

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

LHC: Machine and Accelerator Physics

Vladimir Shiltsev Accelerator Physics Center, Fermilab CMS Data Analysis School, 11 Jan 2016

26 658.883 m 6.5 TeV x 2

2 V.S. Machine 1/2016 | Little 1/2016 | Little

Themes and Topics

- What do protons do in "spare time" before collisions:
	- T1: Betatron oscillations
	- T2: Luminosity, beamlifetime lifetime
	- T3: Emittance growth
	- T4: Halo collimation
- What sets the LHC store duration
	- T5: Cryogenics trips
	- T6: UFOs
	- T7: Turnaround time, ramp
- What do LHC "machinists" do between/before collision runs

<u> 좋</u> Fermilab

- T8: Fix splices
- T9: Clean beampipes
- T10: Execute upgrades

T1: Betatron Oscillations

- 2800 bunches/beam $x \sim 1.1e11/b$ unch = 3e14 /beam
- 11,000 revolutions/s \times 10 hrs = 0.4 billion turns
	- Only ~ 1 billion protons die in collisions per second
- Transverse betatron oscillations ~60 times/revolution:
	- Also called *betatron oscillations*
	- Rms amplitude = beam size
	- 200-300 micron in arcs, 16 micron at IPs
	- Angular divergence : ~2 microrad in arcs, 30 microrads at IPs
- Longitudinal oscillations $-$ slow -7 Hz:
	- Also called *synchrotron oscillations*
	- $-$ Particles change positions in the bunch, rms bunch length \sim 8 cm

Eermilab

– Particle's energies vary, too – rms 1 GeV (dE/E_rms=1.1e-4)

Accelerator Nomenclature Reflects History

LHC is a synchrotron

Focusing Beams with Quadrupole Magnets

Longitudinal Motion: Phase Stability

Particles are typically accelerated by radiofrequency ("RF") structures. Stability depends on particle arrival time relative to RF phase. Note: the speed $=$ fixed $=$ speed of light, so time of arrival depends only on the energy (in the bunch – energy deviation wrt "reference central particle")

T2: Luminosity

The relationship of the beam to the rate of observed physics processes is given by the "Luminosity"

Standard unit for Luminosity is cm-2s-1

Example: total *p-p* inelastic+elastic cross section at 13 TeV cme is \sim 110 mbarn (60 inel+ 12 ssd+40 el not seen) \rightarrow \sim 40 interactions per crossing (NB: pile up is only \sim 20!) x 40,000,000 collision/sec= 1.6B protons leave each beam every second Beam lifetime due to such "Burn up" *T=N/(dN/dt)=* 3e14 protons/(1.6e9/s) =46 hours

E.g., 2015 LuminositiesATLAS

CMS

Colliding Beams Luminosity

T3: Emittance

As a particle returns to the same point on subsequent revolutions, it will map out an ellipse in phase space, defined by

$$
\gamma_T x^2 + 2\alpha_T x x^2 + \beta_T x^2 = \frac{\varepsilon}{\pi}
$$

$$
\gamma_T \beta_T - \alpha_T^2 = 1
$$

Twiss
Parameters

- Product *size x angle X_rms x X'_rms* is called emittance
- *Emittance x gamma* is adiabatic invariant
- In LHC: at IP 16 um x 30 urad x 7000=3 mm mrad, in arcs 300 um x 1.6 urad x 7000 $= 3$ mm mrad

• Luminosity ~ *1/ε*

T3: Emittance growth

$$
T_x = \varepsilon_x / (d \varepsilon_x / dt)
$$

- Intra-beam scattering: 80 hrs (growth)
- Synchrotron radiation: 26 hours (cooling)
	- Each proton loses 67 keV/turn (many 44 eV photons… yes, LHC beams shine!)
	- 0.17 W/m/aperture (total cryo capacity O(1) W/m)
- Scattering on residual gas 1000 hrs (growth)
- So the total is **cooling** (26 < 80 <1000) ???

T3: Emittance growth in reality

ab

T4: Halo Collimation

LHC particles are not 100% contained! They diffuse! – need control !

Beam momentum [GeV/c]

The LHC beam energy is 350 MJ. Already at injection the beam can damage a magnet. 조 Fermilab

Lucio Rossi – Fermilab

Factor 9.7 x 10 9 Aperture: r = 17/22 mm

Proton beam: 145 MJ (design: 362 MJ)

LHC "**Run 1**" **2010-2013: No quench with circulating beam, with stored energies up to 70 times of previous state-of-the-art!**

<u>پروتاند مرگ گستم</u>

 $1/11/2016$

LHC collimation system

LHC has **complex** and **distributed collimation** system of >100 collimators

→ several stages to protects LHC components as well as detectors

Collimation is designed to provide cleaning efficiencies > 99.99%

→ need good statistical accuracy at limiting loss locations;

 \rightarrow simulate only halo particles that interact with collimators, not the core.

1/11/2016

<u> 좋</u> Fermilab

V.Shiltsev | LHC Machine

The LHC collimator

V.Shiltsev | LHC Machine 1/11/2016

 \odot

16

 \circledcirc

AND TO BE A RIVER.

BEAM

 \odot

LHC Collimation System Layout

1 primary (H) 4 secondary (H) 4 shower abs. (H,V) IR7: Betatron cleaning 3 primary (H,V,S) 11 secondary (H,V,S) 5 shower abs. (H,V)

Local cleaning at triplets 8 tertiary (2 per IP)

- Passive absorbers for warm magnets
- Physics debris absorbers
- Transfer lines (13 collimators) Injection and dump protection (10)

Total of 108 collimators (100 movable). Two jaws (4 motors) per collimator!

Super-Effective Halo Cleaning in LHC

• 2015

Betatron Beam 1 VER 6500GeV 2015-09-06 02:07:11

LHC ring position (m)

춘 Fermilab

T5: Cryogenics , Trips

- LHC: 8 cryoplants total 35 MW wall plug; 130 tons of LHe to keep 36,000 tons at 1.9K
- Efficiency ~250 W wall plug power per Watt at 4.5 K
	- CERN cryocapacity of 150 kW @4.5K and 20kW at 1.9K

 H_l

- Three Temperatures:
	- 50-70 T-shield
	- 4.6 K Heat Intercept
	- 4.6-20 K Beam Screen
	- 1.9K cold mass
- **Safety factor 1.6 (design)**
- Reality: ~none (1.1?)

iotal CMI

 $\lfloor \mathsf{W/m} \rfloor$

0.36

Cryo: Complex and Large Machinery

2015 LHC Machine availability

Statistics for 25 ns run from September 7 to November 3

T6: UFOs

'Unidentified Falling Objects'

UFOs: there are many of them, they are frequent !

UFO events observed quite often during operation at 6.5 TeV **Conditioning** is observed on the UFO rate in spite of the increasing number of bunches

BLM thresholds being optimize to find a **good compromise between availability and quench protection**

T7: Turnaround times, ramps, etc

A Schematic of LHC Operational Cycle at half nominal energy

minutes. The fastest turnaround in 2012 was 2 hours 8 minutes. This was close to the theoretical minimum for 4 TeV operation. The average for the year was around 5 hours 30

T7: Turnaround @ 13 TeV - longer

Table 1: Breakdown of turnaround with estimated minimum times shown

Additional delays: • Transfer and injection optimi-¹ zation and general wrestling with the injection process (respecting tight demands on beam quality etc.). • controls and data acquisition problems; kicker overheating; problems in the injectors; etc. • access recovery, precycle faults

• Fills lost in the ramp and squeeze to beam induced problems (instabilities) or, feedback system faultsFer

T8: State of the Art SC Magnets

4.5 K He, NbTi + warm iron small He-plant

NbTi cable cold iron Al collar

NbTi cable simple & cheap

NbTi cable 2K He two bores

Fermilab

1/11/2016

September 19 2008

- A splice with bad thermal and electrical contact between the superconductor and the copper produced sufficient resistive heating to lead to thermal runaway.
- This provoked the melting of the material surrounding the splice, and subsequently an electric arc developed between two exposed cable ends.
- This arc melted through the helium line in which the cable travels, releasing Helium into the insulation vacuum of the interconnect.
- The rapid and voluminous expansion of the Helium caused a pressure wave that propagated along the insulation vacuum causing extensive damage

Flat copper profile

Bus bar from right

Quench : МRI magnet* (~1/30,000 of LHC)

№2 LHC vacuum chamber№1 how LHC was fixed Nel how LHC was fixed
Ne2 LHC vacuum cham

***pulled off the web. We recover our Helium.**

V.Shiltsev | LHC Machine

Sample 2A right (43 $\mu\Omega$)

Sample Joint X-Rays

Sample 3A left (26 µΩ)

Sample 3A right (43 $\mu\Omega$)

Sample 3B (21 $\mu\Omega$) Pictures by J.-M. Dalin

V.Shiltsev | LHC Machine

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections

Complete reconstruction of 1500 of these splices

Consolidation of the 10170 13kA splices, installing 27 000 shunts Installation of 5000 consolidated electrical insulation systems

300 000 electrical resistance measurements

bring the total to 1344

10170 orbital welding of stainless steel lines

main electrical feed-

Cu - superconducting splice joints was 5 μΩ. Any joint does not meet this criteria is replaced or repaired. A 13kA splice has a resistance of about 300 pΩ, which can be measured with a precision ~20pΩ. The acceptance criteria is 10 nΩ. Any splice does not meet this criteria is replaced/repaired. The resistance acceptance criteria at the

T9: Electron Cloud & Need of Scrubbing

।
जन्म

What e-cloud can do to the Beam?

Scrubbing @ 25 ns bunch spacing

So far it is the only cure in the LHC….Takes time to clean the surface and reduce SEY (secondary electron yield) from ~2.2 to $~1.5$

Scrubbing "memory" kept while running with 25 ns beams **deconditioning** was observed after few weeks of low e-cloud operation

T10: Upgrades

- **The main objective of HiLumi-LHC Upgrade (2022-2024) is to install new hardware and guarantee beam parameters that will allow the LHC to reach the following targets:**
	- Prepare machine for operation **beyond 2025 and up to 2035-37**
	- Devise beam parameters and operation scenarios for:
		- enabling a total integrated luminosity of **3000 fb-1**
		- implying an integrated luminosity of **250-300 fb-1 per year**,
		- design for μ ∼ **140 (**∼ **200)**
		- (peak luminosity of **5 (7) 1034 cm-2 s-1**)
	- Design equipment for 'ultimate' performance of **7.5 1034 cm-2 s-1** and **4000 fb-1 => Ten times the luminosity reach of first 10 years of LHC operation**

LHC Luminosity Upgrade : Machine Goals

Luminosity recipe :

$$
L = \frac{n_b \cdot N_1 \cdot N_2 \cdot \gamma \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot F(\phi, \beta^*, \varepsilon, \sigma_s)
$$

 \rightarrow 1) maximize bunch intensities \rightarrow Injector complex \rightarrow 2) minimize the beam emittance $LIII \Leftrightarrow \text{IRS}$ \rightarrow 3) minimize beam size (constant beam power); \rightarrow triplet aperture \rightarrow 4) maximize number of bunches (beam power); \rightarrow 25ns \rightarrow 5) compensate for 'F'; \rightarrow Crab Cavities \rightarrow 6) Improve machine 'Efficiency' \rightarrow minimize number of unscheduled beam aborts

HL-LHC Scale: Hardware and Cost

The HL-LHC Project

976MCHF (-142 +208) ~2,500 man-years

- New IR-quads Nb₃Sn (inner triplets)
- New 11 T $Nb₃Sn$ (short) dipoles
	- **Collimation upgrade**
- Cryogenics upgrade
- **Crab Cavities**
- **Cold powering**
- **Machine protection**

Major intervention on more than 1.2 km of the LHC 38 V.Shiltsev | LHC Machine 117 Machine 10 Machine 1/11/2016

Quadrupoles of LARP

Courtesy: G. Ambrosio FNAL and G. Sabbi, LBNL

LQS01a: 202 T/m at 1.9 K LQS01b: 222 T/m at 4.6 K 227 T/m at 1.9 K

LQS02: 198 T/m at 4.6 K 150 A/s 208 T/m at 1.9 K 150 A/s

3.3 m coils 90 mm aperture

Target: 200 T/m gradient at 1.9 K

LQS03: 208 T/m at 4.6 K 210 T/m at 1.9 K 36% s.s. limited by one coil

Further Reading on Accelerator Physics

- An Introduction to Particle Physics High Energy Accelerators, D. Edwards and M. Syphers (John Wileyand Sons, Inc, 1993)
- Accelerator Physics, S.Y. Lee (World Scientific, 1999)
- Hand Book of Accelerator Physics and Engineering – Eds. A. Chao and M. Tinger , World Scientific (1999)
- CAS CERN Accelerator, Accelerator Physics Courses<http://cas.web.cern.ch/>
- Accelerator Physics at the Tevatron Collider - by V.Lebedev and V.Shiltsev, Springer (2014)

Particle Acceleration and Detection

Valery Lebedev Vladimir Shiltsev Editors

Accelerator **Physics at** the Tevatron Collider

Questions !?

춘 Fermilab

