

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

"Integrated" Accelerator R&D at FNAL

- 1. Brief overview of Accelerator R&D at AD
- 2. Synergy between R&D at TD and AD
- 3. Are our efforts aligned well enough to address Fermilab and US HEP community goals? Where can we improve our communications, efforts, etc.?

Vladimir Shiltsev, APC TD Accelerator R&D Retreat Fermilab, January 26, 2016

US HEP Community Goals: P5

	Intensity Frontier Accelerators	Hadron Colliders	e⁺e⁻ Colliders
Current Efforts	PIP	LHC	
0-10 yrs	PIP-II	HL-LHC	JLC
Next Steps 10-20 yrs	Multi-MW proton beam	Very high-energy <i>pp</i> collider	1 TeV class energy upgrade of ILC*
Further Future Goals 20+ yrs	Neutrino ctory*	Higher-energy upgrade	Multi-TeV collider*
*dependent on how physics unfolds			

- Key R&D elements:
 - PIP-III (2.5 MW FNAL complex upgrade)
 - IOTA Research on Space-Charge
 - High Power Targetry R&D
 - Low cost SC RF (in TD)

Present & Future HEP IF Accelerators

300+ kW JPARC (Japan)

400+ kW CNGS (CERN)

500+ kW Fermilab's Main Injector (2015)

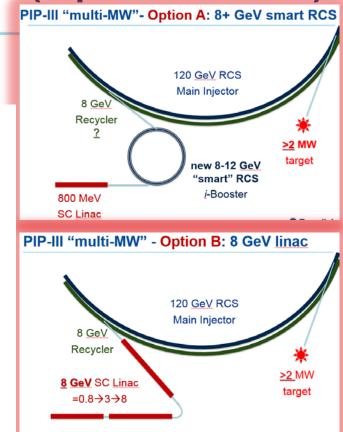
EVOLUTION OF INTENSITY FRONTIER ACCELERATORS

700+ kW Proton Improvement Plan (PIP, 2016)

1.2+ MW Proton Improvement Plan-II (ca 2025)

2.5 MW

Proton Improvement Plan-III (under study)



5 MW?

How to Double Power Beyond PIP-II (replace Booster)

So far, just at the beginning, formation of R&D Program to consider two options:

- Either increase performance of the synchrotrons by a factor of 2-4:
 - e.g. <u>dQ sc >1 (now 0.3)</u>→ need R&D
 - Instabilities/losses/RF/vacuum/collimation
 - IOTA/FAST to be built to study new methods
- Or reduce cost of the SRF / GeV by a factor of 3-4:
 - Several opportunities → need R&D
- And in any scenario develop multi-MW targets:
 - do not exist now → extensive R&D needed
- Finally in any scenario understand multi-MW facility design concept:
 - Integration in accel.complex&DUNE needed

IOTA Physics Motivation

- To explore two innovative ideas:
 - Integrable Optics
 - With strongly nonlinear magnets
 - With specially shaped electron beams in electron lenses
 - Space Charge Compensation
 - With ~"Gaussian" electron lenses
 - With neutralizing "electron columns"
- Both work in simulations → to test them experimentally, we are building the <u>Integrable Optics Test Accelerator (IOTA)</u>
 - a machine for proof-of-principle R&D
 - can operate with either e- or p+ up to 150 MeV/c momentum
 - large aperture,
 - significant flexibility of the beam optics lattice
 - precise control of the optics quality and stability
 - set up for very high intensity operation (with protons)

IOTA @ Fermilab Accelerator Science and Technology

50 MeV ephotoinjector

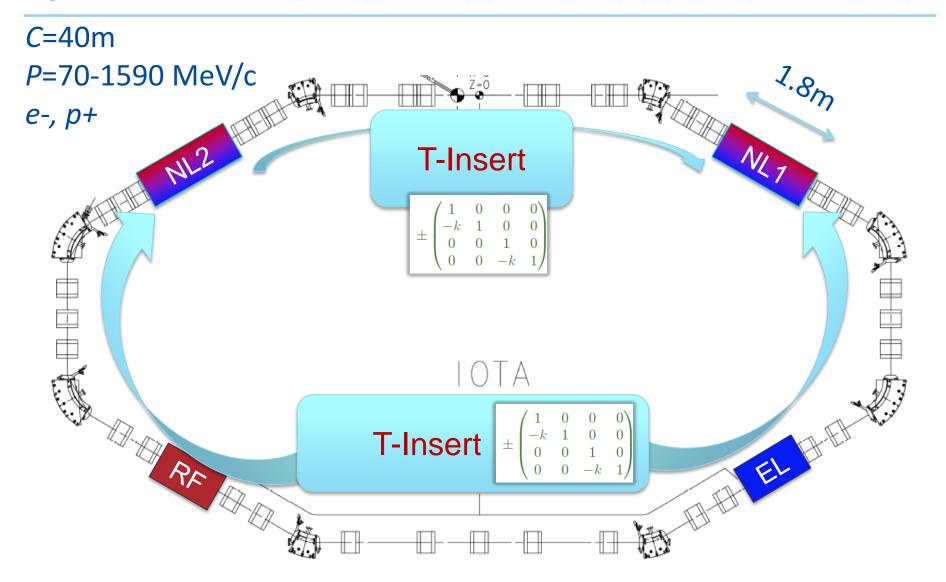
facility

spectrometer and e- dump

150+ MeV e-

CM₂

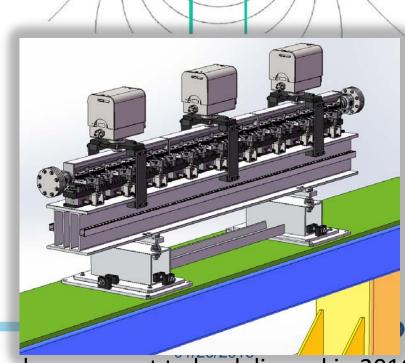
IOTA


150 MeV *e*-

2.5 MeV p+

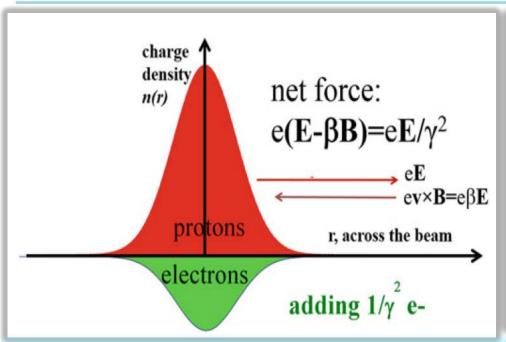
Fermilab

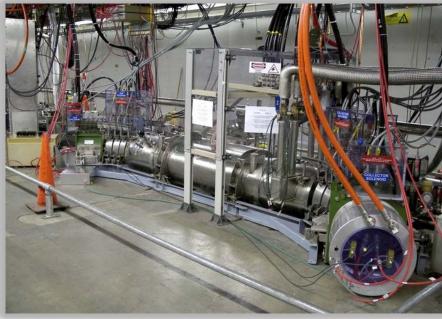
IOTA with Two Nonlinear Lenses and E-Lens

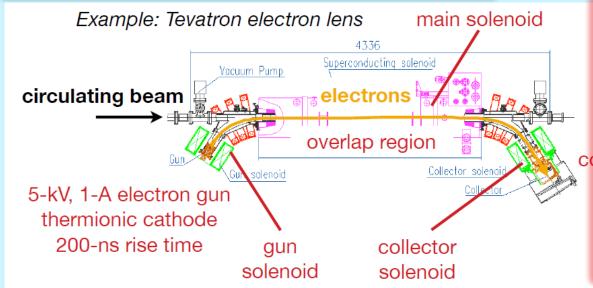


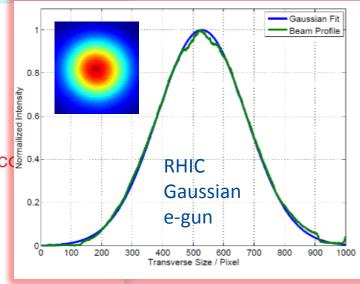
Integrable Optics with Non-linear Magnets

- Additional integrals of transverse motion possible:
 - Special NL magnets
- \rightarrow

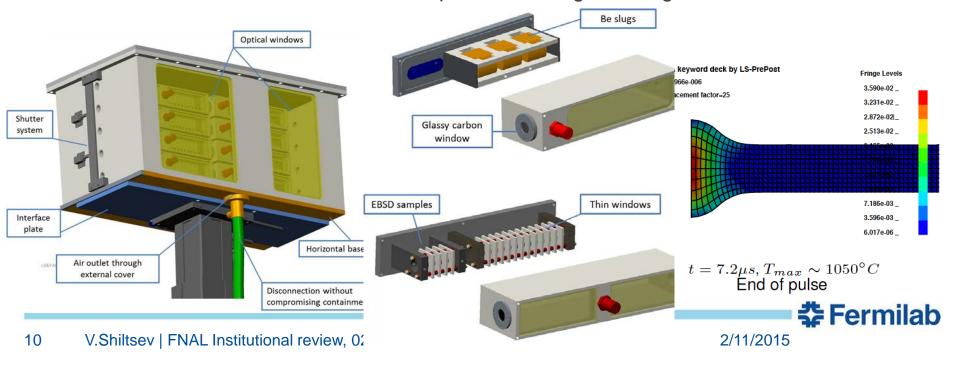

Makes particle dynamics stable with very large tune-spread

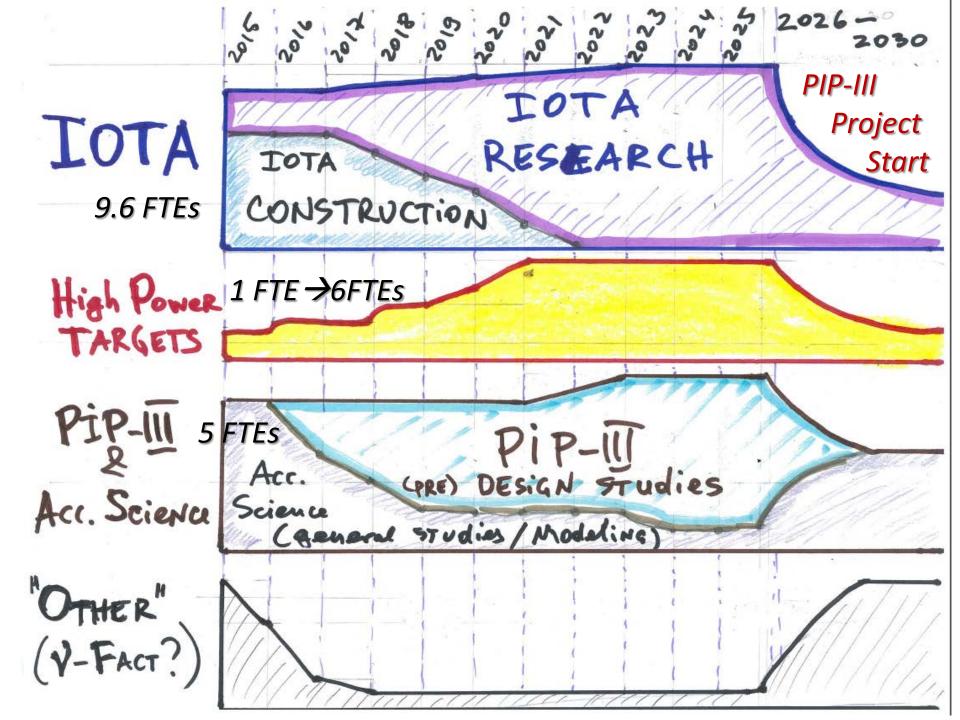





2×c

Electron Lenses: Space-Charge Compensation





High Power Targetry: New R&D Thrust

- Int'l RADIATE collaboration: Thermal Shock R&D activities
 - Approval of BeGrid experiment at CERN's HiRadMat beamline
 - Test 4 grades of beryllium to varying intensity HE proton beam
 - Objectives of the 4 institution study (FNAL, RAL-STFC, Oxford, CERN):
 - Study the initiation of small scale damage from high intensity, single pulses
 - Explore failure limits of Be
 - Compare response of various grades/forms of Be
 - Validate simulation techniques and strength/damage material models

Things Which Are Important (1)

- (when we consider Accelerator R&D opportunities)
- Relevance:
 - Don't expect blue sky research will have much traction in the budget-limited world "just because..."
 - For any R&D direction a clearly spelled relevance needed
 - Convincing rationale... may not necessary true
 - In our world it means:
 - P5
 - Fermilab
 - Accelerator Division

Things Which Are Important (2)

(when we consider Accelerator R&D opportunities)

Relevance:

- Don't expect blue sky research will have much traction in the budget-limited world "just because..."
- For any R&D direction a clearly spelled relevance needed
 - Convincing rationale... may not necessary true
- In our world it means:
 - P5
 - Fermilab
 - Accelerator Division

(since reorganization of the Lab, integration weakened)

Things Which Are Important (2)

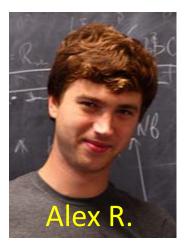
 (it might make it hard to start, but also hard to kill)

Collaborations:

- AD, SCD, PPD, ND
- Other Labs
- Universities
 - Joint Appointments
 - Adjunct Proffesorships
- International
- Users (incl. non-HEP)
- Those who will stand by you

participants of the 2nd IOTA / FAST Collaboration Meeting, June 2014

Things Which Are Important (3)

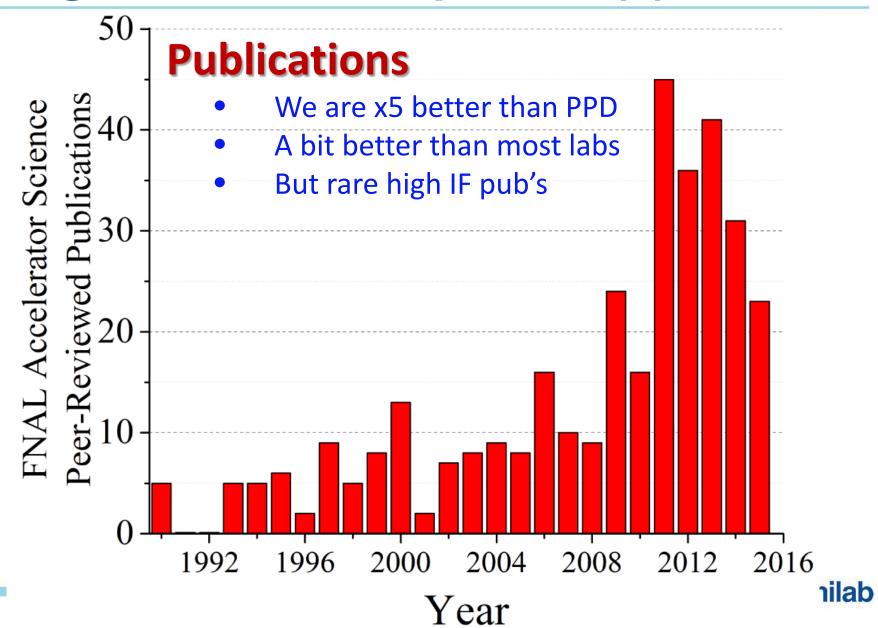

(easy to get on board, will make it hard to kill)

Junior Researchers:

- Get PhD students
- Post Docs
 - Huge problem in AD
- Peoples Fellows
- Bardeen Fellows
- Toohig Fellows
- LDRD program is VERY

helpful / important :

Just do not propose "usual" stuff
and "things we must do but have no \$\$"



Things Which Are Important (4)

Things Which Are Important (5)

- (very important to position the lab)
- Connections and positioning:
 - With DOE OHEP
 - So far limited to Chiefs, annual briefings of Pls very useful
 - With accelerator and HEP community
 - Membership in program committees, etc
 - Review other labs/universities
 - Professional organizations:
 - APS DPB better
 - IEEE very weak
 - Accolades (Prizes, Awards, Fellows, etc)
 - Very weak record for the Lab our size and importance

Things Which Might Be Interesting

- (my own list... after being invited to "think out of the box"... mostly reflects needs of particle accelerators)
- 1. Large aperture magnets... SC... 20-100 K
- 2. Fast cycling magnets... cheap ... SC .. HTS
- 3. Fast tuneable SC RF
- 4. Graphene/borophene conductors/coats
- 5. High rad-resistant materials SC RF (HTS?)
- 6. Low freq (53 MHz) high power amplifiers
- 7. High grad SC RF (90 MV/m Nb3Sn)
- 8. High Q SC RF (N2)
- 9. Low cost SC RF (Nb on Cu, etc)

Thanks for your attention!