theta)}{\omega} \tag{21}
\end{align*}
\]

This is Coulomb/Lorenz gauge, satisfies Maxwell equations to second order in transverse coordinates, gives correct on-axis \(\overrightarrow{\mathcal{E}}=-\partial \vec{A} / \partial t=\mathcal{E} \cos (\omega t+\theta)\).

\section*{A Word About Coordinates 5 and 6}

SLAC-91 (Karl Brown) mentions "At any position in the system... ", so time \(t\) is NOT the independent variable. "...particle represented by a vector":
\[
(x, \theta, y, \phi, l, \delta)
\]
(where \(\delta \equiv \Delta P / P\) )
Last two should be \(\left(t-t_{0}, E-E_{0}\right)\) or \((\Delta t, \Delta E)\), not \((l, \Delta P / P)\).
If we scale by \(\beta c\), we can make them match (sort of), since \(\beta c \Delta t=z, \Delta E /(\beta c)=\Delta P\), but ONLY TRUE OF MAGNETIC ELEMENTS \(\Phi=0\).

\section*{Mathematical Formulation of TRANSPORT(*)}

The following of a charged particle through a system of magnetic lenses may be reduced to a process of matrix multiplication. At any specified position in the system an arbitrary charged particle is represented by a vector (single column matrix), \(X\), whose components are the positions, angles, and momentum of the particle with respect to a specified reference trajectory.
\[
\text { i. e. } x=\left[\begin{array}{l}
x \\
\theta \\
y \\
\varphi \\
\ell \\
\delta
\end{array}\right]
\]

Definitions:
\(x=\) the radial displacement of the arbitrary ray with respect to the assuned central trajectory.
\(\theta=\) the angle this ray makes in the radial plane with respect to the assumed central trajectory.
\(y=\) the transverse displacement of the ray with rospect to the assumed central trajectory.
\(\varphi=\) the transverse angle of the ray with respect to the assuried central trajectory.
(*) For a more complete descrintion of the mathematical basis of TRANSPORT, refer to SLAC Report 75, the Appendix of this report and to other References listed at the end of this report.
\(\ell=\) the path length difference between the arbitrary ray and the central trajectory
\(\delta=\Delta P / P\) is the fractional monentun deviation of the ray from the assumed central trajectory.
The magnetic lens is represented by a square matrix, \(R\), which describes the action of the magnet on the particle coordinates. Thus the passage of a charged particle through the systen may be represented by the equation:
\[
\begin{equation*}
x[1]=R \times|0| \tag{1}
\end{equation*}
\]
where \(x[0]\) is the initial coordinate vector and \(X[1]\) is the final coordinate vector of the particle under consideration; \(R\) is the transfomation matrix for all such particles traversing the system (one particle differing from another only by its initial coordinate vector \(x|0|\) ) .

The traversing of several magnets and interspersing drift spaces is described by the sane basic equation but with \(R\) now being the profuct matrix \(R=R(n) \ldots R(3) R(2) R(1)\) of the individual matrices of the system elements. The following of a charged particle via TRANSPORT through a system of magnets is thus analogous to tracing rays throuzh a systen of odtical lenses except that TRAMSPORT is a matrix calculation which truncates the problem to either first or second-order in a Taylor's expansion about a central trajectory. For studying beam optics to greater precision than a second-order TRANSPORT calculation pernits,

\section*{But: Don't know \(t_{0}\) and \(E_{0}\)}

A priori, we do not know the reference particle's energy and time coordinates. We need these in order to expand about them. They can be found from the equations of motion for \(x=y=P_{x}=P_{y}=0\) :
\[
\begin{align*}
\frac{d E}{d s} & =\frac{\partial H}{\partial t}=q \mathcal{E} \cos (\omega t+\theta)  \tag{22}\\
\frac{d t}{d s} & =-\frac{\partial H}{\partial E}=\frac{E}{P}=\frac{1}{\beta_{0} c} \tag{23}
\end{align*}
\]

These 2 are added to the 21 mentioned previously; 23 solved together.
(From here on, I drop the 0 subscript: \(\beta\) and \(\gamma\) are implicitly assumed to be the relativistic parameters of the reference particle.)

These give the functions \(E_{0}(s)\) and \(t_{0}(s)\) about which \(t\) and \(E\) are expanded: \(E=E_{0}+\Delta E, t=t_{0}+\Delta t\). So we transform the canonical variables \(t\) and \(-E\) to \((\Delta t,-\Delta E)\), using as generating function
\[
\begin{equation*}
G=-\left(t-\int \frac{d s}{\beta(s) c}\right)\left(\Delta E+E_{0}\right) \tag{24}
\end{equation*}
\]
(Check: \(\frac{\partial G}{\partial t}=-E, \frac{\partial G}{\partial(-\Delta E)}=\Delta t\).) The Hamiltonian gets the added terms
\[
\frac{\partial G}{\partial s}=\frac{\Delta E+E_{0}(s)}{\beta(s) c}-\Delta t E_{0}^{\prime}(s)
\]

Then expanding the square root, we get:
\[
\begin{equation*}
H_{\Delta t}=\left(\frac{E_{0}}{\beta c}-P_{0}\right)-q A_{s}-\Delta t E_{0}^{\prime}(s)+\frac{(\Delta E)^{2}}{2 \beta^{3} \gamma^{3} m c^{3}}+\frac{\left(P_{x}-q A_{x}\right)^{2}+\left(P_{y}-q A_{y}\right)^{2}}{2 P} \tag{25}
\end{equation*}
\]

In expanding \(P_{x}-q A_{x}, P_{y}-q A_{y}\), the time dependence disappears because it is higher order:
\[
\begin{equation*}
\left(P_{x}-q A_{x}\right)^{2}=P_{x}^{2}-q \mathcal{E}^{\prime} \frac{\sin \left(\omega t_{0}+\theta\right)}{\omega} x P_{x}+\left(\frac{q \mathcal{E}^{\prime}}{2} \frac{\sin \left(\omega t_{0}+\theta\right)}{\omega}\right)^{2} x^{2} \tag{26}
\end{equation*}
\]
and similary for \(y\). The term linear in \(\Delta t\) in the expansion of \(A_{s}\) about \(t_{0}\) cancels the \(-\Delta t E_{0}^{\prime}(s)\) term, as it should but there is a
remaining term quadratic in \(\Delta t\), the bunching effect. This leaves
\[
\begin{equation*}
-q A_{s}-\Delta t E_{0}^{\prime}(s)=q \mathcal{E} \frac{\sin \left(\omega t_{0}+\theta\right)}{\omega}\left(1-\frac{\omega^{2}(\Delta t)^{2}}{2}\right)-\frac{r^{2} q}{4}\left(\mathcal{E}^{\prime \prime}+\frac{\omega^{2}}{c^{2}} \mathcal{E}\right) \frac{\sin \left(\omega t_{0}+\theta\right)}{\omega} \tag{27}
\end{equation*}
\]

Notice the first term here and the first term in eqn. 25 depend only on the independent variable and not on the 6 dependent ones. Thus these do not affect the equations of motion and we ignore them. We have:
\[
\begin{align*}
H_{\Delta t}= & -\frac{q \mathcal{E}}{2} \omega^{2} T(\Delta t)^{2}+\frac{(\Delta E)^{2}}{2 \beta^{3} \gamma^{3} m c^{3}}-\frac{r^{2} q}{4}\left(\mathcal{E}^{\prime \prime}+\frac{\omega^{2}}{c^{2}} \mathcal{E}\right) T \\
& +\frac{P_{x}^{2}}{2 P}-q \mathcal{E}^{\prime} T \frac{x P_{x}}{2 P}+\left(\frac{q \mathcal{E}^{\prime}}{2} T\right)^{2} \frac{x^{2}}{2 P} \\
& +\frac{P_{y}^{2}}{2 P}-q \mathcal{E}^{\prime} T \frac{y P_{y}}{2 P}+\left(\frac{q \mathcal{E}^{\prime}}{2} T\right)^{2} \frac{y^{2}}{2 P} \tag{28}
\end{align*}
\]

We defined here \(T(s)=\sin \left[\omega t_{0}(s)+\theta\right] / \omega\) to clean up the notation a bit.

Finally, we wish to transform from \((\Delta t,-\Delta E)\) to \((z, P z)=(-\beta c \Delta t, \Delta E /(\beta c))\). (The reason for the sign change is as follows: an early arrival implies \(\Delta t<0\), but this means the particle is ahead so \(z>0\).) The generating function is
\[
\begin{equation*}
G=-\beta c \Delta t P_{z} \tag{29}
\end{equation*}
\]
(Check: \(\frac{\partial G}{\partial \Delta t}=-\Delta E, \frac{\partial G}{\partial\left(P_{z}\right)}=z\).) The term to be added to the Hamiltonian is
\[
\frac{\partial G}{\partial s}=\frac{\beta^{\prime}}{\beta} z P_{z}=\frac{\gamma^{\prime}}{\beta^{2} \gamma^{3}} z P_{z}=\frac{q \mathcal{E} C}{\beta c P \gamma^{2}} z P_{z}
\]
where \(C \equiv \cos \left(\omega t_{0}+\theta\right)\).
\[
\begin{align*}
H_{z}= & \frac{P_{x}^{2}}{2 P}-q \mathcal{E}^{\prime} T \frac{x P_{x}}{2 P}+\left[\frac{1}{P}\left(\frac{q \mathcal{E}^{\prime} T}{2}\right)^{2}-\frac{T}{2}\left(q \mathcal{E}^{\prime \prime}+\frac{\omega^{2}}{c^{2}} q \mathcal{E}\right)\right] \frac{x^{2}}{2}+ \\
& \frac{P_{y}^{2}}{2 P}-q \mathcal{E}^{\prime} T \frac{y P_{y}}{2 P}+\left[\frac{1}{P}\left(\frac{q \mathcal{E}^{\prime} T}{2}\right)^{2}-\frac{T}{2}\left(q \mathcal{E}^{\prime \prime}+\frac{\omega^{2}}{c^{2}} q \mathcal{E}\right)\right] \frac{y^{2}}{2}+ \\
& \frac{P_{z}^{2}}{2 \gamma^{2} P}+\frac{2 q \mathcal{E} C}{\beta c} \frac{z P_{z}}{2 \gamma^{2} P}-\frac{q \mathcal{E}}{\beta^{2} c^{2}} \omega^{2} T \frac{z^{2}}{2} \tag{30}
\end{align*}
\]

\section*{Hamiltonian 2}

Ryne(1991) has a transformation that gets rid of the second derivative of the on-axis elecric field. It's complicated. At the same time he transforms away the adiabatic damping; it's a neat and didactic trick but not strictly necessary for computational purposes. It is simple to just use \(P_{x, y, z}\) directly and then just rescale by final \(P\) at the end.

But there's an easy way to get rid of the second derivative: it turns out that the vector potential can be simplified if we use a different Gauge.

I propose the following function
\[
\begin{equation*}
\Psi(x, y, s, t)=-\frac{\mathcal{E}^{\prime}}{2} \frac{\sin (\omega t+\theta)}{\omega} \frac{x^{2}+y^{2}}{2} \tag{31}
\end{equation*}
\]

Add the gradient of this function to the previous vector potential \((19,20,21)\). This zeroes both \(A_{x}\) and \(A_{y}\), leaving
\[
\begin{equation*}
A_{s}=-\mathcal{E}(s)\left(1-\frac{\omega^{2}}{c^{2}} \frac{x^{2}+y^{2}}{4}\right) \frac{\sin (\omega t+\theta)}{\omega} \tag{32}
\end{equation*}
\]

This is considerably simpler, but now there is a scalar potential:
\[
\begin{equation*}
\Phi=-\frac{\partial \Psi}{\partial t}=\mathcal{E}^{\prime} \cos (\omega t+\theta) \frac{x^{2}+y^{2}}{4} \tag{33}
\end{equation*}
\]

Now if we expand the Hamiltonian, we get a different result:
\[
\begin{align*}
H_{z}= & \frac{P_{x}^{2}}{2 P}+\frac{P_{y}^{2}}{2 P}+\frac{q}{2 \beta c}\left(\mathcal{E}^{\prime} C-\mathcal{E} S \frac{\omega \beta}{c}\right) \frac{r^{2}}{2}+ \\
& \frac{P_{z}^{2}}{2 \gamma^{2} P}+\frac{2 q \mathcal{E} C}{\beta c} \frac{z P_{z}}{2 \gamma^{2} P}-\frac{q \mathcal{E} \omega S}{\beta^{2} c^{2}} \frac{z^{2}}{2} \tag{34}
\end{align*}
\]
\(\left(C \equiv \cos \left(\omega t_{0}(s)+\theta\right), S \equiv \sin \left(\omega t_{0}(s)+\theta\right)\right)\)
This is not only much simpler ( \(P_{x}\) and \(P_{y}\) have their usual definitions, no transverse cross terms, no \(\mathcal{E}^{\prime \prime}\) ), but has nice intuitive explanations for the individual terms. (1) The factor in parentheses represents usual the focal power of an RF gap, e.g. a buncher. (2) Taking the limit as \(\omega \rightarrow 0\) reproduces precisely the Hamiltonian of the DC accelerator. Note that in that case, \(\mathcal{E}^{\prime}=-\phi^{\prime \prime}\).

\section*{Infinitesimal Transfer Matrix F}

Now that the Hamiltonian for linear motion (eqn. 34) has been obtained, it is a simple matter to find the infinitesimal transfer matrix \(F\). Writing the equations of motion ( \(x^{\prime}=\partial H / \partial P_{x}\), \(P_{x}^{\prime}=-\partial H / \partial x\), etc.), the following \(F\)-matrix is found for the axially symmetric linear accelerator:
\[
F=\left(\begin{array}{cccccc}
0 & \frac{1}{P} & 0 & 0 & 0 & 0  \tag{35}\\
\mathcal{A}(s) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{P} & 0 & 0 \\
0 & 0 & \mathcal{A}(s) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\beta^{\prime}}{\beta} & \frac{1}{\gamma^{2} P} \\
0 & 0 & 0 & 0 & \mathcal{B}(s) & -\frac{\beta^{\prime}}{\beta}
\end{array}\right)
\]
where we have defined:
\[
\begin{equation*}
\mathcal{A}(s)=\frac{-q}{2 \beta c}\left(\mathcal{E}^{\prime} C-\mathcal{E} S \frac{\omega \beta}{c}\right), \mathcal{B}(s)=\frac{q \mathcal{E} \omega S}{\beta^{2} c^{2}} \tag{36}
\end{equation*}
\]

\section*{Example Calculations}


The TRIUMF injector electron linac, EINJ, takes bunches at 300 keV to \(\sim 10 \mathrm{MeV}\) if properly phased and the peak gradient is \(20 \mathrm{MV} / \mathrm{m}\). Here is the input \(\mathcal{E}(s)\). TRANSOPTR interpolates with cubic splines.


This is example for phase \(\theta=0\) at the start of the calculation. Red is the 2rms transverse size, and green is the 2 rms longitudinal (bunch length). The input bunch parameters are somewhat arbitrary, roughly the condition for a minimum beam size at exit. This particular case has zero bunch charge.


In this second example, TRANSOPTR is instructed to fit the 65 matrix element to zero. This makes energy insensitive to input phase, thus finding the peak energy gain phase. This phase turns out to be \(\theta=-15.46^{\circ}\).

(c) R. Baartman 05/26/15
distance (cm)

In the third example, bunch charge has been raised to 30 pC .


\section*{Timing}

Each calculation above takes roughly 400 Runge-Kutta steps for 2400 calls to the SCLINAC routine. This gives 5 -figure accuracy to the transfer matrix and the \(\sigma\)-matrix, and is easily enough for describing reality considering that the on-axis field is only known to 2 or 3 significant figures. The extra accuracy is useful, however for fitting matrix or beam matching, which is done with a downhill simplex method, or simulated annealing for cases of more than 3 fitting parameters.

On my unremarkable, circa 2006 Intel desktop, each run through the linac takes about 17 milliseconds with zero bunch charge and 25 milliseconds with space charge. The difference is due to the Carlson elliptic integrals needed for the space charge case.

On a typical optics matching case, one varies 2 solenoids, the buncher amplitude, and the linac phase, to minimize the bunch size and energy spread at the linac output. A calculation with such a fit requires typically a half million total calls to SC (the space charge routine for no-linac case) and SCLINAC, and so takes about 5 seconds CPU time. The result is shown below.

The bunch charge is 15 pC . Each calculation starts from the cathode whereas it would have been more efficient to store the beam parameter set at the buncher entrance and start it from there.
The Buncher itself, located at \(s=85 \mathrm{~cm}\), is calculated as just another linac, phased to give no energy gain.

(c) R. Baartman 05/26/15
distance (cm)

\section*{Conclusions}

Envelope calculations (TRANSOPTR) are most efficient for linear optics with space charge and/or any time the focal parameters vary with \(s\) and no closed-form matrix is possible.
- Beamline design (including minimizing aberrations, but that's another talk...)
- On-the-fly tuning/optimization.

Not good for
- Designing higher order corrections
- Collimation, High intensity beam losses due to halo.```

